Investigating the effect of drug release on in-stent restenosis: a hybrid continuum – agent-based modelling approach

Supplementary Material

Anna Corti^{1,†}, Alistair McQueen^{2,†}, Francesco Migliavacca¹, Claudio Chiastra³ and Sean McGinty^{2*}

- 1. Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
- 2. Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
- PoliTo^{BIO}Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy

[†] The authors contributed equally to this work and share first authorship

*Address for correspondence:

Sean McGinty, PhD

Division of Biomedical Engineering, University of Glasgow, Glasgow, UK

Sean.Mcginty@glasgow.ac.uk

Parameter	Description	Value [unit]	Reference
D _p	Effective polymer coating diffusion coefficient	See Table 5	-
D _{m,r}	Effective radial diffusion coefficient in the media	$7 \times 10^{-12} \text{m}^2 \text{s}^{-1}$	Levin et al., 2004 [1]
$D_{m,\theta}$	Effective circumferential diffusion coefficient in the media	$4 \times 10^{-11} \text{m}^2 \text{s}^{-1}$	Levin et al., 2004 [1]
D _a	Effective diffusion coefficient in the adventitia	$4 \times 10^{-12} \text{m}^2 \text{s}^{-1}$	Escuer et al., 2020 [2]
P _{eel}	Permeability of the EEL	$9.6 \times 10^{-6} \mathrm{m s^{-1}}$	Escuer et al., 2020 [2]
S _{eel}	Sieving coefficient in the EEL	1	Escuer et al., 2020 [2]
k ^{ns} _{on}	Non-specific binding on rate	$2 \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$	Tzafriri et al., 2009 [3]
k ^{ns} _{off}	Non-specific binding off rate	$5.2 \times 10^{-3} \text{ s}^{-1}$	McGinty and Pontrelli, 2016 [4]
b_{max}^{ns}	Non-specific binding site density	0.363 mol m^{-3}	Diaz et al., 2003 [5]
k_{on}^s	Specific binding on rate	800 $\text{m}^3 \text{ mol}^{-1} \text{ s}^{-1}$	Diaz et al., 2003 [5]
k _{off}	Specific binding off rate	$1.6 \times 10^{-4} \text{ s}^{-1}$	Diaz et al., 2003 [5]
b_{max}^s	Specific binding site density	$3.3 \times 10^{-3} \text{ mol m}^{-3}$	Diaz et al., 2003 [5]
M _w	Molecular weight of sirolimus	914.2 g mol ⁻¹	Levin et al., 2004 [1]
ρ_p	Plasma density	1060 kg m^{-3}	Bozsak et al., 2014 [6]
μ _p	Plasma dynamic viscosity	7.2×10^{-4} Pa s	Bozsak et al., 2014 [6]
Φ_m	Media porosity	0.258	Ai and Vafai, 2006 [7]
φ _a	Adventitia porosity	0.85	Ai and Vafai, 2006 [7]
Υm	Media hindrance coefficient	0.845	Escuer et al., 2020 [2]
Υa	Adventitia hindrance coefficient	1	Escuer et al., 2020 [2]
K _m	Darcy permeability in media	$2 \times 10^{-18} \text{ m}^2$	Zunino 2004 [8]
Ка	Darcy permeability in adventitia	$2 \times 10^{-18} \text{ m}^2$	Vairo et al., 2010 [9]
L _{p,eel}	Hydraulic conductivity of EEL	$2.2 \times 10^{-9} \text{m}^2 \text{ s kg}^{-1}$	Escuer et al., 2020 [2]
ρ _w	Density of wet arterial tissue	0.983 g ml ⁻¹	Tzafriri et al., 2012 [10]

Supplementary Table 1. Parameters of the drug transport model.

Supplementary Figure S1. Generic inflammatory curve, inspired from literature [11].

Supplementary Figure S2. Left: Receptor saturation (RS) map computed by the drug transport module at day 5; Right: Adaptation of the RS_{map} at day 5 to the remodelled agent-based model arterial cross-section (RS_{ABM}). In RS_{ABM} , RS of the media layer derives from the RS_{map} computed by the drug transport module while RS in the neointima is added within the ABM and assumed to radially reflect the RS contour in the media.

References

- A.D. Levin, N. Vukmirovic, C.-W. Hwang, E.R. Edelman, Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel., Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 9463–9467. https://doi.org/10.1073/pnas.0400918101.
- [2] J. Escuer, M. Cebollero, E. Peña, S. McGinty, M.A. Martínez, How does stent expansion alter drug transport properties of the arterial wall?, J. Mech. Behav. Biomed. Mater. 104 (2020) 103610. https://doi.org/10.1016/j.jmbbm.2019.103610.
- [3] A.R. Tzafriri, A.D. Levin, E.R. Edelman, Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery., Cell Prolif. 42 (2009) 348–363. https://doi.org/10.1111/j.1365-2184.2009.00602.x.
- S. McGinty, G. Pontrelli, On the role of specific drug binding in modelling arterial eluting stents, J. Math. Chem. 54 (2016) 967–976. https://doi.org/10.1007/s10910-016-0618-7.
- [5] J.F. Díaz, I. Barasoain, J.M. Andreu, Fast kinetics of Taxol binding to microtubules. Effects of solution variables and microtubule-associated proteins., J. Biol. Chem. 278 (2003) 8407–8419. https://doi.org/10.1074/jbc.M211163200.
- [6] F. Bozsak, J.-M. Chomaz, A.I. Barakat, Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall., Biomech. Model. Mechanobiol. 13 (2014) 327–347. https://doi.org/10.1007/s10237-013-0546-4.
- [7] L. Ai, K. Vafai, A coupling model for macromolecule transport in a stenosed arterial wall, Int.
 J. Heat Mass Transf. 49 (2006) 1568–1591. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.041.
- [8] P. Zunino, Multidimensional Pharmacokinetic Models Applied to the Design of Drug-Eluting Stents, Cardiovasc. Eng. An Int. J. 4 (2004) 181–191. https://doi.org/10.1023/B:CARE.0000031547.39178.cb.

- [9] G. Vairo, M. Cioffi, R. Cottone, G. Dubini, F. Migliavacca, Drug release from coronary eluting stents: A multidomain approach., J. Biomech. 43 (2010) 1580–1589. https://doi.org/10.1016/j.jbiomech.2010.01.033.
- [10] A.R. Tzafriri, A. Groothuis, G.S. Price, E.R. Edelman, Stent elution rate determines drug deposition and receptor-mediated effects, J. Control. Release. 161 (2012) 918–926. https://doi.org/10.1016/j.jconrel.2012.05.039.
- [11] E.R. Edelman, C. Rogers, Pathobiologic responses to stenting., Am. J. Cardiol. 81 (1998) 4E-6E. https://doi.org/10.1016/s0002-9149(98)00189-1.