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Abstract

Acute febrile illnesses are still a major cause of mortality and morbidity globally, particularly

in low to middle income countries. The aim of this study was to determine any possible meta-

bolic commonalities of patients infected with disparate pathogens that cause fever. Three

liquid chromatography-mass spectrometry (LC-MS) datasets investigating the metabolic

effects of malaria, leishmaniasis and Zika virus infection were used. The retention time (RT)

drift between the datasets was determined using landmarks obtained from the internal stan-

dards generally used in the quality control of the LC-MS experiments. Fitted Gaussian Pro-

cess models (GPs) were used to perform a high level correction of the RT drift between the

experiments, which was followed by standard peakset alignment between the samples with

corrected RTs of the three LC-MS datasets. Statistical analysis, annotation and pathway

analysis of the integrated peaksets were subsequently performed. Metabolic dysregulation

patterns common across the datasets were identified, with kynurenine pathway being the

most affected pathway between all three fever-associated datasets.

Author summary

Fever-associated infectious diseases are still a major cause of concern in low to middle

income countries. Inappropriate treatment of misdiagnosed diseases can contribute to the

selection of drug resistant microbes. Therefore, improved diagnostics of febrile patients

and specific biomarker discovery to support new diagnostics is desirable. Metabolomics

studies can provide the necessary information which leads to the discovery of biomarkers.

In this study we have investigated three different metabolomics datasets; including those

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011133 July 24, 2023 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Năstase A-M, Barrett MP, Cárdenas WB,

Cordeiro FB, Zambrano M, Andrade J, et al. (2023)

Alignment of multiple metabolomics LC-MS

datasets from disparate diseases to reveal fever-

associated metabolites. PLoS Negl Trop Dis 17(7):

e0011133. https://doi.org/10.1371/journal.

pntd.0011133

Editor: Johan Van Weyenbergh, KU Leuven,

BELGIUM

Received: September 14, 2022

Accepted: February 1, 2023

Published: July 24, 2023

Copyright: © 2023 Năstase et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The metabolomics

raw datasets have been deposited at MetaboLights

under the following accession number:

MTBLS4895. The code used for this paper may be

found in the Github repository: https://github.com/

anamaria-uofg/mma.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-3573-7219
https://orcid.org/0000-0001-9447-3519
https://orcid.org/0000-0003-3578-4477
https://doi.org/10.1371/journal.pntd.0011133
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0011133&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0011133&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0011133&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0011133&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0011133&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0011133&domain=pdf&date_stamp=2023-08-03
https://doi.org/10.1371/journal.pntd.0011133
https://doi.org/10.1371/journal.pntd.0011133
http://creativecommons.org/licenses/by/4.0/
https://github.com/anamaria-uofg/mma
https://github.com/anamaria-uofg/mma


for malaria, leishmaniasis and Zika virus infection, all associated with fever. We aimed to

integrate these metabolomics datasets to determine metabolites which behave in the same

way in different infectious diseases. One of the challenges in integrating metabolomics

datasets is a non-linear drift which occurs between them in terms of retention time. In

this case, we proposed to correct this drift by using a supervised machine learning algo-

rithm called Gaussian Process Regression. Following the integration or alignment of the

datasets statistical analysis and annotation of the metabolites was performed. We identi-

fied several metabolites which acted in a similar manner across the datasets, specifically

those found in the kynurenine pathway of tryptophan metabolism.

Introduction

Many infectious diseases are characterised by fever: a generic host response to numerous

microbial pathogens. Fever is associated with the hypothalamus which, in response to the acti-

vation of cyclooxygenase-2 (COX-2), releases prostaglandin E2 (PGE2), triggering a systemic

increase in body temperature which can have microbicidal effects [1]. Although fever has a

protective effect, acute febrile illnesses are still a major cause of mortality and morbidity glob-

ally, particularly in low to middle income countries [2]. The failure to correctly diagnose a spe-

cific disease associated with fever is partly responsible for this. Inappropriate treatment of

misdiagnosed diseases can contribute to the selection of drug resistant microbes. For example,

in many parts of Africa, fever is assumed to be due to malaria and treated with anti-malarial

drugs. In cases where the patient may actually not have been infected with malaria parasites,

but subsequently became infected while the drug concentration was waning, a selective pres-

sure on resistant mutants could have been imposed [3]. Therefore, improved diagnostics of

febrile patients and specific biomarker discovery to support new diagnostics is desirable.

Recently, increasing numbers of studies on fever-associated diseases using untargeted meta-

bolomics with mass spectrometry coupled to high performance liquid chromatography

(LC-MS) have emerged [4–8]. LC-MS is a sensitive approach to identifying metabolite markers

and for providing a comprehensive coverage of the metabolome, as it enables the separation

and measurement of thousands of discrete chemical compounds. Following the LC-MS peak

detection process, a list of ions characterised by the chromatographic retention time (RT),

mass to charge ratio (m/z) and intensity is obtained.

When performed on individual disease states, however, distinguishing between metabolites

associated generically with fever, and others specific for particular diseases becomes a chal-

lenge. Thus, this study aimed to search for common perturbations to compounds across a set

of fever associated diseases simultaneously, in order to identify metabolites generically associ-

ated with fever or disease severity. In order to achieve this, a method for integration of multiple

LC-MS datasets through peakset alignment was developed.

The alignment process, also referred to as correspondence, for which algorithms are catego-

rized into either direct matching or warping algorithms, has been extensively studied, mainly

in the context of multiple injections within the same experiment [9]. This is due to the fact that

although the LC-MS instrumentation and methodology are robust and well established, mea-

surement variability can still appear, resulting in non-linear shifts especially in RT. There are

two types of variability sources which can appear in an LC-MS experiment and cause mis-

alignment and/or cross-alignment [10]: system variation and component level variation [9].

The system variation is usually consistent throughout the whole run and may be caused by fac-

tors such as the apparatus itself, the column, system stability and temperature [11].
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Component level variation, by contrast, is specific to a single analyte or a group of analytes, so

it cannot be modelled using monotonic functions. In order to reduce the RT variability within

an experiment, a set of known metabolites, or internal standards, is run at various points dur-

ing an LC-MS experiment as part of the quality control process [11, 12]. Using internal stan-

dards enables the drift in compound intensity and especially RT to be tracked throughout

every LC-MS run. Therefore, the internal standards metabolites can be used as landmarks for

retention time correction as the m/z for each compound detected using LC-MS is constant.

In this study, the information provided by the internal standards runs was used to deter-

mine and correct the RT drift between injections of different LC-MS experiments by model-

ling it using Gaussian Process (GP) regression, a supervised machine learning approach [13].

GP regressions are a non-parametric approach to modelling data and they differ from standard

regression models in that they do not require any assumptions about a particular parametric

form for the function being modelled. Fitted GPs were used to perform high level correction

of retention times between experiments, after which standard alignment was performed.

The algorithm was developed here specifically to determine whether any metabolites could

be identified that changed in abundance in similar ways across a series of distinct fever-associ-

ated diseases. These include Zika virus infection in patients from Ecuador [14], Leishmaniasis

patients from Spain [15] and uncomplicated malaria infected volunteers from the UK [16].

The samples had been run previously using the same LC-MS platform (Glasgow Polyomics,

University of Glasgow, UK). By seeking metabolites for which the variation in abundance fol-

lowed common trends in different datasets, we aimed to determine disease-generic metabo-

lites that could assist in both understanding the pathophysiology of infectious disease, and also

in identifying metabolites that may be fever rather than specific disease related.

Materials and methods

Datasets

Three LC-MS datasets –DZ, DM, DVL– analysed at Glasgow Polyomics metabolomics facility

(University of Glasgow, UK) were used for the cross-experimental integration in this study.

Detailed information regarding the sample collection process for each dataset is included in

the Supporting Information (S1 File). All three experiments were designed for detecting the

differences between the serum metabolic profiles of healthy controls and infected patients

diagnosed by gold-standard methods. In total, there were 74 samples (37 controls and 37 dis-

ease samples). Detailed information about each LC-MS experiment is presented in Table 1.

LC-MS platform. The experiments were run at different time points (Table 1) using the

same LC-MS platform: Thermo Orbitrap QExactive (Thermo Fisher Scientific) mass spec-

trometer coupled with a Dionex UltiMate 3000 RSLC system (Thermo Fisher Scientific,

Hemel Hempstead, UK) using a ZIC-pHILIC column (150 mm × 4.6 mm, 5 μm column,

Merck SeQuant). While the same flow rate was used for all three datasets, the length of the run

differed for DVL, which lasted longer than the other two datasets. Data from both positive

(+ve) and negative (−ve) electrospray ionisation (ESI) mode was obtained.

Tandem mass spectrometry data. Fragmentation of the pooled samples within each

experiment was performed using higher energy C-trap dissociation (HCD) at a normalised

collision energy (NCE) of 60. These were analysed with TopN data-dependent acquisition

(DDA) fragmentation strategies, resulting in tandem mass spectrometry (MS2) data only for

some of the observed ions.

Internal standards. As part of the quality control across each experiment, three sets of

internal standard mixtures which include compounds that cover a broad range of metabolic

pathways such as amino acid metabolism, central carbon metabolism and nucleotide
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metabolism were run twice, before and after the cohort of samples was run. Detailed informa-

tion about the internal standards used during the LC-MS experiments is included in the Sup-

porting Information (S1 Table).

Study workflow

The data analysis process is outlined in Fig 1.

Peak detection. The spectral data was processed by detecting the chromatographic peaks

from the internal standards and serum samples LC-MS data. Peak detection was performed

using wavelet transform from MZmine2 v2.40.1 [17] in batch mode. For mass detection, the

noise level threshold was set at 1.0E4, whilst for the ADAP chromatogram builder, the group

intensity threshold was set at 1.1E4 and the minimum group size at 5. The m/z tolerance,

which is dependent on the instrumentation used, was set at 3 ppm.

Internal standards analysis. First, the reference dataset, Dref = DZ, was randomly selected

from the two datasets with the shorter run length. Next, a profile was created for each dataset

characterised by (m/z, RT) of the extracted internal standards compounds from the peak lists

obtained after the peak detection process. The profiles of the non-reference datasets, DM and

DVL, were then mapped to the reference dataset profile and the RT drift between each of the

non-reference datasets and the reference dataset was determined and modelled using GP

regression.

GPR modelling of the RT drift. For each non-reference dataset, the RTs from the (m/z,

RT) profile created were regressed against their respective RT drift from the reference dataset

values. In order to obtain a closer fit to the data but still maintain the variability, internal stan-

dard metabolite outliers were removed based on their RT drift from the reference profile using

a z-score cutoff value of 2. For implementing the Gaussian Process models, the GPy python

package, version 1.9.9 was used [18]. Model hyperparameter optimisation was done using

multiple restarts (n = 10) with the GPy optimiser to avoid local minima. To determine which

covariance function aids in fitting the data best in each case, cross-validation was performed,

by stratifying and splitting the internal standards data in half for training and testing the

model. The prediction accuracy score, mean absolute error (MAE) and mean squared error

(MSE) were calculated in each case.

GPR corrected data. The GPR corrected RT times were obtained by adding the GPR pre-

dicted variables (posterior mean) to the initial RT values of each peakset from the non-refer-

ence dataset.

Table 1. LC-MS datasets details.

DZ DM DVL

Infectious Disease Zika virus [14] Malaria [16] Visceral Leishmaniasis [15]

Study Type Case-control Intervention Case-control

LC Column/MS Platform pHILIC/Q-Exactive pHILIC/Q-Exactive pHILIC/Q-Exactive

LC-MS Run Length (min) 26 26 46

Date Analysed 2018 2016 2018

Healthy Controls 10 7 20

Infected Patients 10 7 20

Internal Standards Sets 3 3 3

MS2 data Yes Yes Yes

Information about each LC-MS experiment, including the disease studied, type of study, number of controls and patients, LC-MS platform used, date when the samples

from the LC-MS experiment were run and availability of fragmentation (MS2) data, are presented.

https://doi.org/10.1371/journal.pntd.0011133.t001
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Detection of alignment RT window parameter. The alignment of the peak lists was per-

formed using the JoinAligner module from MZmine2. The optimal RTWindow parameter

was determined by aligning the internal standards peak lists RTWindow values ranging from

0.01 min to 2 min. For each of the three internal standards sets the total number of peaks

aligned and the total number of internal standards that align for each RTWindow value across

the datasets was calculated. In order to determine the optimal RTWindow for all datasets, the

value for which the alignment results in the lowest total number of peaks aligned and highest

number of internal standards metabolites was selected for further analysis.

Sample analysis. The GPR models obtained in the previous stage were applied to each

serum sample peak list by correcting the RT values for each peak as detailed above. The RT

corrected peak lists were then aligned using the RTWindow value previously obtained. The

final list of aligned peaksets was first processed by filtering out the peaksets based on the per-

centage of missing values from each dataset. An arbitrary cut-off value of 50% was used. Data

imputation using the K-nearest neighbours method (k = 3) was performed solely for visualisa-

tion purposes [19].

Statistical analysis. The statistical analysis focused on the intensity differences between

the sample peak lists belonging to the control and infected groups from all three datasets. The

Fig 1. Diagram representing the study workflow. A. Peaks were detected from input LC-MS data (mzML format), including the internal standards and

serum samples, using MZmine2. Peakset lists containing ion information (m/z, RT, intensity) were obtained. B. Internal standards analysis. A reference

dataset was selected and the RT drift in the other datasets was calculated and modelled using GP regression. C. Sample analysis. Based on the GPR models

obtained for each dataset, the RT was corrected in each peakset list and alignment was done using MZmine2. Afterwards, statistical analysis focused on the

intensity differences between the control and infected samples was performed using limma R package. This was followed by annotation and pathway

analysis using mummichog.

https://doi.org/10.1371/journal.pntd.0011133.g001
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intensities were log2 normalised and modelled using linear regression from the limma R pack-

age, where blocking was used to adjust for the intensity variability between the different data-

sets. The output of this analysis was a list containing all the peaksets and their respective p-

value, Benjamini-Hochberg (BH) adjusted p-value and logarithmic fold change (logFC)

between the two conditions.

Feature annotation and pathway analysis. The MS2 spectra from each dataset was

aligned to the final filtered peaksets list. A profile characterized by (m/z, RT, ms2spec) was cre-

ated for the possible adducts/fragments for each peakset (S2 Table) and several methods were

used for feature annotation. First, annotation was performed using the internal standards

information by mapping the peakset profile against the internal standards (m/z, RT) profiles.

Next, they were mapped against metabolite information extracted from the Human Metabo-

lome Database (HMDB). Where one or more spectra was aligned to a peak, the attached spec-

trum/spectra was compared against experimental LC-MS spectra from HMDB and the match

with the highest cosine similarity score was used to annotate the peak. For pathway and activity

network analysis mummichog version 2.3.3. was used [20].

Code. All of the analysis was performed in python programming language (https://github.

com/anamaria-uofg/mma).

Methodology evaluation

The peakset lists with no GPR correction were aligned and the same workflow was applied to

their analysis. The results obtained were compared with the results of the GPR modified data.

Also, the datasets were individually analysed and their filtered peakset lists were then inter-

sected to determine whether any commonality can be found in this way. Additionally, we eval-

uated the alignment process using the available MS2 data. If two compounds with similar m/z

and RT break down into the same fragments (during LC-MS analysis), then it is highly likely

they represent the same compound. Therefore, if a peakset had multiple highly similar MS2

spectra from different datasets, it is likely that the peaks were aligned correctly. In order to

measure the similarity between two MS2 spectra, cosine similarity score implemented in mass-

spec-utils was used [21]. In order to evaluate the alignment process using MS2 data, the spec-

tral similarity between the MS2 profiles was computed when more than one spectrum was

aligned to one peakset. In order to establish a ground truth, for each of the actual spectral simi-

larity score (good spectral similarity score), the mean of the corresponding distribution of ran-

dom spectral similarity scores (bad spectral similarity score) was calculated. These were

obtained from spectra of peaksets with similar m/z (absolute tolerance = 0.01), but different

RT (Δ RT = 40 s).

Results

Internal standards analysis

Correlation between the RT drift and other variables. Correlation between the RT drift

and the characteristics of the dataset profiles was checked. For all datasets the highest correla-

tion was found with the RT from each dataset profile. Based on this information, the training

(70%) and test (30%) data were split and stratified in 4 equal length bins. Following cross-vali-

dation, the kernel with the highest accuracy and lowest MAE was chosen. The final model was

fitted using the selected kernel and optimised using multi-start in order to deal with possible

bad local minimum.

GPR modelling of the RT drift. Both simple kernels, such as RBF, multilayer perceptron

(MLP) and cosine kernels, and composite kernels were tested to determine which ones best fit
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the data (Fig 2). Composite kernels refer to multiple simple kernels combined either by addi-

tion or multiplication.

For DM the mean retention time drift in comparison to the reference dataset was 19.85 s

and the highest RT drift between two peaks belonging to the same ion was 319.74 s. Following

cross-validation an RBF kernel was selected as the best for fitting the RT drift in DM with an

accuracy of 0.99, MAE = 0.06 and MSE = 0.03. The two hyperparameters of the RBF function,

i.e. variance and lengthscale, were optimised to 0.07 and 6.84 respectively (Gaussian noise vari-

ance = 0.01) (Fig 2A).

For DVL the mean retention time drift was 112.03 s and the maximum RT drift was 252.54

s. For the drift in DVL a composite kernel RBF+MLP was chosen for fitting the data with an

accuracy score of 0.995, MAE = 0.14 and MSE = 0.03 (Fig 2B). The hyperparameters after 10

optimisation restarts were: MLP variance = 3.99, MLP weight variance = 2.02e7, MLP bias

variance = 5.56e-309, RBF variance = 7.44, RBF lengthscale = 9.41 (Gaussian noise

variance = 0.1).

RTWindow value choice for JoinAligner module. For DM, 94.8% of the maximum num-

ber of internal standards in common with the reference dataset are aligned at

Fig 2. Modelling the RT drift in the two datasets DM and DVL. A. Modelling the drift in DM using an RBF kernel. Graph (a): Mean and 95% posterior

confidence with optimised hyperparameters: RBF variance = 0.07, RBF lengthscale = 6.84. Graph (b) illustrates the RT drift in DM before and after correction of

the retention times using the GPR model. B. Modelling the drift in DVL using a composite RBF + MLP kernel. Graph (a): Mean and 95% posterior confidence

with optimised hyperparameters: MLP variance = 3.99, MLP weight variance = 2.02e7, MLP bias variance = 5.56e-309, RBF variance = 7.44, RBF

lengthscale = 9.41. Graph (b) illustrates the RT drift in DVL before and after correction of the retention times using the GPR model.

https://doi.org/10.1371/journal.pntd.0011133.g002
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RTWindow = 0.25 min after RT drift correction, as opposed to 19.48% before drift correction.

Whereas, for DVL the maximum number of metabolites which are aligned after drift correction

are obtained at RTWindow = 0.5 min for which 92.67% of the metabolites align, as opposed to

17.64% before correction. At a RTWindow value of 0.25 min 83.82% of the metabolites align

(S1 Fig). Based on these results, the optimal RTWindow parameter for further alignment of

the samples was selected at RTWindow = 0.5 min.

Methodology evaluation

GPR corrected data vs original data. Results obtained for the +ve mode data are pre-

sented. In total, 625 peaksets remained after filtering the GPR corrected data, as opposed to

344 peaksets in the non-corrected data. Most of the peaks which are aligned only in the GPR

modified data have the retention time in the range of (7,13) minutes.

Individual datasets alignment. For DZ, 2305 peaksets remain after filtering, out of which

3 are significant. For DVL 2392 peaksets remain after filtering, out of which 775 are significant.

For DZ 2152 peaksets remain after filtering, out of which 5 are significantly different. When

intersecting the significantly different peaksets, there is no peakset found to be in common

between all three datasets. Therefore, aligning the peaksets together increases the number of

samples, increasing statistical significance.

MS2 data. Due to the fragmentation strategy employed in each experiment, MS2 spectra

were available only for a small percentage of the data. From the filtered peaksets there were

217 peaksets with MS2 spectra aligned, out of which 141 had an MS2 spectrum from one data-

set attached to it, 65 peaks had MS2 spectra from 2 datasets attached and 11 peaks had MS2

spectra from all 3 datasets. The majority of peaksets were fragmented only in one dataset. The

bad spectral similarity scores attached to peaksets with the same m/z mainly have a lower simi-

larity score than the good scores (87%), which shows that the alignment worked optimally for

the majority of peaksets (S3 Fig).

Sample analysis

Sample alignment. For the sample alignment, the −ve ESI mode data was processed in

the same way as the +ve ESI mode data which was presented above. The JoinAligner module

was run with RTWindow = 0.5 min in order to align all 74 samples across the three datasets.

Following alignment there were 37,220 peaksets in +ve ESI mode and 24,729 in −ve ESI mode.

After filtering out the peaksets with more than 50% values missing in any one dataset, only

1.68% of the total number of peaksets, i.e. 625, remained. A similar percentage was obtained in

the case of the negative mode data where 1.85% (459) of the total number of peaksets

remained. The differential expression analysis resulted in 207 significantly different (BH

adjusted p-value<0.05) features and 159 features in the positive and negative mode,

respectively.

Overview of significantly modified compounds. The significant features with putative

annotations either by standard matching, MS2 profile matching or mummichog analysis, that

present common trends based on the logFC values between the two conditions (disease vs con-

trol) from each individual dataset, are presented in Figs 3, 4, 5 accompanied by the informa-

tion in S3 Table. Based on this, a general trend over the three datasets was established. For the

+ve ESI mode data, 30 peaksets presented a general upward trend (all datasets have logFC>0)

out of which 11 were statistically significant and 150 peaksets presented a general downward

trend out of which 69 were significant. For the −ve ESI mode data, 46 peaksets presented a

general upward trend out of which 25 were statistically significant and 115 peaksets presented

a general downward trend out of which 74 were significant.
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A table containing the results following the statistical analysis with annotation is included

in the Supporting Information (S2 Table). A large proportion of the features elute in clusters

of similar retention time, indicating that they might be related, e.g. fragments or adducts of the

parent ion. The list of ions used to calculate the possible adducts/fragments of each peak are

included in the Supporting Information (S4 Table). Common adducts include gain of H2O,

Na or K, isotopologues (C13, S34) and common fragmentation patterns include loss of CO,

H2O, HCOOH, NH3, C3H4O2, H4O2.

Pathway analysis results. Following mummichog pathway analysis for both the positive

and negative ionisation modes 20 KEGG pathways were found to be statistically significant.

Fig 3. Boxplots of putatively annotated compounds which were upregulated in infected patients. Overview of putatively annotated metabolites

which are statistically significant (p-val<0.05) and present a general upward trend in all three datasets, i.e higher intensities in infected patients.

The metabolites are grouped based on their class or subclass according to HMDB. In this case, metabolites from amino acids and derivatives, lipids

and derivatives, sugars and pyrimidines were identified. Values from both positive and negative ESI modes are presented from left to right in

ascending order of their p-value. Metabolites in italic font are only annotated using mummichog.

https://doi.org/10.1371/journal.pntd.0011133.g003
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The pathway analysis revealed a significant impact of the studied infectious diseases on nitro-

gen metabolism with tryptophan metabolism predominant (Table 2). Following the modular

analysis, the activity network for the +ve ESI mode is also centered around tryptophan metab-

olism, specifically the kynurenine pathway, which is discussed in more detail in the next

Fig 4. Boxplots of putatively annotated compounds which were downregulated in infected patients. Overview of

putatively annotated metabolites which are statistically significant (p-val<0.05) and present a general downward trend in all

three datasets, i.e. lower intensities in infected patients (with p-value<0.05). The metabolites are grouped based on their class

or subclass according to HMDB. In this case, metabolites from amino acids and derivatives, carboxylic acids and indoles

were identified. Values from both positive and negative ESI modes are presented from left to right in descending order of

their p-value in each group. Metabolites in italic font are only annotated using mummichog.

https://doi.org/10.1371/journal.pntd.0011133.g004
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section (S4 Fig). For the −ve ESI mode data the activity network also involves tryptophan

metabolites and, additionally, citric acid cycle metabolites.

Tryptophan metabolism. Focused analysis on the tryptophan metabolic pathways repre-

sented in Fig 6 revealed significant decreases in all three datasets of tryptophan and tryptophan

Fig 5. Boxplots of putatively annotated compounds which were downregulated in infected patients (continuation). Overview of putatively

annotated metabolites which are statistically significant (p-val<0.05) and present a general downward trend in all three datasets, i.e. lower intensities

in infected patients (with p-value<0.05). The metabolites are grouped based on their class or subclass according to HMDB. In this case, metabolites

from lipids and derivatives and nucleotides and derivatives were identified. Values from both positive and negative ESI modes are presented from left

to right in descending order of their p-value in each group. Metabolites in italic font are only annotated using mummichog.

https://doi.org/10.1371/journal.pntd.0011133.g005
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derivatives such as indoleacetic acid and methoxyindole acetate. Methyl indole acetate and for-

myl-N-acetyl-5-methoxy kyunernamine were also significantly decreased in the infected

group with the exception of the Malaria dataset where the logFC value was slightly higher (Fig

6). In contrast, the kynurenine branch of tryptophan metabolism suggests an increased activa-

tion as kynurenine and kynurenic acid are present at higher levels in infected patients in all

three datasets. 3-Hydroxyanthranilate was in general higher as well with the exception of the

Malaria dataset were logFC value was slightly lower. Anthranilate levels were also reduced in

infected patients across all datasets, although not reaching statistical significance. Nicotinic

acid (−ve ESI mode) was also found in significantly lower levels in infected patients and nico-

tinamide was significantly lower, although the Zika dataset had positive logFC (Fig 4). It is

important to note that unless otherwise stated, annotations are based on m/z alone.

Tryptophan metabolism has previously been associated with various agents of infection

[22], particularly its flow through the kynurenine pathway which produces metabolites includ-

ing kynurenate and nicotinamide adenine dinucleotide (NAD+). Of particular interest is the

inverse relation between kynurenine and tryptophan, as the ratio between the two is used to

measure the activity of the enzyme indoleamine-2,3-dioxygenase 1 (IDO-1) [23]. IDO-1 is the

rate limiting step of the tryptophan pathway and it catalyses the breakdown of tryptophan to

kynurenine. IDO-1 activity is also tightly regulated by interferon gamma (IFN-γ) activity [24].

Similarly, COX-2, an enzyme central to the fever process, can also be induced by IFN-γ [25].

The interplay between IDO-1 and COX-2 enzymes has been previously studied where

Table 2. Significantly altered metabolic pathways (p-val<0.05) following mummichog analysis of the negative and

positive ionisation mode data.

KEGG Pathway p-value ESI mode

Nitrogen metabolism 0.000672 +

Tryptophan metabolism 0.00084 +

Alanine and Aspartate Metabolism 0.002017 +

Pyruvate Metabolism 0.00521 -

Vitamin B3 (nicotinate and nicotinamide) metabolism 0.005546 +

Pyrimidine metabolism 0.007226 +

Glycolysis and Gluconeogenesis 0.008151 -

Carnitine shuttle 0.009243 +

Glycerophospholipid metabolism 0.013024 -

Glycosphingolipid metabolism 0.013024 -

Methionine and cysteine metabolism 0.015965 +

Aminosugars metabolism 0.022939 +

Purine metabolism 0.022939 +

Bile acid biosynthesis 0.031846 +

Fatty Acid Metabolism 0.031846 -

Putative anti-Inflammatory metabolites formation from EPA 0.031846 +

Androgen and estrogen biosynthesis and metabolism 0.03924 -

C21-steroid hormone biosynthesis and metabolism 0.03924 -

Vitamin B1 (thiamin) metabolism 0.03924 -

Glutathione Metabolism 0.04445 +

This is the merged output obtained following mummichog analysis of both +ve and −ve ESI mode data. The p-values

are based on EASE score (a variant of Fisher exact test) and adjusted on the cumulative distribution function of the

Gamma model [20].

https://doi.org/10.1371/journal.pntd.0011133.t002
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inhibition of COX-2 enzyme has led to a downregulation in IDO-1 and decrease in kynure-

nine metabolites [26].

It could be hypothesised in this case, that the increased level in kynurenine and decreased

levels of tryptophan indicate an increased IDO-1 activity, and subsequently an increased

Fig 6. Tryptophan metabolism and the changing metabolites from each dataset. Intensity values are represented as lg2 values. The metabolites were

mapped against the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway map hsa00380. Metabolites in italic font are annotated following

mummichog analysis or the HMDB matching method, while the rest are annotated using the internal standard metabolites information. The boxplots

represent the intensities of all the samples in each condition (red = infected, blue = control) in all three datasets.

https://doi.org/10.1371/journal.pntd.0011133.g006
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COX-2 activity. Due to the importance of these metabolites, further investigation was con-

ducted in verifying the identity of the putatively annotated metabolites using the available MS2

spectral information.

Verifying the identity of tryptophan and kynurenine peaks using MS2 spectral informa-

tion. As both the tryptophan and kynurenine peaks had spectral information from one out of

the three datasets, this was used to verify the identity using the cosine similarity score

employed in Metabolomics spectrum resolver [27]. Similarity scores of 0.54 and 0.55, respec-

tively, were obtained for kynurenine and tryptophan fragment (with loss of ammonia) (Figs 7

and 8).

Other affected metabolic pathways

Amino acid metabolism. Other significantly affected pathways relate mostly to other

amino acids including those from alanine, aspartate and glutamate metabolism, methionine

and cysteine metabolism and glutathione metabolism (Table 2). Fig 6 indicates a clear reduc-

tion in a number of amino acids and their metabolites particularly glutamine and related

metabolites. In immune cells, glutamine is converted through glutaminolysis to glutamate,

aspartate and alanine by undergoing partial oxidation [29]. This could explain the decrease in

glutamine and increase in aspartate in the infected group in all three datasets. Similarly,

another glutamine derived metabolite, asparagine, was found to be increased in infected

Fig 7. Peakset annotated as Kynurenine (M+H[1+]). using internal standards matching method, mummichog and HMDB matching method.

The spectrum belongs to DVL (resolver obtained from ms2lda.org) and it was matched against experimental LC-MS MS2 information from

MassBank compound KO003269 with a cosine similarity score of 0.54 (fragment tolerance = 0.2) (Metabolomics spectrum resolver plot).

https://doi.org/10.1371/journal.pntd.0011133.g007
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patients in all three datasets. Glutamine also acts as a precursor for citrulline which plays an

important role in arginine biosynthesis in the urea cycle. Citrulline levels were significantly

lower in the infected group from the three datasets.

Altered glutathione metabolism accompanied by a dysregulated methionine and cysteine

metabolism was also observed. The plasma levels of the amino acid 5-oxoproline (pyrogluta-

mic acid) were also lower in the infected patients in comparison to healthy controls. In addi-

tion to decreased methionine, methylcysteine was also decreased in the infected patients. A

precursor of cysteine, o-acetylserine was also decreased in the infected group alongside threo-

nine and homoserine. Taurine, another metabolite derived from cysteine metabolism, was also

found to have significantly lower levels in infected patients in the metadataset. The decrease in

reduced thiols, may arise due to increased levels of oxidative stress in response to infection.

There has been previous evidence which suggests that disruptions of the redox homeostasis

affect normal body temperature [30].

Other amino acids presenting lower levels in all three datasets in the infected group but not

with statistical significance include: beta-alanine, proline and betaine. In contrast, several

amino acids and their relatives presented overall higher levels in infected patients including

carnitine, tyrosine and leucine.

Fig 8. Peak annotated as L-Tryptophan fragment with loss of ammonia (M-NH3+H[1+]). using internal standards matching method,

mummichog and HMDB matching method. The loss of ammonia from protonated tryptophan was observed as the primary fragmentation

pathway in gas-phase reactions [28]. The spectrum belongs to DZ and it was matched against experimental LC-MS MS2 information from

MassBank BML01191 compound with a cosine similarity score of 0.55 (fragment tolerance = 0.2) (Metabolomics spectrum resolver plot).

https://doi.org/10.1371/journal.pntd.0011133.g008
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Central carbon metabolism. A significant increase in glucose was also noted across data-

sets (Fig 3) indicating alterations in central carbon metabolism. Indeed, perturbations to the

glycolytic process and citric acid cycle, in particular, were confirmed in −ve ESI mode data

particularly with significant decreases in lactate and malate. The significant increase in glucose

is related to stress-induced hyperglycaemia which occurs in cases such as fever and infectious

diseases [31]. This occurs due to the interaction between proinflammatory cytokines (TNF-α,

IL-1, IL-6), the hypothalamic-pituitary axis and the noradrenergic system [31].

Lipid metabolism. Lipid abnormalities were also noted in the sera of infected patients,

which demonstrated significant changes in the fatty acid metabolism, where there was a signif-

icant decrease mainly in particular acylcarnitines (Fig 3). Fatty acids, 3-hydroxybutanoate,

6-hydroxyhexanoate and octadecanoate were, on the other hand, all increased. This could be

related to the previously mentioned increase in carnitine and subsequent decrease in acetylcar-

nitine levels which might indicate an increased activity in releasing fatty acids. Short-chain

fatty acids are known to have a protective role and play a beneficial part in reducing endothe-

lial activation, which leads to a reduction in proinflammatory cytokine production and adhe-

sion molecule expression [32].

Sphingolipid and glycerophospholipid metabolism were also affected with sphingosine

1-phosphate being lower in all datasets. This might be indicative of liver damage, which is also

reflected in the significantly modified levels of bile acids and taurine [33]. Bile acid biosynthe-

sis metabolism also seems to be affected with taurine levels decreasing significantly in infected

patients and chenodeoxycholate being significantly increased in infected patients. Choline and

its derivatives were also downregulated in infected patients, which might also be related to

macrophage metabolism [34].

Sphingolipids are not only important cellular membrane components, but they also have a

dynamic role in cellular signalling and are involved in processes such as proliferation, endocy-

tosis, necrosis, apoptosis and cellular migration [35]. Key molecules in sphingolipid signalling

are: ceramide, sphingosine and sphingosine-1-phosphate (S1P). S1P is produced during

inflammation or following tissue damage and it has been reported that pathogens affect S1P

signalling via sphingosine kinase/S1P axis [36]. S1P exists both in the intracellular and extra-

cellular pool, particularly in plasma. Plasma S1P has been shown to regulate various processes

related to pathogenesis [37]. According to [37] reduced plasma S1P levels were associated with

malaria severity in mice. There is also evidence that S1P bioavailability could have a role in

attenuating endothelial damage. S1P also known to induce NO release from endothelial cells

[38].

Linoelaidic acid was also putatively annotated. This is an isomer of linoleic acid, so without

further confirmation the feature could also be linoleic acid, a precursor to eicosanoids. It was

found to be significantly lower with a general downward trend in all datasets. Another feature

was annotated as linoleic acid which was annotated both by mummichog and MS2 spectral val-

idation and was also decreased in infected patients, albeit without reaching statistical signifi-

cance, apart from DZ where logFCi was positive (0.4). Linoleic acid is a precursor for

arachidonic acid from which prostaglandins and other bioactive eicosanoids are synthesised.

In the context of fever, it could be hypothesized that an increased production of PGE2 due to

the activation of COX-2 causes an increased turnover of arachidonic acid with a subsequent

increased usage of linoleic acid, hence the decreased levels in serum. The LC-MS platform

used here does not readily detect arachidonic acid or its products.

Nucleotide metabolism. Pyrimidine metabolism is significantly affected with cytosine

being significantly higher in infected patients. Viral infections are known to cause significant

metabolic changes in host cells, such as upregulation of pyrimidine nucleotide biosynthesis

[39]. Uracil and its derivative, uridine, on the other hand, were found to be significantly
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decreased in all three datasets in the infected group. Purine metabolism is also affected, with

adenine being significantly lower in infected patients.

Discussion

Alignment of disparate LC-MS datasets

In this study we have identified a set of metabolic compounds, some of which were putatively

annotated, which acted in a similar manner in three different LC-MS case-control datasets

including infectious diseases associated with fever. The diseases were malaria, Zika virus dis-

ease and visceral leishmaniasis. The algorithm behind the integration of the three datasets was

based on alignment using the raw files with corrected RT. Correspondence algorithms have

been studied and variation in retention time can be classified into system variation and com-

ponent level variation [9]. The system variation is general to the whole run, whereas compo-

nent level variations are specific to a single analyte or a group of analytes, so they cannot be

modeled using monotonic functions.

Recent studies which have explored the retention time drift problem in the context of large

sample sizes have led to several algorithms being developed to correct the problem. One study

[10] presented a method for aligning the samples at a population scale (N = 2895 human

plasma samples) by correction of the non-linear retention time shift inside the raw files, in a

manner similar to that developed here. In order to determine the retention shift between sam-

ples, isotope labelled standards were used to allow modelling of the shift to correct raw files for

further peak detection and alignment. Our approach also corrects raw files prior to peak detec-

tion and alignment but does not require heavy isotope labelled standards. Another study in

which alignment between samples from a large-scale dataset (N = 1000) is addressed [40] pro-

posed a profile-based alignment algorithm which uses a graphical time warping method to cor-

rect the retention times for mis-aligned features.

Several have used endogenous reference peaks to model the retention time shift between

sets of samples. Li et al. [41] for example, used adjacent tandem mass spectrometry informa-

tion to select endogenous reference compounds to model RT drift. A recently published study

[42] also used internal reference compounds selected based on their m/z and intensity to

model the RT difference between two aligned LC-MS datasets using a generalised additive

model.

The advantage of aligning multiple LC-MS datasets at a retention time level over comparing

previously annotated results from different datasets is that both putatively annotated and

unannotated compounds that act in the same way or uniquely to each disease can be detected.

Additionally, as the overall sample size is increased, by including separate but related datasets,

statistical robustness of the analysis is enhanced, provided assumptions on the underlying sim-

ilarity in responses of disparate datasets (for example separate pathogen related infections

here) are robust. A common limitation in many LC-MS biomarker discovery studies intro-

duced by the small sample size is thus overcome. Annotation using MS2 information is also

improved, as some datasets contain MS2 spectra for peaksets which are absent in other data-

sets. This could be advantageous for datasets which have limited fragmentation data available,

as it improves the chance of a peakset having MS2 spectra aligned, and thus the possibility for

better annotation.

A limitation of our study was that the algorithm was only tested with datasets run in the

same laboratory, on the same LC-MS platform and at the moment it is not known whether

this method could be applied to metabolomics datasets run on different platforms. Annotation

is also a limitation, as it is for metabolomics studies in general [43, 44]. It is to be noted that for

some of the metabolites, the difference between the control group and the infected group was
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larger in one of the datasets than in the other datasets and in some cases this could have con-

tributed to the statistical significance of the difference in the metabolites abundance in control

as opposed to infected. This could be either due to the disease itself or its severity. In this case

it is to be noted that DM was an intervention study and the infection was controlled and less

severe which might explain relatively lower logFC in the dataset. However, for this study only

the metabolites which presented fold changes going in the same direction for all datasets were

presented and discussed unless specified otherwise. Using disparate diseases of matched sever-

ity might identify even more common features, but our study was constrained by the availabil-

ity of particular datasets.

Pathways affected in common by infection with separate fever-related

pathogens

The algorithm was written with the intention of comparing datasets related to infection, hence

we sought differences between infected patients and healthy controls from all three datasets

using linear regression from limma and mummichog to determine the biological network of

activity and significantly affected pathways common to the infected samples group. This study

offers a route to identify commonality in the metabolic profile in infected patients affected by

pathogens that cause fever. At the centre of this meta-dataset stands the relationship between

kynurenine and tryptophan related metabolites.

The currently proposed molecular basis for fever involves the following. The innate

immune system is activated through pathogen recognition by toll-like receptors e.g. TLR-4.

This initiates the production of pyrogenic cytokines (IL-6, IL-1β, TNF-α). These pyrogenic

cytokines then act on the organum vasculosus of the laminae terminalis in the hypothalamus.

At the same time, PGE2 is released from hepatic Kupfer cells via the activation of cyclooxygen-

ase-2 (the rate limiting enzyme in the synthesis of prostaglandins). PGE2 also acts on the pre-

optic nucleus in the hypothalamus leading to an elevated temperature set-point. Additional

negative feedback systems prevent excessive elevation of body temperature via antipyretic

cytokines (IL-1RA, IL-10, TNF-α binding protein) [1].

Based on the results obtained here, a possible connection between fever and the kynurenine

pathway could be explained by the interplay between IDO-1 and COX-2. An activation of

IDO-1 could lead to a decreased inhibition of COX-2 which in turn could lead to an increased

activation of PGE2 release. The link between the two enzymes and inflammation has been pre-

viously studied [25]. Suppression of the COX-2 enzyme activity could also be decreased by the

lower levels of nicotinamide in the infected group, as nicotinamide has been shown to influ-

ence the activity of COX-2 [45]. It is worth noting that serum metabolomics, as used here,

detects only a faint echo of the changes that are occuring in specific cell types orchestrating

inflammation in local anatomical sites associated with infection. Although PGE2 was not

annotated in these datasets (PGE being difficult to detect using the platform used), linoelaidic

acid and linoleic acid were putatively annotated and found to be decreased. Linoleic acid is a

precursor of arachidonic acid and bioactive eicosanoids including PGE2. Decreased levels of

linoleic acid in the infected group could corelate to its increased use in arachidonic acid and,

thus, PGE2 production. Recent metabolomics investigations on SARS-CoV2 infection in coro-

navirus patients also pinpointed significant alterations in the tryptophan-kynurenine pathway

[46, 47], with kynurenine levels increasing with disease severity.

Many of the other metabolites found here to have significant abundance level differences

between the two groups have also been noted previously for roles in immunometabolism. Glu-

tamine, for instance, plays a major role in the immune system, as a key energy source for

immune cells and it is used at a higher rate during catabolic conditions such as sepsis or other
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infections [29]. Depletion of glutamine and also citrulline identified in this study could also be

used as indicators of disease severity as suggested in [48]. Decreased oxoproline levels were

also previously associated with a non-infectious fever-associated disease, Rheumatoid Arthritis

[49]. Taurine is another amino acid which has previously been associated with inflammation

and fever associated with diminished levels of the inflammatory cytokines TNF-α and IL-6

[50], and also related to lower body temperature when administered intracerebroventricularly

[51].

Conclusion

In conclusion, three LC-MS datasets obtained separately to investigate metabolic changes in

Zika, malaria and VL infected patients were successfully aligned using fitted GP models for

correcting the RT drift between them, determined by the RTs of the internal standards metab-

olites within each dataset. Following annotation and statistical annotation, compounds chang-

ing in abundance in similar ways were found across the different infectious diseases. Common

dysregulation patterns were observed in metabolic pathways related to amino acid and carbox-

ylic acids metabolism, lipid and nucleotide metabolism with kynurenine pathway from trypto-

phan metabolism being identified as the most significantly changed pathway.
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