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DEVELOPMENTAL PLASTICITY: FROM MECHANISMS TO EVOLUTIONARY PROCESSES

How important is hidden phenotypic plasticity arising from
alternative but converging developmental trajectories,
and what limits it?
Neil B. Metcalfe*

ABSTRACT
Developmental plasticity – the capacity for a genotype to develop into
different phenotypes, depending on the environment – is typically
viewed from the perspective of the resulting phenotype. Thus, if
development is viewed as a trajectory towards a target, then
developmental plasticity allows environmentally induced alterations to
the target. However, there can also be variations in the trajectory. This is
seen with compensatory responses, for instance where growth
accelerates after an earlier period of food shortage, or where
investment in sexual ornaments is maintained even when resources
are limiting. If the compensation is complete, the adult phenotype can
appear ‘normal’ (i.e. the different developmental trajectories converge
on the same target). However, alternative trajectories to a common
target can have multiple long-term consequences, including altered
physiological programming and rates of senescence, possibly owing to
trade-offs between allocating resources to the prioritized trait versus to
body maintenance. This suggests that plasticity in developmental
trajectories towards a common target leads to variation in the resilience
and robustness of the adult body. This form of developmental plasticity
is far more hidden than plasticity in final adult target, but it may be more
common. Here, I discuss the causes, consequences and limitations of
these different kinds of plasticity, with a special focus on whether they
are likely to be adaptive. I emphasize the need to study plasticity in
developmental trajectories, and conclude with suggestions for future
research to tease apart the different forms of developmental plasticity
and the factors that influence their evolution and expression.
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Introduction: Compensatory responses as a form of
hidden plasticity
There are two obvious phenotypic outcomes of parental or early
developmental effects. One is the clearly maladaptive damaged
phenotype, that arises because of resource limitations (e.g. food
shortage leading to stunting) or because normal development has
been disrupted (e.g. through genetic mutations arising from
exposure to carcinogens or pollutants). The more biologically
interesting outcome is where there appears to be a change in the

developmental trajectory, leading to a different phenotype which
has a higher expected fitness given the current or anticipated
environment. Given that development is often framed in the context
of leading towards a target (Klingenberg, 2019), this might
be termed an adjusted target and is usually presumed to be an
adaptive response (Fig. 1A). There are numerous well-studied
examples of this form of phenotypic plasticity, known as
developmental plasticity (Bateson et al., 2014; Berghänel et al.,
2017; Gotthard and Nylin, 1995; MacLeod et al., 2022; Moczek
et al., 2011). Phenotypic plasticity is usually defined as different
phenotypes being produced in different environments; in the case of
developmental plasticity, the environments can be those prevailing
before and/or after birth, and can include the environment
experienced by parents or even earlier generations (see Box 1 for
an attempt to clarify the terminology).

However, I suggest that there is a third, more hidden, kind of
developmental plasticity. This is the adjusted trajectory, in which the
target is unaltered but there is a change in the developmental trajectory
by which it is reached. Developmental systems are often characterized
by being canalized (i.e. buffered against environmental influences)
yet also exhibiting multiple routes by which the same phenotypic
outcome can be achieved (i.e. the concept of degeneracy) (Hoke et al.,
2019), and there are a range of reasons why the developmental
trajectory might differ among individuals. A common one is where
development is constrained for a period (usually because of adverse
circumstances such as depressed food availability or quality), but if
circumstances improve before development is completed, there is then
an attempt to mitigate the effect by returning to the original state or
trajectory (so that the original and the adjusted developmental
trajectories converge on the same target; trajectory B in Fig. 1B). This
compensatory response has been most often studied in the context of
growth, where a period of slowed growth can be followed by an
acceleration or prolongation of growth once conditions improve
(Berghänel et al., 2017; Hector and Nakagawa, 2012). Another cause
of an adjusted trajectory is a shortage of time. Animals living in
seasonal environments may accelerate their rate of development if
environmental cues indicate that they are running out of time to
complete development (trajectory C in Fig. 1B): thus, larval
damselflies have a faster rate of growth if exposed to a late rather
than early summer photoperiod (De Block and Stoks, 2004).

These examples show that, although growth and development are
sometimes assumed to be at the maximum rate permissible for the
prevailing food supply (and temperature in the case of ectotherms),
this is not necessarily the case. Both growth and development can be
regulated at a submaximal rate, either to match an internal trajectory
(for instance that based on expected size or developmental stage for
the time of year; Gotthard, 2008) or to suit the local social
environment (Buston and Clutton-Brock, 2022), but can be
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accelerated if conditions change. Growth and developmental rate
should therefore be viewed as labile traits that are under selection.
A faster growth rate after a period of adversity or when the

available time for development is short suggests that the original
target may still have the highest expected fitness. Importantly, this
means that if compensation is complete so that the developmental
trajectories converge, then the adult phenotype may be superficially
indistinguishable from that of ‘normally’ developing conspecifics.
The same is true if resource shortages force compromises on the
investment in different traits: prioritization of investment into the
morphological traits that are most crucial for reproductive success
may result in a superficially similar appearance to well-nourished
conspecifics, despite the reduced resources. Thus, male fiddler crabs
Uca annulipes that have to re-grow a lost claw produce one that is of
similar size to the original but is lighter in mass; it looks sufficiently
like that of other males to be equally attractive to females (Backwell
et al., 2000). Male three-spined sticklebacks (Gasterosteus
aculeatus) that have reduced access to dietary carotenoids in the
period before breeding prioritize the allocation of these pigments
into their throat tissues rather than the rest of the body, so that they
can commence the breeding season looking as colourful, and hence
as attractive to potential mates, as well-nourished rivals (Lindström
et al., 2009). The plasticity of the adjusted trajectory is thus evident
not in the final phenotype but in the route by which this is achieved.
Therefore, it may be difficult to determine in later life that this
plasticity has occurred, unless there has been documentation of
stages in development such as initial size, food intake or growth
trajectory (Fig. 1B). Thus, it might be a much more common (but
more often undetected) form of developmental plasticity than the
usual textbook examples that are based on altered targets. However,
it is increasingly clear that these altered trajectories may themselves
have significant immediate and long-term consequences, even if

they appear to have (nearly) restored the phenotype to the original
target (Metcalfe and Monaghan, 2001). In short, the organism that
has reached the original target but through an altered trajectory is
‘built differently’, and this can come at a significant cost. This issue
of the deferred costs of plasticity will be considered below (see
‘What constrains developmental plasticity?’), but first it is useful to
consider the conditions that prompt the development of alternative
phenotypes and whether these are actually adaptive.

The triggers of developmental plasticity
A common cause of intergenerational and early developmental
plasticity is stress. For instance, if parents experience environmental
stressors just before or during a breeding attempt, this can result in
the offspring having a damaged phenotype (Aizer et al., 2016;
Eriksen et al., 2015; Sheriff and Love, 2013). The exact nature of the
stressor may not be that important, because evidence from both
mammals and birds suggests that different kinds of environmental
stressors on mothers can have very similar effects on the offspring
phenotype; this may be because they trigger a common
physiological response through the hypothalamic–pituitary–
adrenal axis involving the release of glucocorticoid (‘stress’)
hormones such as cortisol or corticosterone (Berghänel et al.,
2017; Potticary and Duckworth, 2020).

However, the impact of the stressor can depend on its timing
relative to the reproductive attempt. A clear example of this comes
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Fig. 1. Developmental trajectories that illustrate developmental
plasticity in terms of altered targets and altered trajectories.
A hypothetical developmental trait (such as body size) is plotted on the
y-axis. (A) Altered targets. In this scenario, two individuals of the same
genotype receive contrasting cues of environmental quality (individual 1
sensing a better environment than individual 2); this causes an alteration in
the developmental target (indicated by the filled circle). (B) Altered
trajectories. In this scenario, the cue indicating a poorer environment is
short-lived relative to total development time. A perceived improvement in
the environment (indicated by switch in trajectory from dashed to solid line)
allows individual 2 to adjust its target partway through development; it then
accelerates development and reaches the same target as individual 1.
Alternatively, individual 3 develops faster than individuals 1 or 2, possibly
due to a perceived time shortage. All three individuals are superficially
similar in adulthood but have reached this target by different trajectories. As
a result they are ‘built differently’, with potential consequences for later
performance.

Box 1. The terminology of developmental plasticity
The field of developmental plasticity is beset with confusing terminology,
not least because it can be hard to determine whether the cue to the
response is experienced directly by the developing individual or by its
parent(s) (or earlier ancestors). For instance, in mammals, a stressor
may simultaneously affect a pregnant female (the parental generation),
the female fetus she is carrying (the F1 generation) and the eggs inside
that fetus (that will give rise to the F2 generation), so the route by which
the stressor affects F2 individuals is far from clear (Burton and Metcalfe,
2014). In order to get around this issue, the most generally used
term when more than one generation is potentially involved is
transgenerational plasticity (TGP), which refers to any plasticity shown
in offspring in response to a cue or environment that is experienced prior
to their birth (i.e. by an earlier generation); this is contrasted with within-
generation plasticity (WGP) (Donelson et al., 2018). TGP includes
situations where the cue was potentially directly experienced by the
offspring in utero, so is a looser definition than transgenerational
epigenetic inheritance (TEI), which presumes that cues were not directly
experienced by the offspring but were passed on epigenetically in
gametes (Bell and Hellmann, 2019). Although TEI is conceptually amore
precise definition than TGP, it is also far less easy to apply to the majority
of examples of developmental plasticity, as it can only be proven to exist
through long-term controlled experiments lasting three to four
generations. Given the difficulty in separating these intergenerational
effects and their complex terminology, in this paper I consider
transgenerational and early developmental effects together, for the
simple reason that in many species it can be hard to determinewhether it
is the parent or the developing offspring that is responding to an
environmental cue.
A further reason why transgenerational effects can be hard to unravel

in nature is that they can derive from either parent (Hope et al., 2022;
Papatheodoulou et al., 2022), and their impact on offspring can be sex-
dependent: for example, the effects of parental stress can depend on the
sex of both the parent and the offspring (Hellmann et al., 2020a). These
sex×stress×generation interactions become ever more complex by the
grandoffspring F2 generation (Hellmann et al., 2020b). This suggests
complex transgenerational epigenetic processes that are still poorly
understood (Bell and Hellmann, 2019).
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from the detailed analyses of the outcome of the Dutch Hunger
Winter: this was a short-lived but severe period of wartime famine
imposed by the German occupiers on the Dutch civilian population
during the winter of 1944–1945. This well-documented and discrete
duration of severe food restriction on an otherwise reasonably
well-nourished population would undoubtedly have altered
developmental trajectories, and has allowed epidemiologists to
document the consequences for offspring and grandoffspring of
maternal nutritional stress during different periods of gestation.
Their analyses have revealed that famine during early gestation was
associated with offspring neural tube defects and schizophrenia,
famine during late gestation was associated with offspring having a
greater risk of type II diabetes in later life, and famine at any time
during gestation was associated with offspring having a higher
likelihood of adult obesity (Lumey et al., 2011). The mechanism of
these effects is not clear, but there is evidence of changes in DNA
methylation patterns in gene promotor regions persisting into old
age in the offspring, indicating epigenetic modifications and
potentially transgenerational epigenetic inheritance (Tobi et al.,
2014). The effect of an increased likelihood of obesity in offspring
experiencing an adjusted trajectory owing to prenatal famine has
been interpreted as the programming of a ‘thrifty phenotype’ that is
adapted to a poor nutritional environment (and so stores all excess
lipid) (Hales and Barker, 2001). However, it seems unlikely that this
would ever have been adaptive, given the tendency for the food
supply of ancestral human populations to fluctuate markedly relative
to their lifespan, such that the food availability at the time of
gestation would be a poor predictor of food supply for the rest of life
(Wells, 2012).
One commonly studied environmental stressor is the risk of

predation. Parental exposure to predators has been shown to affect
offspring phenotypes across a broad range of taxa, affecting a range
of traits from morphology through to behaviour (Jonsson et al.,
2022; MacLeod et al., 2022). However, there is no general and
predictable response, and it is not always clear whether the changes
are adaptive (MacLeod et al., 2022). Predators often act as acute
stressors, because the period of exposure of the prey to the predator
can be brief and so trigger a stress response that is short-lived
in duration. In contrast, many other environmental stressors may
be chronic in nature – for instance food shortage, or exposure
to drought, pollutants or adverse temperatures. Chronic exposure
to these stressors may allow adjustment to reduce their impact
(e.g. temperature acclimation, a compensatory response). It also
allows more time for any phenotypic plasticity to be expressed. A
recent example comes from a study of the long-term effect of
subjecting female three-spined sticklebacks Gasterosteus aculeatus
to a diverse range of environmental stressors (so preventing
habituation) throughout their long breeding season, over the
course of which they produced multiple clutches (Magierecka
et al., 2021). There were no significant differences in the phenotype
of offspring produced by stressed and control females early in the
season. But by the time of the last clutches of the breeding season,
the mothers exposed to stressors were producing offspring that were
superficially similar to controls but had a higher survival rate
(suggesting an altered trajectory), and in turn, these offspring
produced larger eggs and fry (the grandoffspring of the exposed
mothers) when they themselves came to breed (Magierecka et al.,
2022). The physiological mechanisms underlying these effects are
not clear, not least because the environmental stressors, although
causing changes in the mothers’ behaviour, did not cause a
measurable increase in their cortisol levels (Magierecka et al.,
2021).

An environmental cause of developmental plasticity need not be
stressful. There is increasing evidence that temperature during
embryo development – which will affect the developmental
trajectory – can cause broad-scale changes in the resulting
phenotype. This is most evident in ectotherms, owing to the
pervasive effect of ambient temperature on their physiological
processes (Jonsson and Jonsson, 2019; Jonsson et al., 2022).
However, it is also important for birds, where the temperature at
which the eggs are incubated is now known to influence post-
hatching traits such as metabolic rate (Hope et al., 2022). This may
explain why the basal metabolic rate of wintering wild great tits
(Parus major) is negatively correlated with the ambient minimum
temperature they experienced during incubation: it has been
suggested that this is adaptive, with the metabolism of embryos
experiencing a cold spring being programmed to cope with colder
winters (Broggi et al., 2022). This plasticity in metabolic rate may
be driven by altered programming of mitochondrial function,
because mitochondrial respiration accounts for the majority of
whole-animal oxygen consumption; incubation temperature in
Japanese quail (Coturnix japonica) has been shown to influence
mitochondrial function right through to adulthood (Stier et al.,
2022).

How often is developmental plasticity adaptive?
There is sometimes a presumption that any change in phenotype in
response to a changing internal state or external environment is
adaptive. This is especially so in the case of transgenerational
plasticity (TGP), where it is all too easy to make the assumption that,
if the process is considered to be one where parents are modifying
the phenotype of their offspring, it must be for beneficial reasons.
This is evident in the non-neutral terminology sometimes used to
describe these plastic responses, such as predictive adaptive
responses (Gluckman et al., 2005; Harmon et al., 2023) in the
human and biomedical literature, while in other organisms they may
be referred to as anticipatory maternal (or parental) effects, where
the parent is ‘anticipating’ the environment that will be faced by the
offspring (Raveh et al., 2016; Uller et al., 2013). But it is also worth
noting that, in the human context, a completely separate literature
from the one that talks about predictive adaptive responses refers
instead to maternally derived stress (MDS), which implicitly
presumes that offspring will be harmed if the mother was stressed
during pregnancy or early rearing (Aizer et al., 2016; Sheriff and
Love, 2013).

In some cases the TGP does indeed appear to be adaptive. For
instance, a perceived higher population density (whether real, or
experimentally induced by acoustic playback of territorial calls) in
North American red squirrels (Tamiasciurus hudsonicus) triggers
the production of glucocorticoid hormones in breeding females; in
turn, these stimulate faster offspring growth – which is adaptive in a
high-density environment (Dantzer et al., 2013). In a more
controlled laboratory setting, a cross-fostering experiment using
the European earwig (Forficula auricularia) showed that offspring
facing the same food level (whether high or low) as their mothers
had experienced had a higher survival rate, suggesting that mothers
modified the phenotype of their offspring to that suited to the current
environment (Raveh et al., 2016).

However, whether developmentally plastic responses are actually
adaptive will partly depend on whether it is possible to predict the
future environment. In theory, any phenotypic adjustment could
either be based on cues that will predict future conditions (e.g. a cold
spring might indicate that food may be limiting later in the year), or
on the assumption that the current and future environments will be
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similar (environmental ‘matching’). The match between current and
future environments depends on the organism’s expected lifespan
relative to the temporal scale of environmental fluctuations (Bateson
et al., 2004), and will generally be weaker with TGP than with
within-generation plasticity (WGP) responses (Bell and Hellmann,
2019; Sheriff and Love, 2013). Recent evidence from a long-term
study of experimental evolution supports the hypothesis that
developmental plasticity will be less favoured if the future
environment is unpredictable (Leung et al., 2020); this also
supports the idea that plasticity carries costs (see next section) and
so only evolves when it is likely to be beneficial.
Despite the intuitive appeal of the idea, and the positive results

from some studies (e.g. Raveh et al., 2016), a meta-analysis a decade
ago concluded that there is little widespread evidence that offspring
do better when their environment matches, rather than mismatches,
that of their parents (Uller et al., 2013). This is partly because the
design of experiments to test these ideas is very problematic, as
offspring reared in good conditions are likely to perform better
overall (the silver spoon effect; Monaghan, 2008), masking the
impact of whether parental and offspring environments are matched
(Engqvist and Reinhold, 2016). A more recent assessment
concluded that the evidence is still not clear whether TGP is more
usually adaptive than maladaptive (Sánchez-Tójar et al., 2020); this
is clearly an area in which rigorous experiments and analyses are
still needed (Engqvist and Reinhold, 2016).
In the case of altered trajectories, the argument for the response

being adaptive lies in the fact that there are often short-term fitness
advantages to regaining the original trajectory, if the original target
phenotype is still presumed to be the optimal one for the situation.
Although there may have been a period of adversity during
development, this has not altered the perception of what adult
phenotype will have the highest fitness. Here, there is no
presumption that the developing animal needs to monitor the
current environment in order to predict the future – it may have an
intrinsic developmental trajectory that it is attempting to match, so
that it attempts to compensate for any deviation (Klingenberg,
2019). Whether this remains the optimal strategy will then depend
on what compromises are needed in order to regain that ideal
trajectory. In general, strategies that provide fitness gains in early
life will be favoured even if they lead to more rapid senescence,
owing to the forces of selection acting more strongly earlier in life
(Lemaître et al., 2015).

What constrains developmental plasticity?
Animals can show dramatic changes in their phenotype, even after
development has been completed (Piersma and Drent, 2003).
Notable examples of this phenotypic flexibility include
physiological and morphological remodelling in response to
predictable changes in energetic demands; this remodelling can
be triggered by alterations to the food supply (Secor, 2008;Wikelski
and Thom, 2000) or environmental temperature (Vézina et al.,
2017), or the demands of a strenuous migration (Piersma, 1998).
These reversible changes suggests that the basic body plan can be
very flexible (Piersma and Drent, 2003). This prompts the question
as to why the development of that body plan appears to be relatively
constrained during development: given that plasticity has the
potential to be advantageous, why don’t animals show more
developmental plasticity?
The answer must lie in the potential costs to phenotypic plasticity

(Auld et al., 2010; DeWitt et al., 1998; Murren et al., 2015). These
costs can be separated into two broad categories: those associated
with retaining the capacity to be flexible (‘maintenance costs’), and

those associated with putting that flexibility into action and actually
generating the new phenotype (‘production costs’) (Auld et al.,
2010). Maintenance costs include the expense of maintaining
(regardless of the environment) the sensory and neural systems that
are needed to detect and respond to the cues that trigger a response,
and maintaining the machinery needed to produce more than one
phenotype. Production costs include the cost of remodelling the
phenotype; it may be more expensive to change the target
phenotype or trajectory during the course of development than to
have had that target or trajectory from the outset.

Both production and maintenance costs could apply equally to
adjusted trajectories as adjusted targets, but neither form of cost is
easy to measure directly. Both are presumed to include an energy
cost, whether to be in readiness for, or to mount, a plastic response
(Auld et al., 2010). There may be nutritional considerations other
than energy: indirect evidence of this comes from the finding that
diet quality (in terms of fatty acid composition) can influence the
extent of physiological plasticity, through constraining the
composition of cellular membranes (Hardison et al., 2023).
Perhaps surprisingly, given their often hidden nature, it is easier
to measure the production costs of adjusted trajectories than
adjusted targets. For instance, a cost of an accelerated growth
trajectory is the need for a higher food intake: this can result in more
time spent in riskier foraging areas and/or less attention devoted to
anti-predator vigilance, leading to a measurably higher mortality
from predators (Gotthard, 2000).

Adjusted trajectories can also carry diverse long-term costs, which
may become apparent only after the period of growth and
development has ended and the trajectories have converged on a
superficially similar adult target phenotype. In experiments that
trigger compensatory growth bymanipulations of food availability, it
can be impossible to assign long-term costs to the accelerated growth
rather than the earlier food restriction. This short-coming was
avoided in a long-term study of three-spined sticklebacks in which
the initial period of slowed growth was achieved by imposing
unseasonably cold temperatures; at the end of this ‘cold spell’ the
fish were thus just small for the time of year, rather than deprived of
food (Lee et al., 2010). Moreover, by having a control group
experiencing typical ambient temperatures but also a third group
given unseasonably warm conditions, it was also possible to have a
test of whether animals that were large for the time of year were able
to benefit from being ‘ahead of schedule’. Once all fish were
returned to typical ambient temperatures, the group that were small
for the time of year showed accelerated growth, while those that were
ahead of schedule slowed down, so that all three groups converged
on the same mean size by the time of reaching sexual maturity (Lee
et al., 2010). However, although the three groups were statistically
indistinguishable in morphology at adulthood, the fish that had
undergone accelerated growth subsequently produced smaller eggs,
were slower to build nests and had a reduced period of sexual
ornamentation (Lee et al., 2012), had a faster decline in swimming
performance over the breeding season (Lee et al., 2010) and a shorter
lifespan (Lee et al., 2013), while those that had slowed down growth
relative to controls showed the opposite (beneficial) trends.

A similar phenomenon of long-term costs of accelerated growth
was found when damselfly larvae were triggered to grow faster by a
late-season photoperiod: they achieved a near-normal target adult
size despite the compressed period of development (De Block and
Stoks, 2004), but as adults had reduced immune defences and fat
stores, indicating a poorer resilience (Stoks et al., 2006a,b). An
analogous situation is faced by individuals that have, because of
resource limitations, ‘cut corners’ in order to achieve a particular
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adult form. Thus, the male sticklebacks that attempt to maximise
their sexual coloration at the start of the breeding season despite
having a low intake of dietary carotenoids are successful in early
matings, but their throat coloration soon fades and so these males are
increasingly rejected by females as the breeding season progresses
(Lindström et al., 2009). Similarly, the lightweight replacement
claw grown by male fiddler crabs may be of normal size and so
equally attractive to females (Backwell et al., 2000), but it is
ineffective in fights with rival males (Lailvaux et al., 2009) and so
results in poorer reproductive success because the holder cannot
retain a good territory (Reaney et al., 2008). Different
developmental trajectories can thus result in apparently the same
adult external morphology, but lead to very different life histories.
The mechanisms underlying these trends can be hard to unravel.

The shorter lifespan of fast-growing animals may be due to the link
between telomere dynamics and senescence. Faster growth at the
embryo stage (Stier et al., 2020; Vedder et al., 2018) or in post-natal
life (Monaghan and Ozanne, 2018; Salmón et al., 2021) has been
shown to lead to faster telomere attrition, which can trigger cellular
senescence and is associated with a reduced lifespan (Wilbourn
et al., 2018). In revealing an among-species negative relationship
between embryo growth rate and rate of ageing in birds and
mammals, Ricklefs (2006) speculated that rapid growth could only
be achieved at the expense of reduced quality control. This would
result in a greater risk of ‘system failure’ later in life, explaining the
accelerated ageing of species with faster early growth rates. Some
indirect evidence for this comes from an intriguing study of larval
growth in the echinoderm Dendraster excentricus (Ellison et al.,
2021). Reducing the protein intake of larvae by 90% relative to that
of controls caused a smaller reduction in their growth rate (by 50%)
than might be expected. However, the larvae on the low protein diet
were only able to achieve this growth rate by diverting virtually all of
the ingested protein into growth, with almost none allocated to
maintenance (unlike in controls) (Fig. 2A). This appeared to be an
unsustainable pattern of resource allocation, because the relative
allocation to maintenance then had to rise steeply (and above that of
controls) as the larvae became older (Fig. 2B; Ellison et al., 2021).
This suggests that systems may fail, triggering heavy repair

investment, if there is no regular allocation to maintenance (as is
known by all home owners!). Given its apparent costs, the extent of
developmental plasticity may thus be traded off with other traits.
This may explain why there is so much intraspecific variation in the
capacity for phenotypic plasticity (Norin and Metcalfe, 2019).
Burraco et al. (2022) found that the extent of morphological
plasticity in spadefoot toad (Pelobates cultripes) tadpoles in
response to predator cues varied among families, but the families
with the greatest plasticity also had the highest levels of oxidative
damage, suggesting that investment in plasticity came at a cost of
increased oxidative stress.

A further constraint on plasticity is the speed at which plastic
changes can be achieved, and whether these can match the speed of
environmental change (Fox et al., 2019). If environmental
conditions change rapidly, then it may not be possible for
organisms to adjust their phenotype quickly enough to match the
prevailing situation, making plasticity suboptimal (Einum and
Burton, 2023; Nilsson-Örtman and Brönmark, 2022). There is then
selection on the speed, as well as the extent, of plasticity (Burton
et al., 2022). Although this argument has been developed in the
context of reversible plasticity, it applies equally to developmental
plasticity – with the further proviso that the natural speed of
development cannot be so fast that it is impossible to accommodate
a change in either developmental trajectory or developmental target.
For instance, it is possible that a relaxation of adverse conditions
occurs too late in development to allow time for a compensatory
adjustment to the trajectory before the normal period of growth or
development has finished. What is surprising (and as yet
unexplained) is the fact that ‘plasticity rates’ (the speed of change
of the phenotype upon encountering a new environment) vary so
much among taxa: analysis of reversible plasticity in response to
temperature change shows, for instance, that amphibians and
reptiles are capable of changing their phenotype far faster than, say,
fishes or insects (Einum and Burton, 2023). The reason for this is
unknown, but may be related to the relative thermal predictability of
the environment in which these animals have evolved (Einum and
Burton, 2023). Whether such taxonomic differences also apply to
developmental plasticity remains to be seen.

Perspectives and future directions
I hope I have convinced the reader that it is necessary to look beyond
the final phenotype when studying and quantifying developmental
plasticity: the route by which that phenotype was reached is also
relevant. But we still need to explore in more detail the extent and
consequences of that plasticity in trajectory. For instance, it would
be instructive to investigate the following. First, the controlling
mechanisms underlying plasticity in developmental trajectories, and
what sensory and feedback systems are involved. Second, how this
plasticity varies among tissues, as well as at the whole-body level
(for instance, at what points in the development of different tissues
does cell division cease, so constraining the scope for plasticity?).
Third, how this plasticity varies among taxa – is it greater in
ectotherms than in endotherms (where growth is more independent
of ambient temperature)? Is it inversely related to the predictability
of environmental conditions? And fourth, what are the costs
of varying the rate of development at the molecular and cellular
level – is it a general finding that accelerated development leads to
greater molecular damage (owing to higher levels of oxidative
stress and/or less investment in cellular maintenance)? If so, can
markers of molecular damage at the end of the developmental
period be used as measures of the deviation in developmental
trajectory?
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Fig. 2. An example of the costs of plasticity, and the trade-off between
early benefits and later costs. Echinoderm larvae on a very low protein
diet (one-tenth the protein intake of controls) can initially achieve a relatively
high growth rate (one-half that of controls) through (A) having a higher
protein growth efficiency (% of assimilated protein that is devoted to growth).
However, this high protein growth efficiency is only possible through (B)
almost eliminating maintenance of existing proteins (quantified as protein
degradation rate). This strategy cannot be sustained, and eventually protein
maintenance costs rise steeply above those of controls, causing growth
efficiency to drop sharply. Data taken from Ellison et al. (2021).
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Consideration of these and related questions should allow a more
complete understanding of the selection pressures and constraints
acting upon development, and hence the extent to which it is plastic.
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