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Light field microscopy can capture 3D volume datasets in
a snapshot, making it a valuable tool for high-speed 3D
imaging of dynamic biological events. However, subsequent
computational reconstruction of the raw data into a human-
interpretable 3D+time image is very time-consuming, lim-
iting the technique’s utility as a routine imaging tool. Here
we derive improved equations for 3D volume reconstruction
from light field microscopy datasets, leading to dramatic
speedups. We characterize our open-source Python imple-
mentation of these algorithms and demonstrate real-world
reconstruction speedups of more than an order of magni-
tude compared with established approaches. The scale of
this performance improvement opens up new possibilities for
studying large timelapse datasets in light field microscopy.
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Light field microscopy provides snapshot 3D imaging of
dynamic scenes via a lenslet array placed in the image plane of
the microscope, which casts a multi-apertured intensity pattern
onto a camera sensor. The mix of spatial and angular information
about the target sample emission in this single raw 2D snap-
shot image allows 3D image reconstruction across an extended
depth-of-field [Fig. 1(a)], but only after intensive computational
processing [1]. Solving this inverse problem is extremely com-
putationally demanding, traditionally requiring the computation
of thousands of Fourier transforms (FTs) per iteration. This
requirement for high levels of computational resource is partic-
ularly problematic given the attractiveness of light field imaging
for 3D time series [2–5], where a large number of different
timepoints must all be reconstructed.

Here we will demonstrate how to mathematically simplify
the light field reconstruction process, speeding up real-world
computation times by more than an order of magnitude, while
delivering identical output volume results.

The image reconstruction process is an inverse problem that
can be cast as a deconvolution. The spatially variant point spread
function (PSF) of the light field microscope is typically com-
puted theoretically from wave-optics calculations [1,2], and
Richardson–Lucy deconvolution is then used to estimate the

3D volume that gives rise to the measured 2D intensity pattern
observed on the camera sensor. The standard Richardson–Lucy
algorithm is described by the following iterative formula:

O(i+1)
est = O(i)

est × HT

(︃
I

H(O(i)
est)

)︃
, (1)

although the widely used light field implementation in [2] uses
an alternative variation (see [6] for further discussion), where
the error term is computed in object space:

O(i+1)
est = O(i)

est ×
HTI

HTH(O(i)
est)

. (2)

In either form, × denotes elementwise multiplication and the
fraction implies elementwise division; O(i)

est is the estimation of
the 3D object to be reconstructed, at iteration i; I is the 2D
light field image recorded on the camera; H is the “forward
projection" operator mapping from the object O to the resultant
camera image I; and HT is the matrix transpose of the operator
H. The optical interpretation of HT leads to it being termed
the backward-projection operator. A typical starting condition
would be O(0)

est = HTI, and Oest converges to an estimate of the
true object O over Niter ∼ 10 iterations.

The basic building blocks of the deconvolution problem are
therefore the forward- and backward-projection operators, H
and HT , which model the image formation process. In light
field microscopy, these projection operators are expressed as the
sum of many separate convolution operations. Given a three-
dimensional object O consisting of voxels indexed Oxyz, each
pixel value Imn of a forward-projected image I can be computed
as

Imn =
∑︂
xyz

Oxyz × Hmnxyz, (3)

where Hmnxyz are the matrix elements of the PSF applicable to
voxel x, y, z. To render the reconstruction problem tractable, raw
images are resampled such that the footprint of each lenslet in the
lenslet array spans an exact odd integer number of camera pixels,
A. Thus, any subpixel a, b at the same relative position within
any lenslet footprint will have the same the point spread function
[Fig. 1(b)]. This simplifies the problem, enabling Eq. (3) to be
rewritten as

I =
∑︂
abz

Mab{Oz} ⊗ Habz, (4)

where Mab is a masking operator which zeroes all pixels except
those in the image pixel group satisfying x mod A = a and
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Fig. 1. (a) Optical schematic of light field microscopy. (b) Pixel indexing relative to lenslet footprints. (c) Conventional projection operation
for deconvolution (⊗ represents convolution). (d) New fast projection strategy (⊛ represents a new custom operation—see main text).

y mod A = b, and ⊗ is the convolution operator. Here, Habz rep-
resents the complete PSF for a voxel at coordinate a, b, z. Thus,
the forward-projected image from an object consisting of Z indi-
vidual z-planes can be computed using a total of A2Z convolution
operations.

According to the convolution theorem, each convolution con-
sists of two FTs and one inverse, each computed using the fast
Fourier transform (FFT) algorithm:

Mab{Oz} ⊗ Habz = F −1 (F (Mab{Oz}) × F (Habz)) . (5)

Any strategy aiming for more than merely incremental perfor-
mance speedup of the overall calculation must speed up all three
of the FFT operations in this equation. Speeding up any one of
these on its own would be insufficient: even if the run time for
one of them on its own could be reduced to zero, the overall
run time would still only be improved by a factor of ∼ 30%.
In what follows, we will demonstrate how to improve the run
time of each of these three operations in turn to achieve an
order of magnitude speedup in computation time. Our strategy
is illustrated schematically in Figs. 1(c) and 1(d).

The discrete FT of the masked object Mab{Oz} involves a high
degree of redundancy, since most elements of this masked object
array are zero. We observe that this problem can be simplified by
generalizing the Danielson–Lanczos lemma [7,8] to an A-way
result. In one dimension, the kth element Fk of the discrete FT
of a function f can be expressed in terms of A smaller FTs:

Fk = F̃(0)
k + (W)kF̃(1)

k + (W)2kF̃(2)
k + · · · + (W)(A−1)kF̃(A−1)

k , (6)

where W = exp(−2πi/X) and F̃(a)
k is the (reduced-size) discrete

FT of f̃ , where f̃ is a vector consisting of only the nonzero ele-
ments of Ma{f }. Note that, in the notation of Eq. (6), k indexes
the reduced-size discrete FT F(a)

k beyond its normal domain
of k ∈ [0, X/A), exploiting the periodic boundary conditions
implicit in the FT.

In our case, the M operator ensures that only one of the A
distinct terms on the right-hand size of Eq. (6) is nonzero.
Therefore, eliminating all the zero terms, generalizing to two

dimensions, and summing over all image pixel groups a, b:

Fmnz =
∑︂

ab

(W)abmnF̃(a,b)
mnz . (7)

Consequently, instead of requiring A2 FFTs that each operate
over the full image size XY , we have reduced these to operating
on arrays of size XY/A2 (compressed arrays representing image
pixel groups each containing only those pixels retained by the
Mab{Oz} operator). We have therefore reduced the computational
requirements of these FFTs by a factor of A2. After computa-
tion of the FFTs, the weighting multiplications in Eq. (7) must
still be applied, albeit in an operation of reduced computational
complexity O(XY), but overall, the computational demands of
computing Fnm are dramatically reduced.

We now move on to consider the FT of the point spread func-
tion Habz. Here, H and its FTs are invariant properties of the
imaging system. If sufficient memory storage is available, the
FTs can be precomputed once and the computation of F (Habz)

eliminated completely from Eq. (4). However, given typical
values of A ≥ 15, Z ∼ 50, and megapixel images, tens or hun-
dreds of gigabytes of memory would be required to cache all
the precomputed values. That may be feasible on some high-
end CPU-based platforms, but exceeds the capacity of most
GPU platforms. Nevertheless, even when precalculation is not
possible, our algorithm amortizes the computation of each FT
across batches of multiple timepoints in a time series dataset,
reconstructing each batch concurrently. We also exploit sym-
metry relationships in the PSFs (as also used in [9]), to permit
rapid computation of e.g., F (H(A−a)bz) once F (Habz) has been
computed on-the-fly.

Finally, by explicitly substituting Eq. (5) into Eq. (4) and
exploiting the distributive property of the FT to promote the
inverse FT outside the summation over a and b, we can
dramatically reduce the number of inverse FTs required:

Imn =
∑︂

z

F −1
∑︂

ab

F (Mab{Oz}) × F (Habz). (8)

We note that in a practical implementation using a non-circulant
FT, it is not feasible to further promote the inverse FFT outside
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the summation over z, because the size of the intermediate arrays
will vary according to the lateral extent of Habz, and hence vary
with z.

The backward-projection operator required for Richard-
son–Lucy deconvolution is traditionally denoted HT in recogni-
tion that it is the transpose of the matrix operator H. However, in
practice, H and HT are both implemented as convolutions [as per
Eqs. (3) and (4)]. Hence, we follow an almost identical approach
for the backward projection, starting from the following equation
in place of Eq. (4):

Omnz =
∑︂

ab

Mab{I} ⊗ HT
abz. (9)

We note that during the one-time computation of H and HT dur-
ing initial optical modeling of the microscope PSF, computing
HT does not require additional convolution operations as used
in [2], and can instead be populated near-instantaneously by
pixelwise reshuffling of elements of H.

To achieve our anticipated order-of-magnitude speedup by
using Eq. (7) to compute F (Mab{Oz}) in Eq. (5), it was nec-
essary to write carefully optimized custom computer code,
since the specific multiplication and tiling process underpin-
ning a practical implementation of Eq. (7) is a performance
bottleneck, and it is a highly bespoke operation that is not avail-
able in standard numerical libraries. We have made available
a high-performance open-source reference implementation of
our complete light field reconstruction algorithm [10]. It is
written primarily in the Python programming language, with
performance-critical code written in C++, Cython [11], and
CUDA, drawing on the FFTW library [12] to compute FTs
in our C++ code. To ensure maximum performance, our code
incorporates elements of dynamic load-balancing between CPU
cores, and machine-adaptive runtime optimizations.

Figure 2 presents performance benchmarks for our light field
reconstruction code. Optimal performance is achieved for large
batch sizes, in which scenario our new approach delivers a per-
formance gain of 14× (CPU) and 34× (GPU) compared with the
widely used MATLAB implementation [2] based on Eqs. (2),
(4), and (9). We also compare with [1,13] (GPU-only) since this
is faster than [2]: our code still achieves a 10× performance gain
relative to [13]. All performance measurements were performed
on a representative light field imaging scenario: 1463 × 1273
pixel frames from a dataset in [4] (full test parameters specified
in [10]). CPU: 8 core Intel Xeon, 3 GHz, 32-GB RAM. GPU:
PNY Quadro RTX A4000, 1.56 GHz, 16-GB RAM, 224 GB/s.

As explained above, our implementation performs optimally
when batch-reconstructing multiple timepoints in a time series
dataset simultaneously—although even for a single timepoint,
our implementation already outperforms existing implementa-
tions. Figure 2 reveals the clear linear-plus-baseline relationship
between overall run time and batch size for our code. Regardless
of batch size, a fixed amount of computational work must be
performed to compute F (H). This baseline work can only be
eliminated completely if sufficient RAM is available to cache
pre-calculated values for all F (H), which can extend to hun-
dreds of gigabytes. The total additional work [computing the
other elements of Eq. (4) via Eqs. (7) and (8)] scales linearly
with the batch size. This vindicates our strategy of amortizing the
constant work across simultaneous deconvolutions of multiple
timepoints.

In our GPU implementation, we measure that the linear-
scaling work is more substantial compared with the baseline

Fig. 2. Performance scaling with batch size. Blue plots (total
elapsed time) show constant baseline work [computing F (H)] plus
linear scaling of additional work per batch item. Yellow plots
(time per image) compare performance against previously published
codes. As explained in the main text, our algorithms are designed to
perform optimally with large batch sizes. Datapoints are measured
run times, and trendlines are a fit to a linear scaling model.

Fig. 3. Performance scaling with number of parallel CPU threads
showing run-time improvement with increasing number of parallel
threads. Multithreading efficiency is defined as 1.0 for a case where
the measured time for an n-thread scenario is n times as fast as the
1-thread time.

work of computing F (H), probably due to the challenges of
developing optimized CUDA kernels to implement the highly
specific custom operations embodied in Eq. (7). This means
that there are diminishing additional benefits to increasing the
batch size beyond 8 on a GPU, which happily in turn means the
RAM requirements are lower on a GPU, where RAM is typically
scarcer.

Figure 3 confirms that our implementation scales well when
the work is parallelized across multiple CPU cores: the bench-
mark run time with 16 parallel threads was over 12× faster than
the single-threaded run time. The small decrease in efficiency
(i.e., speedup being slightly less than n times when using n
threads) can be explained by the increased pressure that multi-
threaded code imposes on the system’s memory bandwidth. The
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slight anomaly in efficiency for 2 threads is likely related to the
dual-CPU architecture of the testbed system.

We emphasize that our approach is a faster method to gener-
ate reconstructed volumes that are mathematically identical to
the output of [2], which is widely accepted as a reference MAT-
LAB implementation for light field volume reconstruction. Our
benchmarking code includes verification that the structural sim-
ilarity index (SSIM) between our reconstructions and those of
[2] is 1.000000. A number of other light field reconstruction
codes exist, many of which build on [2] by introducing addi-
tional features such as filtering to alleviate native focal plane
artifacts. Our methodology should be directly transferable to
most iterative codes for reconstructing light field datasets. It is
beyond the scope of this paper to rewrite all these codebases,
but in [14] we demonstrate how to interface our implementation
with the existing MATLAB codebase of [2]. For other codes, the
main computational work remains the forward and backprojec-
tion operations, so the scope for speed-up can be estimated by
comparing their run-times to our benchmark results in Fig. 2. For
example, Ref. [9] takes 39× longer (CPU) than our implementa-
tion. The increased speed of our approach also makes it realistic
to consider the benefits of direct deconvolution of multi-view
light field datasets, in contrast to the two-stage “reconstruct then
fuse" approach taken in [4].

It is not practical to compare our code performance directly
with phase-space deconvolution [15] due to the significant differ-
ences in reconstruction strategy (the respective merits of which
are outside the scope of our work presented here). Their code
does not scale well to the size of our test case (it would require
130 GB of RAM), but extrapolation from smaller test cases
suggests our new code outperforms it significantly in terms of
run time. It may well be possible to transfer elements of our
approach to benefit the run time of [15], but further study would
be required.

While many researchers continue to prefer the mathemati-
cally precise reconstruction afforded by the classical approach
of Eq. (2), others are researching the use of machine-learning
to estimate the object from the raw camera image [5,16–19].
The aim of such research is to compute an object estimate
that is as faithful as possible to the true object, while using
less computational time than required to explicitly compute
Eq. (2). Some approaches commence with a limited num-
ber of Richardson–Lucy iterations [17] or use direct optical
modeling during the training phase [5]; computational perfor-
mance in both these scenarios will benefit directly from our
new results. Pure machine-learning based approaches also stand
to benefit from our results: machine-learning architectures in
imaging are commonly based around convolutional neural net-
works, and it is increasingly recognized that networks perform
better and can be trained faster when the network structure
encapsulates physical insights into the image formation process
[18,19]. Thus, the mathematical insights behind our results also
hold promise for improving performance and effectiveness of
future machine-learning architectures for light field microscopy
reconstruction.

In summary, we have presented mathematical results enabling
a dramatic reduction in computational work for 3D image recon-
struction in light field microscopy, without any detriment at all
to the quality of the reconstruction. The results and approach
we have presented here are potentially applicable to any multi-
aperture computational imaging system with a space-variant

PSF endowed with translational symmetry properties. We have
made available an open-source implementation of our algo-
rithms [10], with performance measured to be more than an
order of magnitude faster than previously available codes. We
anticipate that our algorithms and open-source implementation
will lead to an expansion in the uptake of light field microscopy
as a tool for 3D+time imaging of rapid biological processes, now
that the excessive computational demands of the reconstruction
process have been brought under control.
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