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A B S T R A C T

Configurational forces that drive the evolution of material structures such as defects are introduced into
a geometrically-exact peridynamics framework. The concept of bond-number double-density facilitates the
definition of a peridynamic potential energy functional that inherits the key features of its conventional
(local) continuum and discrete counterparts. The spatial and material variations of the peridynamic potential
energy functional give rise to familiar Piola- and Cauchy-type bond-wise interaction forces that enter the point-
wise force balance in the spatial and material setting, respectively. It is shown that the point-wise material
body force density is a result of a non-local pull-back of the bond-wise spatial interaction force, and thereby
captures non-local contributions. Several key features of configurational peridynamics are demonstrated via a
computational example and a comparison to conventional configurational continuum mechanics.
. Introduction

Configurational mechanics provides a framework for understanding
he behaviour of defects and quantifying the energy release due to
hanges of the material configuration. Peridynamics (PD) is a non-local
ontinuum formulation that inherently allows for such defects and is
idely used for modelling fracture and damage. The primary objective
f this work is to combine these two complementary approaches and
etail a configurational mechanics framework for peridynamics.

The standard familiar forces in continuum mechanics arise in re-
ponse to the motion of continuum points. The less familiar config-
rational forces arise due to the response of a continuum body to
ariations in the material (reference) placement of its points. Configu-
ational forces drive the internal restructuring of material and are basic
bjects consistent with their own force balance. They are necessary to
resent a comprehensive picture of a body’s reaction to the evolution of
efects (Podio-Guidugli, 2002). Configurational mechanics is therefore
deally suited to describe the role of defects such as dislocations,
nhomogeneities, inclusions, interfaces and cracks, (see, e.g. Gurtin
nd Podio-Guidugli, 1996a, 1998; Fried and Gurtin, 2003) and the
ollection by Steinmann and Maugin (2006). The unifying notion of
onfigurational mechanics encompasses all forms of driving ‘‘forces"
n such defects including both smooth and abrupt inhomogeneities in
racture mechanics (Maugin, 1995; Näser et al., 2007; Kuhn and Müller,
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2016). Configurational mechanics has also been applied to model and
analyse other phenomena such as growth (Fried and Gurtin, 2003),
rate-dependent materials (Cermelli et al., 2001; Svendsen et al., 2009)
and the complex motion of highly elastic constrained rods (Bosi et al.,
2016; Liakou and Detournay, 2018; Armanini et al., 2019). The theoret-
ical underpinnings of configurational mechanics have been developed
over the last half-century beginning with the seminal work by Eshelby
(1951, 1975) and important contributions by Gurtin (1995), Gurtin and
Podio-Guidugli (1996b), Kienzler and Herrmann (2000), Maugin (2016,
2020), Cermelli and Fried (1997), among others. Our own contributions
include Steinmann (2002a,b,c, 2008), Steinmann et al. (2012). For
a comprehensive overview, see Gurtin (2000), Maugin (2016, 2020),
Steinmann (2022).

PD (Silling, 2000) is a non-local formulation of continuum mechan-
ics - a subset of generalised continuum formulations (Cordero et al.,
2016; Forest, 2009; Dillard et al., 2006) - in which the behaviour
of a continuum point is influenced by interactions with other points
within a finite horizon. As such, PD inherits many features of atomistic
approaches. According to Dell’Isola et al. (2015), the roots of PD may be
traced back to the pioneering works of Piola. Due to the integral form
of the governing equations, PD is particularly well suited for problems
with discontinuities and has thus been predominantly employed to
model material failure and fracture (see, e.g. Silling et al., 2010; Ha
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and Bobaru, 2011; Silling and Askari, 2005; Bobaru and Zhang, 2015;
Ebrahimi et al., 2015; Butt and Meschke, 2021; Dorduncu and Madenci,
2022). For an extensive overview of PD theory, applications and related
studies, see the review by Javili et al. (2019b).

Despite the substantial body of work on PD and fracture propaga-
tion, the handling of crack initiation and subsequent propagation in
PD is controlled by a constitutive prescription requiring the bond-wise
interaction forces to eventually vanish as bond elongation increases.
We argue here that in a continuum body (i) initiation of a true crack
must be accompanied by a change in the topology that describes the
geometry of the body, and (ii) true fracture propagation is irreversible
and results in energy dissipation inside the body or energy release
from the body. Configurational mechanics provides the correct tool
to address these key characteristics of both initiation and propagation
of fracture. However, the notion of configurational forces is entirely
absent in all contributions pertaining to PD to date. Via rigorous
mathematical derivations, this contribution addresses this shortcoming
and lays the groundwork for a configurational peridynamics frame-
work. Furthermore, the key features and insights that our framework
provides are elucidated through a series of computational simulations
highlighting the utility and enormous potential of the formulation.

This manuscript is organised as follows. To set the stage and in-
troduce the notation, a brief recap of configurational mechanics is
given in Section 2. Continuous systems are addressed first, followed by
their atomistic counterparts. These provide the necessary foundations
for the primary contribution of the manuscript in Section 3 wherein
the configurational peridynamics framework is presented. Section 4
elucidates the developed theory through a series of numerical examples
in two dimensions together with comparisons with classical continuum
mechanics solved using the finite element method. Section 5 concludes
this work, summarises our important findings and provides an outlook.

2. Brief recap of configurational mechanics

Deformational mechanics is concerned with the response of a me-
chanical system to externally applied loading. Its aim is to determine
the resulting spatial position into which each point (discrete or contin-
uous) is mapped from its original material placement. If the potential
energy is expressed as a functional of the spatial positions of the points,
and the system is subjected to spatial variations, i.e., variations of
the spatial positions, the Euler–Lagrange equations (or localised force
balance) are obtained from the stationary point of the potential energy
functional. By contrast, configurational mechanics is concerned with the
energetic changes associated with a variation of the material config-
uration. When the total potential energy is expressed as a functional
of the material position of points, the material variation thereof does
not generally have a stationary point but rather defines a change
in, or more specifically a release of, potential energy. This energy
is available to drive other physical processes such as the creation of
crack surfaces. This section begins with a brief recap of configurational
mechanics. As (configurational) PD borrows ideas from both continuum
and molecular mechanics, the relevant ideas from these perspectives
are also emphasised.

2.1. Continuous systems: The case of hyperelastic continuum mechanics

First the terminology describing the relevant kinematic quantities
of a continuum body are reviewed. This is followed by spatial and
material variations of the potential energy functional which lead to
the deformational equilibrium equations when a spatial variation is
considered and the configurational non-equilibrium equations, defin-
ing potential energy release upon a configurational change, when a
material variation is considered. The configurational non-equilibrium
equations provide an expression for the potential energy release in
2

terms of material tractions at boundaries (and interfaces). D
2.1.1. Kinematics
As depicted in Fig. 1, the motion of a continuum body that initially

occupies the material configuration 0 and deforms as it is subjected
to a prescribed external loading into the spatial configuration 𝑡 is
described in terms of the material and spatial placements, 𝑿 and
𝒙, respectively. These are related by the spatial deformation map as
𝒙 = 𝒚(𝑿). The tangent map between infinitesimal line elements d𝑿
and d𝒙 in the material and spatial configuration, i.e., the deformation
gradient, is given by 𝑭 = ∇𝑿𝒚, where the gradient operator ∇𝑿 is with
respect to the material coordinates. The deformation can be described
from an alternative perspective by using the material deformation map
𝑿 = 𝒀 (𝒙), where 𝒀 = 𝒚−1 denotes the inverse functional relation
etween 𝑿 and 𝒙, and its associated tangent map 𝒇 = ∇𝒙𝒀 , where
= 𝑭 −1 is the algebraic inverse of 𝑭 . Note, we omit the more precise

otation 𝒇 = 𝑭 −1◦𝒀 (𝒙) for the sake of conciseness as well as the
xplicit indication of the parameterisation if there is no danger of
onfusion. The spatial area map 𝑲 = cof𝑭 , also known as the cofactor,
aps infinitesimal area elements d𝑨 and d𝒂 in the material and spatial

onfiguration with the inverse relation given by the material area map
= cof𝒇 . Finally, the spatial volume map 𝐽 = det𝑭 , also known

s the Jacobian determinant, maps the infinitesimal volume element
𝑉 in the material configuration into its counterpart d𝑣 in the spatial
onfiguration. Likewise, the material volume map 𝑗 = 𝐽−1 gives the
olume ratio between infinitesimal volume elements in the material
nd spatial configurations.

In summary, the transformations for the various infinitesimal line,
rea and volume elements are

𝒙 = 𝑭 ⋅ d𝑿 with 𝑭 = ∇𝑿𝒚 ; d𝑿 = 𝒇 ⋅ d𝒙 with 𝒇 = ∇𝒙𝒀 ,

d𝒂 = 𝑲 ⋅ d𝑨 with 𝑲 = cof𝑭 ; d𝑨 = 𝒌 ⋅ d𝒂 with 𝒌 = cof𝒇 ,

d𝑣 = 𝐽 d𝑉 with 𝐽 = det𝑭 ; d𝑉 = 𝑗 d𝑣 with 𝑗 = det𝒇 .

(1)

.1.2. Potential energy functional and its spatial and material variations
The potential energy functional 𝐼 can be expressed as the integral

f the potential energy density per volume over the body in either
arameterisation 𝐼 = 𝐼

(

𝒚;𝑿
)

or 𝐼 = 𝐼
(

𝒀 ;𝒙
)

by interchanging the fields
nd parameterisation, that is

(𝒚;𝑿) = ∫0

𝑈0
(

𝒚,𝑭 ;𝑿
)

d𝑉 or 𝐼 (𝒀 ;𝒙) = ∫𝑡

𝑈𝑡
(

𝒀 ,𝒇 ;𝒙
)

d𝑣 . (2)

ere the semicolon distinguishes functional dependence from param-
terisation. More precisely, 𝐼

(

𝒚;𝑿
)

denotes that 𝐼 depends on 𝒚
(

𝑿
)

nd is parameterised in 𝑿. The potential energy density 𝑈0 per unit
olume in the material configuration and 𝑈𝑡 per unit volume in the
patial configuration most generally consist of internal and external
ontributions and are related by the Jacobian determinants as 𝑈0 = 𝐽𝑈𝑡
nd 𝑈𝑡 = 𝑗𝑈0. For the sake of presentation, all boundary contributions
re neglected.

emark 1. A spatial variation D𝛿 of the potential energy functional
(𝒚;𝑿) in Eq. (2)𝑎 considers perturbations of the spatial deformation
ap 𝒚 (𝑿) in terms of admissible spatial variations D𝛿𝒚 (𝑿) at fixed
aterial placements 𝑿, that is

𝛿𝐼 (𝒚(𝑿);𝑿) = d
d𝜖 𝐼

(

𝒚(𝑿) + 𝜖 D𝛿𝒚(𝑿);𝑿
)

|

|

|𝜖=0
= 𝛿𝐼||

|𝑿
. (3)

Likewise, a material variation d𝛿 of the potential energy functional
(𝒀 ;𝒙) in Eq. (2)𝑏 considers perturbations of the material deformation
ap 𝒀 (𝒙) in terms of admissible material variations d𝛿𝒀 (𝒙) at fixed

spatial placements 𝒙 as follows

d𝛿𝐼 (𝒀 (𝒙);𝒙) = d
d𝜖 𝐼

(

𝒀 (𝒙) + 𝜖 d𝛿𝒀 (𝒙);𝒙
)

|

|

|𝜖=0
= 𝛿𝐼||

|𝒙
. (4)

dmissible spatial and material variations respect the corresponding

irichlet boundary conditions. □
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Fig. 1. Spatial and material motion of a continuum body.
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Spatial variations, i.e., variations at fixed material placement, of
he potential energy functional 𝐼

(

𝒚;𝑿
)

render the stationary point
D𝛿𝐼

(

𝒚;𝑿
)

≐ 0 as

D𝛿𝐼
(

𝒚;𝑿
)

= ∫0

[

𝜕𝑭𝑈0 ∶ ∇𝑿𝐃𝛿𝒚 + 𝜕𝒚𝑈0 ⋅ D𝛿𝒚
]

d𝑉

=∶ ∫0

[

𝑷 ∶ ∇𝑿𝐃𝛿𝒚 − 𝒃0 ⋅ D𝛿𝒚
]

d𝑉

= ∫𝑡

[

𝝈 ∶ ∇𝒙𝐃𝛿𝒚 − 𝒃𝑡 ⋅ 𝐃𝛿𝒚
]

d𝑣 ≐ 0 ,

(5)

and results in the localised force balances (or deformational equilibrium
statements) as the corresponding Euler–Lagrange equations:

Div𝑷 + 𝒃0 = 𝟎 and div𝝈 + 𝒃𝑡 = 𝟎 . (6)

Here 𝑷 is the (two-point) Piola stress tensor and 𝝈 is the (spatial)
Cauchy stress tensor. These are related by Piola transforms as 𝑷 = 𝝈 ⋅𝑲
and 𝝈 = 𝑷 ⋅ 𝒌, respectively. The vectors 𝒃0 and 𝒃𝑡 denote the spatial
body force per unit volume in the material and spatial configurations,
respectively.

Alternatively, if the potential energy functional 𝐼
(

𝒀 ;𝒙
)

is param-
eterised in 𝒙 as in (2)𝑏, its material variation d𝛿𝐼 , i.e., a variation at
fixed spatial placement, can be considered. However, excluding rare in-
stances of configurational equilibrium, d𝛿𝐼 does not render a stationary
point but rather defines a change, or more specifically (in accordance
with the second law of thermodynamics) a release of potential energy
 ≤ 0. That is

d𝛿𝐼
(

𝒀 ;𝒙
)

= ∫𝑡

[

𝜕𝒇𝑈𝑡 ∶ ∇𝒙𝐝𝛿𝒀 + 𝜕𝒀 𝑈𝑡 ⋅ d𝛿𝒀
]

d𝑣

=∶ ∫𝑡

[

𝒑 ∶ ∇𝒙𝐝𝛿𝒀 − 𝑩𝑡 ⋅ d𝛿𝒀
]

d𝑣

= ∫0

[

𝜮 ∶ ∇𝑿𝐝𝛿𝒀 − 𝑩0 ⋅ d𝛿𝒀
]

d𝑉 =∶  ≤ 0.

(7)

Here 𝒑 is a two-point Piola-type stress tensor associated with the mate-
rial variation of the potential energy density 𝑈𝑡 and 𝜮 is the celebrated
(material) Eshelby stress tensor. These quantities are related by Piola
transforms as 𝒑 = 𝜮 ⋅ 𝒌 and 𝜮 = 𝒑 ⋅ 𝑲, respectively. The vectors 𝑩𝑡
and 𝑩0 denote the material body force (material inhomogeneity force
in the terminology of Maugin (1995)) per unit volume in the spatial
and material configurations, respectively. Material inhomogeneities are
accounted for via the explicit dependence of the potential energy
density on the material position 𝑿 = 𝒀 (𝒙). Applying integration by
parts and the divergence theorem renders the expression for the energy
release as

 = ∫𝜕0

[

𝜮 ⋅𝑵
]

⋅ 𝐝𝛿𝒀 d𝐴 − ∫0

[

Div𝜮 + 𝑩0
]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
⋅𝐝𝛿𝒀 d𝑉 ≤ 0 .

(8)
3

= 𝟎 (see §2.1.3) u
Before analysing this expression further in order to emphasise the role
of the Eshelby stress in the energy release, it proves helpful to uncover
how the spatial and material localised force balances are related in the
bulk.

2.1.3. Relating spatial and material localised force balances in the bulk
It is interesting to note that the (material) Eshelby stress as well

as the (spatial) Cauchy stress can be written in the so-called energy–
momentum format as follows

𝜮 = 𝑈0𝑰 − 𝑭 t ⋅ 𝑷 and 𝝈 = 𝑈𝑡𝒊 − 𝒇 t ⋅ 𝒑 . (9)

hese relations follow immediately from the product and chain rules of
ifferentiation.

Pre-multiplying the spatial localised force balance in (6) (deforma-
ional equilibrium) Div𝑷 + 𝒃0 = 𝟎 with −𝑭 t and accounting for the
arious dependencies of the potential energy density 𝑈0

(

𝒚,𝑭 ;𝑿
)

, the
ocalised force balance can alternatively be expressed as Div𝜮+𝑩0 = 𝟎,
.e., in terms of the Eshelby stress 𝜮 (see Eq. (8)). From the Piola
ransformation 𝒑 = 𝜮 ⋅ 𝒌, the localised force balance can also be
xpressed in terms of the material Piola-type stress 𝒑 = 𝜕𝒇𝑈𝑡. Fig. 2
llustrates the four equivalent localised force balances and highlights
he direct relationship between them. As an interpretation, in the bulk,
ll localised force balances in Fig. 2 express the same physical statement
f equilibrium since they are simply related by pull back and push
orward operations in terms of the transposed deformations gradients.
sing these relations, the energy release in Eq. (8) reduces to

= ∫𝜕0

[

𝜮 ⋅𝑵
]

⋅ 𝐝𝛿𝒀 d𝐴 ≤ 0 . (10)

t is thus clear that the energy release is due to the material or Eshelby
raction 𝑻 0 ∶= 𝜮 ⋅ 𝑵 expressed in terms of the normal projection of
he Eshelby stress. Taken together, the material traction 𝑻 0 is power
onjugated to virtual material (configurational) changes d𝛿𝒀 of the
oundary 𝜕0.

.1.4. Energy release at a crack tip
At a crack tip, the corresponding contribution to the energy release

crack can be determined from Eq. (10) by considering the boundary of
n isolated ball ℬ0 with radius 𝑟0 centred at the crack tip singularity,
ee Fig. 3. Thus,

crack = lim
𝑟0→0∫𝜕ℬ0

[

𝜮 ⋅𝑵
]

⋅ d𝛿𝒀 d𝐴 =∶ −𝑱 ⋅ d𝛿𝒀
|

|

|𝑟0→0
≤ 0 with

𝑱 ∶= − lim
𝑟0→0∫𝜕ℬ0

𝜮 ⋅𝑵 d𝐴 . (11)

ere 𝑱 coincides with the vectorial version of the celebrated J-integral
n classical fracture mechanics. The negative sign is present as 𝑱 is

sually written in terms of the normal pointing towards the outside
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Fig. 2. Transformations between equivalent localised force balances.
𝐼

Fig. 3. The energy available for release due to a crack tip singularity is considered by
cutting out a ball ℬ0 with radius 𝑟0 and letting it shrink to zero. Note the orientation
f the normal pointing towards the crack tip.

f ℬ0, i.e., away from the crack tip and towards the inside of the body
0.

.2. Discrete systems: The case of bond-based atomistics

In the following section, the concepts of deformational (and config-
rational) equilibrium and energy release are detailed for a system of
iscrete interacting atoms. For the sake of representation, only bond-
ise interactions are considered, see Steinmann et al. (2011) for further
etails. For multibody interactions, see Steinmann et al. (2021).

.2.1. Kinematics
Consider a discrete atomwise-motion of a system that contains a

inite number of atoms listed in the set  (see Fig. 4). We consider
the quasi-static case, wherein the sequence of events due to quasi-static
loading is ordered by a time-like variable 𝑠 and we distinguish between
(discrete) material and spatial configurations 0 and 𝑡, respectively.
These two configurations are defined by the sets containing the position
of each atom 𝛼 in  , collectively denoted by {𝑿𝛼} = {𝒙𝛼(0)} and
{𝒙𝛼} = {𝒙𝛼(𝑠)}, respectively, with 𝛼 = 1, 2, 3,… , 𝑛 . Note that 𝑛
4

atom atom
may be very large but finite. The set  𝛼 lists the neighbouring atoms
for each atom 𝛼 that are within a given cut-off radius 𝛿0. To emphasise
the different perspectives of deformational and configurational me-
chanics, a spatial motion of atom 𝛼 is described in terms of its material
placement 𝑿𝛼 and its spatial position 𝒚𝛼 while a material motion of
atom 𝛼 is described in terms of its spatial placement 𝒙𝛼 and its material
position 𝒀 𝛼 .

The bond vectors between pairs of atoms characterise the system
further as the distance between two atoms, or the bond length, con-
tributes to the potential energy. The bond vectors are expressed in
terms of the bond length and bond directions as

𝜩𝛼𝛽 ∶= 𝑿𝛽 −𝑿𝛼 = |𝑿𝛽 −𝑿𝛼
|𝑬𝛼𝛽 = 𝛯𝛼𝛽𝑬𝛼𝛽 ,

𝝃𝛼𝛽 ∶= 𝒙𝛽 − 𝒙𝛼 = |𝒙𝛽 − 𝒙𝛼|𝒆𝛼𝛽 = 𝜉𝛼𝛽𝒆𝛼𝛽 ,

𝜰 𝛼𝛽 ∶= 𝒀 𝛽 − 𝒀 𝛼 = |𝒀 𝛽 − 𝒀 𝛼
|𝑬𝛼𝛽 = 𝛶 𝛼𝛽𝑬𝛼𝛽 ,

𝝊𝛼𝛽 ∶= 𝒚𝛽 − 𝒚𝛼 = |𝒚𝛽 − 𝒚𝛼|𝒆𝛼𝛽 = 𝜐𝛼𝛽𝒆𝛼𝛽 .

(12)

Here, a distinction is made between bond vectors, together with their
associated length and direction, based on either the material and spatial
placements 𝜩𝜶𝜷 and 𝝃𝜶𝜷 , or the material and spatial positions 𝜰 𝜶𝜷

and 𝝊𝜶𝜷 , respectively. Key deformation measures are then the bond
stretches

𝜆𝛼 𝛽 ∶= 𝜐𝛼𝛽∕𝛯𝛼𝛽 and 𝛬𝛼𝛽 ∶= 𝛶 𝛼𝛽∕𝜉𝛼𝛽 , (13)

corresponding to the spatial and material motion, respectively.

2.2.2. Potential energy functional and its spatial and material variations
The potential energy functional 𝐼 can be expressed as the summa-

tion of the potential energy contributions over all the atoms in the
system (following ideas similar to Fried (2010)) in either parameter-
isation 𝐼 = 𝐼 ({𝒚𝜖} ; {𝑿𝜖}) or 𝐼 = 𝐼 ({𝒀 𝜖} ; {𝒙𝜖}) by interchanging the
fields and parameterisation, that is

𝐼 ({𝒚𝜖} ; {𝑿𝜖}) = 1
2

∑

𝛼∈

∑

𝛽∈𝛼

𝑊 𝛼 𝛽
0

(

𝜆𝛼𝛽
)

𝛯𝛼𝛽 or

({𝒀 𝜖} ; {𝒙𝜖}) = 1
2

∑ ∑

𝑊 𝛼 𝛽
𝑡

(

𝛬𝛼𝛽) 𝜉𝛼𝛽 .
(14)
𝛼∈ 𝛽∈𝛼
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he spatial and material internal bond potentials between two atoms,
enoted 𝑊 𝛼 𝛽

0 and 𝑊 𝛼 𝛽
𝑡 respectively, are expressed in terms of their

ensity per unit bond length in the material and spatial configura-
ions, respectively. Consequently, the bond potentials are related as

𝛼 𝛽
0 = 𝑊 𝛼 𝛽

𝑡 𝜆𝛼 𝛽 and 𝑊 𝛼 𝛽
𝑡 = 𝑊 𝛼 𝛽

0 𝛬𝛼𝛽 . Note that, without loss of
enerality, these potentials are parameterised by the bond stretches 𝜆𝛼𝛽
nd 𝛬𝛼𝛽 and not the bond lengths as is standard in atomistic treatments.
ny external potential energy contributions related to the atoms are
eglected here for the sake of presentation. The energy contribution of
particular atom 𝛼 is due to the summation of all the bond potentials

n  𝛼 , i.e., within the cut-off, and is numerically the same regardless
f the perspective adopted, that is
∑

∈𝛼

𝑊 𝛼𝛽
0 𝛯𝛼𝛽 =

∑

𝛽∈𝛼

𝑊 𝛼𝛽
𝑡 𝜉𝛼𝛽 . (15)

ote that the summation over a discrete number of atoms 𝛼 in a discrete
tomistic system replaces the notion of integration over a point-wise
otential energy density in a continuous system. Summation over the
eighbouring atoms 𝛽 in  𝛼 may be considered as an expression of
onlocality naturally inherent to atomistic systems.

Following the same arguments as in the preceding section, spatial
ariations of the potential energy functional 𝐼 ({𝒚𝜖} ; {𝑿𝜖}) in Eq. (14)𝑎
ender the stationary point D𝛿𝐼 ({𝒚𝜖} ; {𝑿𝜖}) ≐ 0 as

𝛿𝐼 ({𝒚𝜖} ; {𝑿𝜖}) =1
2
∑

𝛼∈

∑

𝛽∈𝛼

[𝜕𝜆𝛼𝛽𝑊
𝛼𝛽
0 𝒆𝛼𝛽 ] ⋅ D𝛿𝝊𝛼𝛽 (16)

=∶1
2
∑

𝛼∈

∑

𝛽∈𝛼

𝒑𝛼𝛽 ⋅ D𝛿𝝊𝛼𝛽 = −
∑

𝛼∈

∑

𝛽∈𝛼

𝒑𝛼𝛽 ⋅ D𝛿𝒚𝛼 ≐ 0 ,

nd result in the atom-wise force balance (deformational equilibrium)
s the corresponding Euler–Lagrange equation

−
∑

𝛽∈𝛼

𝒑𝛼𝛽 = 𝟎 ∀𝛼 ∈  with 𝒑𝛼𝛽 ∶= 𝜕𝜆𝛼𝛽𝑊
𝛼𝛽
0 𝒆𝛼𝛽 . (17)

ere 𝒑𝛼𝛽 denotes the spatial bond-wise (Piola-type) interaction force.
he expression for 𝒑𝛼𝛽 follows from the application of the chain rule
nd the expression D𝛿𝜆𝛼𝛽 = 1

𝛯𝛼𝛽 D𝛿𝜐
𝛼𝛽 = 1

𝛯𝛼𝛽 𝒆
𝛼𝛽 ⋅ D𝛿𝝊𝛼𝛽 . Note the

similarity of its (signed) magnitude 𝜕𝜆𝛼𝛽𝑊
𝛼𝛽
0 with the definition of the

Piola stress 𝑷 = 𝜕𝑭𝑈0 in Eq. (5).
If the potential energy functional 𝐼 ({𝒀 𝜖} ; {𝒙𝜖}) is alternatively

parameterised in {𝒙𝜖}, as in Eq. (14)𝑏, its material variations d𝛿 can
be considered, resulting in a release of potential energy  ≤ 0, that is

d𝛿𝐼 ({𝒀 𝜖} ; {𝒙𝜖}) =1
2

∑

𝛼∈

∑

𝛽∈𝛼

[𝜕𝛬𝛼𝛽𝑊 𝛼𝛽
𝑡 𝑬𝛼𝛽 ] ⋅ d𝛿𝜰 𝛼𝛽

=∶1
2

∑

𝛼∈

∑

𝛽∈𝛼

𝑺𝛼𝛽 ⋅ d𝛿𝜰 𝛼𝛽 = −
∑

𝛼∈

∑

𝛽∈𝛼

𝑺𝛼𝛽 ⋅ d𝛿𝒀 𝛼

=∶
∑

𝑩𝛼 ⋅ d𝛿𝒀 𝛼 =∶  ≤ 0 . (18)
5

𝛼∈
ere, 𝑺𝛼𝛽 and 𝑩𝛼 , respectively, denote bond- and point-wise Eshelby-
ype interaction forces that are power conjugated to configurational
hanges of the material positions {𝒀 𝜖} of the atoms, that is

∑

𝛽∈𝛼

𝑺𝛼𝛽 =∶ 𝑩𝛼 ∀𝛼 ∈  with 𝑺𝛼𝛽 ∶= 𝜕𝛬𝛼𝛽𝑊 𝛼𝛽
𝑡 𝑬𝛼𝛽 . (19)

inally, by applying the chain rule, it is illuminating to note that the
signed) magnitude of the Eshelby-type interaction force 𝑺𝛼𝛽 can also

be expressed in energy–momentum format as

𝑺𝛼𝛽 = [𝑊 𝛼𝛽
0 − 𝜆𝛼𝛽𝜕𝜆𝛼𝛽𝑊

𝛼𝛽
0 ]𝑬𝛼𝛽 = [𝑊 𝛼𝛽

0 − 𝜆𝛼𝛽𝑝𝛼𝛽 ]𝑬𝛼𝛽 . (20)

he energy–momentum format of 𝑺𝛼𝛽 mimics the structure of the
nergy–momentum format of the Eshelby stress 𝜮 in hyperelastic con-
inuum mechanics, see Eq. (9).

. Peridynamics

Attention is now turned to PD and in particular to bond-based
D. To pave the way for configurational PD and the transformations
etween the spatial and material settings, kinematic quantities for
he spatial and material motion problem are first introduced. This is
ollowed by a presentation of the energy expressed in the different
onfigurations and the various variations thereof.

.1. Kinematics

In the following the spatial and material motion problems are
utlined. An overview of non-local point-wise transformations which
llow one to relate the point-wise (localised) force balances derived
n the subsequent section in the different settings (see Fig. 7) is then
resented.

.1.1. Spatial and material bond vectors, bond length and bond stretches
PD is a non-local continuum formulation where each physical point

n the material configuration 0 interacts with neighbouring points
ithin a surrounding finite horizon 0 of radius 𝛿0 - see Fig. 5. The
lacement of a physical point in the material configuration is given by
. The spatial motion of 𝑿 to its position 𝒙 in the spatial configuration
𝑡 is given by the nonlinear map 𝒙 = 𝒚(𝑿). The measure of the
orizon 𝛿0 is generally the radius of a spherical neighbourhood centred
t 𝑿. A neighbouring physical point with position 𝒙| in the spatial
onfiguration is mapped from the material configuration 𝑿 | by the
ame map, i.e., 𝒙| = 𝒚(𝑿 | ). The relative material placement is denoted
y 𝜩 | ∶= 𝑿 |−𝑿 and the relative spatial deformation map by 𝝊| ∶= 𝒚|−𝒚.
hese vectors can be written in terms of their magnitudes and unit
irection vectors as
|

∶= |𝑿 |

−𝑿|𝑬 |

= 𝛯
|𝑬 |

and 𝝊|

∶= |𝒚|

− 𝒚| 𝒆| = 𝜐
|𝒆| . (21)
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Fig. 5. Spatial and material motion of a continuum body in the peridynamic framework.
The bond stretch captures the neighbour-wise deformation and is de-
noted by

𝜆
|

∶= 𝜐
|

∕𝛯
|

. (22)

The material motion of 𝒙 to 𝑿 and its neighbours from 𝒙| to 𝑿 | can
imilarly be expressed using the inverse non-linear deformation map
s 𝑿 = 𝒀 (𝒙) and 𝑿 | = 𝒀 (𝒙| ). The relative spatial placement and the
elative material deformation map associated with a material motion
re denoted by 𝝃| ∶= 𝒙| −𝒙 and 𝜰 | ∶= 𝒀 | −𝒀 , respectively. Again, these
ectors can be written in terms of their magnitudes and unit direction
ectors as
|

∶= |𝒙|

− 𝒙| 𝒆| = 𝜉
|𝒆| and 𝜰 |

∶= |𝒀 |

− 𝒀 |𝑬 |

= 𝛶
|𝑬 |

. (23)

he bond stretch from this perspective is then denoted by
|

∶= 𝛶
|

∕𝜉
|

. (24)

emark 2. Note the concepts borrowed from molecular mechanics
resent in the (non-local) continuum formulation of PD. Clearly, the
tomistic cut-off radius translates into the PD horizon radius 𝛿0, the
oncept of atomistic bonds of finite cardinality translates into a contin-
ous distribution of PD bonds within the horizon 0, and summation
ver the atomistic cardinality of bonds translates into integration over
he PD horizon 0. □

Remark 3. In PD quantities can be expressed as neighbour-wise,
point-wise and total measures. Each physical point interacts with all
neighbouring points within its horizon. Measures calculated between
a point and one of its neighbours are called neighbour-wise quantities.
The integral of these neighbour-wise quantities over the horizon results
in point-wise quantities (non-local measures). Finally integrating a
point-wise quantity over the entire domain occupied by a body results
in the total quantity for the body. □

Remark 4. The conventional deformation gradient 𝑭 from classical
continuum mechanics (CCM) in Eq. (1)𝑎 is a spatial tangent map that
can be viewed as a linear transformation of an infinitesimal line element
d𝑿 from the material (tangent) configuration to its counterparts d𝒙 in
the spatial configuration. In the PD framework, a linear transformation
of a finite line element 𝜩 | from the material configuration to its coun-
terpart in the spatial configuration 𝝊| is given by the neighbour-wise
spatial secant map, that is

𝝊|

= F
|

⋅ 𝜩 |

with F
|

∶= 𝜆
|𝒆| ⊗ 𝑬 |

. (25)

Likewise a finite line element in the spatial configuration 𝝃| can be
|

6

mapped to its counterpart in the material configuration 𝜰 via the
neighbour-wise material secant map, that is

𝜰 |

= f
|

⋅ 𝝃|

with f
|

∶= 𝛬
|𝑬 |

⊗ 𝒆| . (26)

These relations are useful in subsequent neighbour-wise expressions but
cannot be simply extended by integrating over the horizon to produce
meaningful point-wise quantities. □

3.1.2. The concept of bond number double-density
The potential energy contribution of a point (atom) in a discrete

atomistic system is calculated by a summation over the neighbouring
bonds (see Eq. (14)). The extension of this format to PD provides the
motivation for the concept of bond number double-density. The material
and spatial bond number double-densities, 𝜚|0 and 𝜚|𝑡 , respectively, denote
the density of bonds per volume in the horizon and per volume of
the body, in the material and the spatial configuration, respectively.
Their units are [𝜚|0] = [𝜚|𝑡] = bonds∕m6. As a consequence, integrating
the bond number double-densities over the volume of the horizon is
equivalent to integrating over the bond number densities 𝑁 | and 𝑛| with
corresponding differential elements d𝑁 | = 𝜚|0d𝑉

| and d𝑛| = 𝜚|𝑡d𝑣
| ,

respectively. That is,

∫0

d𝑁 |

= ∫0

𝜚
|

0d𝑉
| and ∫𝑡

d𝑛| = ∫𝑡

𝜚
|

𝑡d𝑣
|

. (27)

Note that 𝑁 | and 𝑛| are point-wise bond number densities of units
[𝑁 | ] = [𝑛| ] = bonds∕m3, thus integrating them over the entire body
yields the total number of bonds - a finite, countable number. Using
the volume ratios for infinitesimal point-wise volumes from (1)𝑐−𝑑 , the
point-wise bond number densities 𝑁 | and 𝑛| are related as

𝐽 ∫𝑡

d𝑛| = ∫0

d𝑁 | and ∫𝑡

d𝑛| = 𝑗 ∫0

d𝑁 |

. (28)

Clearly, this relation is analogous to the relation between point-wise
densities in CCM. For the sake of simplicity, but without loss of gener-
ality, the material bond number double-density 𝜚|0 is taken as a constant
within the horizon 0 in the sequel.

3.1.3. Gradients of the relative spatial and material deformation maps
within the horizon

This section details the derivation of the relative gradients of the
relative spatial and material deformation maps 𝝊| and 𝜰 | , respectively,
i.e., the gradients of 𝝊| and 𝜰 | with respect to the relative material and
spatial placements 𝜩 | and 𝝃| , respectively, in the horizon. To abbreviate
terminology, these shall also be denoted as the horizon gradients. The
horizon gradients constitute crucial expressions in the formulation of
the pull-back and push-forward operations between the spatial and
material settings of the point-wise force balances derived in Section 3.3.

The relative material gradient of the relative spatial deformation, in
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short the horizon deformation gradient, is for example analogous to the
local deformation gradient in Eq. (1)𝑎, however in the geometry of the
horizon of a point.

The relative spatial deformation map 𝝊| = 𝒚| − 𝒚 (the bond vector
ointing from a point to its neighbour in the spatial configuration)
or a smooth deformation in 0 can be expressed via a Taylor series
xpansion by

|

= 1
1!

𝜕𝒚
𝜕𝑿

|

|

|

|𝑿
⋅𝜩 |

+ 1
2!

𝜕2𝒚
𝜕𝑿 ⊗ 𝜕𝑿

|

|

|

|𝑿
∶
[

𝜩 |

⊗ 𝜩 |

]

+ 1
3!

𝜕3𝒚
𝜕𝑿 ⊗ 𝜕𝑿 ⊗ 𝜕𝑿

|

|

|

|𝑿
⋅∶

[

𝜩 |

⊗ 𝜩 |

⊗ 𝜩 |

]

+⋯

= 1
1!
𝑭 ⋅ 𝜩 |

+ 1
2!
∇𝑿𝑭 ∶

[

𝜩 |

⊗ 𝜩 |

]

+ 1
3!
∇2
𝑿𝑭 ⋅∶

[

𝜩 |

⊗ 𝜩 |

⊗ 𝜩 |

]

+⋯ .

(29)

In the second step above, the Taylor series is written in terms of
the classical deformation gradient and its higher order gradients. The
material horizon gradient, i.e., the relative material gradient ∇𝜩|

of the
elative spatial deformation 𝝊| , yields the horizon deformation gradient
| as follows
|

= 𝜕𝝊|

𝜕𝜩 |

= 1
0!

𝜕𝒚
𝜕𝑿

|

|

|

|𝑿
+ 1
1!

𝜕2𝒚
𝜕𝑿 ⊗ 𝜕𝑿

|

|

|

|𝑿
⋅𝜩 |

+ 1
2!

𝜕3𝒚
𝜕𝑿 ⊗𝑿 ⊗𝑿

|

|

|

|𝑿
∶
[

𝜩 |

⊗ 𝜩 |

]

+⋯

= 1
0!
𝑭 + 1

1!
∇𝑿𝑭 ⋅ 𝜩 |

+ 1
2!
∇2
𝑿𝑭 ∶

[

𝜩 |

⊗ 𝜩 |

]

+⋯

=∶ 𝑭 + 𝑭⊙ .

(30)

The horizon deformation gradient decomposes into the local deforma-
tion gradient 𝑭 from (1)𝑎 and a contribution 𝑭⊙ capturing non-locality
due to the finite size of the horizon. Note that for the case where 𝛿0 → 0,
.e., the neighbourhood shrinks to zero, the local deformation gradient
n (1)𝑎 is recovered as 𝜱|

|𝛿0→0 = 𝑭 with 𝑭⊙
|𝛿0→0 = 𝟎.

Similarly, the relative material deformation map 𝜰 | = 𝒀 | − 𝒀 for a
smooth deformation in 𝑡 can be expressed in a Taylor series expansion
as

𝜰 |

= 1
1!

𝜕𝒀
𝜕𝒙

|

|

|

|𝒙
⋅𝝃|

+ 1
2!

𝜕2𝒀
𝜕𝒙⊗ 𝜕𝒙

|

|

|

|𝒙
∶
[

𝝃|

⊗ 𝝃|

]

+ 1
3!

𝜕3𝒀
𝜕𝒙⊗ 𝜕𝒙⊗ 𝜕𝒙

|

|

|

|𝒙
⋅∶

[

𝝃|

⊗ 𝝃|

⊗ 𝝃|

]

+⋯

= 1
1!
𝒇 ⋅ 𝝃|

+ 1
2!
∇𝒙𝒇 ∶

[

𝝃|

⊗ 𝝃|

]

+ 1
3!
∇2
𝒙𝒇 ⋅∶

[

𝝃|

⊗ 𝝃|

⊗ 𝝃|

]

+⋯ .

(31)

he spatial horizon gradient, i.e., the relative spatial gradient ∇𝝃| of 𝜰 | ,
esults in the horizon deformation gradient 𝝓| , given by

|

= 𝜕𝜰 |

𝜕𝝃|

= 1
0!

𝜕𝒀
𝜕𝒙

|

|

|

|𝒙
+ 1
1!

𝜕2𝒀
𝜕𝒙⊗ 𝜕𝒙

|

|

|

|𝒙
⋅𝝃|

+ 1
2!

𝜕3𝒀
𝜕𝒙⊗ 𝜕𝒙⊗ 𝜕𝒙

|

|

|

|𝒙
∶
[

𝝃|

⊗ 𝝃|

]

+⋯

= 1
0!
𝒇 + 1

1!
∇𝒙𝒇 ⋅ 𝝃|

+ 1
2!
∇2
𝒙𝒇 ∶

[

𝝃|

⊗ 𝝃|

]

+⋯

=∶ 𝒇 + 𝒇⊙ .

(32)

Note that for the case of vanishing horizon size 𝛿𝑡 → 0 the inverse
deformation gradient given in Eq. (1)𝑏 is recovered as 𝝓|

|𝛿𝑡→0 = 𝒇 with
𝒇⊙

|𝛿𝑡→0 = 𝟎.

3.2. Potential energy functional and its spatial and material variations

The potential energy of a body, and specifically the variation of this
energy, is the base from which both the spatial and material point-wise
force balances and subsequently the energy release upon configura-
tional changes can be explored. This section outlines various ways of
expressing the potential energy functional, the different variations of
these expressions and defines the resulting energy conjugate quantities.
Finally, by exploiting the property that the potential energy density
7

on the boundary of the horizon vanishes, some inferences relevant to
transforming spatial and material point-wise force balances are made.

3.2.1. Potential energy functional
In PD, the potential energy functional 𝐼 of a body can be expressed,

just like in CCM, in two versions by interchanging the role of field
and parameterisation, i.e., 𝐼 = 𝐼 (𝒚;𝑿) or 𝐼 = 𝐼 (𝒀 ;𝒙). For the
sake of presentation contributions to the external potential energy are
neglected in the sequel (i.e., external spatial forces are zero). In contrast
to CCM where the point-wise potential energy density per volume is
a local quantity, the point-wise potential energy density in PD is a
non-local quantity, i.e., it is expressed in terms of the integral of a
potential energy double-density over the horizon. In the sequel, the
potential energy double-density is expressed via the neighbour-wise
bond energy densities 𝑤|

0 and 𝑤|

𝑡 per lengths 𝛯 | and 𝜉| in the material
and spatial configurations, respectively. Thus the bond energy densities
are related by the bond stretches in Eqs. (22) and (24), i.e., 𝑤|

0 = 𝑤|

𝑡𝜆
|

and 𝑤|

𝑡 = 𝑤|

0𝛬
| . For the sake of simplicity, and to emphasise the

contribution of the non-local material body force which emerges as the
defining quantity for energy release in Section 3.2.2, the dependence
of the bond energy densities is furthermore restricted to 𝑤|

0 = 𝑤|

0(𝜆
| )

and 𝑤|

𝑡 = 𝑤|

𝑡(𝛬
| ). Thus, specifically, 𝑤|

0 ≠ 𝑤|

0 (𝑿) and 𝑤|

𝑡 ≠ 𝑤|

𝑡 (𝒀 ).
As a consequence, material body forces accounting for material inho-
mogeneities, analogous to Eqs. (7)–(8) in CCM, are neglected. Taken
together, the potential energy functional reads eventually as

𝐼 (𝒚;𝑿) = 1
2 ∫0

∫0

𝑤
|

0(𝜆
|

)𝛯
|d𝑁 |d𝑉 ,

𝐼 (𝒀 ;𝒙) = 1
2 ∫𝑡

∫𝑡

𝑤
|

𝑡(𝛬
|

)𝜉
|d𝑛|d𝑣 .

(33)

hese representations should be compared to the corresponding expres-
ions for the potential energy functional for the discrete atomistic case
n Eq. (14). Observe that by using Eq. (28), the point-wise potential
nergy densities in the material and spatial configuration are related by

∫𝑡

𝑤
|

𝑡 𝜉
|d𝑛| = ∫0

𝑤
|

0 𝛯
|d𝑁 |

,

∫0

𝑤
|

0 𝛯
|d𝑁 |

= ∫𝑡

𝑤
|

𝑡 𝜉
|d𝑛| .

(34)

emark 5. With the aid of the material and spatial bond number
ouble-densities 𝜚|0 and 𝜚|𝑡 in Eq. (27), the point-wise non-local potential
nergy density expressed as integrals over either 0 and 𝑡 in Eq. (33)

can alternatively be written, in a perhaps more familiar form, as
integrals over the horizon 0 or 𝑡 as

𝐼 (𝒚;𝑿) = 1
2 ∫0

∫0

𝑤
|

0(𝜆
|

)𝛯
|

𝜚
|

0d𝑉
|d𝑉 ,

𝐼 (𝒀 ;𝒙) = 1
2 ∫𝑡

∫𝑡

𝑤
|

𝑡(𝛬
|

)𝜉
|

𝜚
|

𝑡d𝑣
|d𝑣 .

(35)

ote that 𝑤|

0𝛯
| 𝜚|0 and 𝑤|

𝑡𝛯 𝜚|𝑡 are potential energy double-densities,
.e., densities per volume in the horizon and per volume in the body. In
he sequel this interchange of integrals over 0 and 𝑡 and integrals

over 0 and 𝑡 by involving the bond number double-densities is
erformed routinely and without further mention. □

.2.2. Spatial and material variations of the potential energy functional
In analogy to the process outlined in the preceding sections, a spatial

ariation of the potential energy functional 𝐼 (𝒚;𝑿) in Eq. (33)𝑎 renders
he stationary point D𝛿𝐼 (𝒚;𝑿) ≐ 0 as

𝛿𝐼 (𝒚;𝑿) = 1
2 ∫0

∫0

𝜕𝜆| 𝑤
|

0 𝒆
|

⋅ D𝛿𝝊
|d𝑁 |d𝑉

=∶ 1
2 ∫0

∫0

𝒑|

⋅ D𝛿𝝊
|d𝑁 |d𝑉

= − 𝒑| d𝑁 |

⋅ D𝛿𝒚 d𝑉 ≐ 0 ,

(36)
∫0
∫0



Mechanics of Materials 185 (2023) 104751P. Steinmann et al.

a
t

H
o
w
m
E
i
f

e

i

t
b
t
p
v
p
s
c
b
i
t

Fig. 6. Material and spatial bond-wise interaction forces depicted in their associated configurations and parameterisations.
nd yields the point-wise force balance (deformational equilibrium) as
he corresponding Euler–Lagrange equations:

− ∫0

𝒑|d𝑁 | = 𝟎 with 𝒑| ∶= 𝜕𝜆| 𝑤
|

0 𝒆
| . (37)

ere 𝒑| denotes the spatial bond-wise (Piola-type) interaction force
f unit [𝒑| ] = force/bond with integral over 0 rendering a point-
ise force density of unit force/m3. Note the similarity of its (signed)
agnitude 𝜕𝜆| 𝑤

|

0 with the definition of the Piola stress 𝑷 = 𝜕𝑭𝑈0 in
q. (5) and the definition of the atomistic spatial bond-wise (Piola-type)
nteraction force 𝑝𝛼𝛽 = 𝜕𝜆𝛼𝛽𝑊

𝛼𝛽
0 in Eq. (17). The expression for 𝒑| follows

rom application of the chain rule and the expression D𝛿𝜆
| = 1

𝛯 |

D𝛿𝜐
| =

1
𝛯 |

𝒆|

⋅ D𝛿𝝊
| .

Remark 6. The last step in Eq. (36) is motivated by the same procedure
as employed in discrete atomistic systems and thus follows a slightly
different rationale as put forward in Javili et al. (2019a). The key steps
are as follows: (i) express the integral over 0 by an integral over 0
by using d𝑁 | = 𝜚0

|d𝑉 | , ii) extend the resulting integral over 0 to an
integral over the entire body 0 due to the definition of the horizon, iii)
xpand the spatial variation of the spatial bond vector D𝛿𝝊

| = D𝛿𝒚
| −D𝛿𝒚

thereby resulting in two terms, iv) exchange the labelling of d𝑉 and
d𝑉 | in the first term and consider actio est reactio for the bond-wise
nteraction forces 𝒑 = −𝒑| , and (v) exchange the sequence of integrals

in the first term to finally assemble the result. □

Note that the bond-wise interaction force 𝒑| = 𝒑| (𝑿 | ;𝑿) is a spa-
ial quantity with material parameterisation, i.e., it is parameterised
y material placements 𝑿 | and 𝑿 as depicted in Fig. 6. Thus when
aking the integral over 0, all bonds (expressed in terms of their
oint-wise density per material unit volume) within the horizon are
isited as parameterised by their material placements. One can thus re-
arameterise the bond-wise interaction force 𝒑| = 𝒑| (𝑿 | ;𝑿) in terms of
patial placements 𝒙| and 𝒙 as 𝒔| = 𝒔| (𝒙| ;𝒙) ∶= 𝒑|

◦𝒀 (𝒙), see Fig. 6. As a
onsequence, the spatial variation of the potential energy functional can
e written equivalently in terms of the spatial bond-wise Cauchy-type
nteraction force 𝒔| = 𝒔| (𝒙| ;𝒙) (that is here introduced to PD for the first
8
ime) as
− ∫0
∫0

𝒑| d𝑁 |

⋅ D𝛿𝒚 d𝑉 = − ∫𝑡
∫𝑡

𝒔| d𝑛|

⋅ D𝛿𝒚 d𝑣

thus − ∫𝑡

𝒔|d𝑛| = 𝟎 .
(38)

Using the volume map from CCM (1)𝑑 and noticing that the inner
integrals in the above are essentially the same point-wise force density
expressed either per material unit volume in 0 or per spatial unit
volume in 𝑡, a Piola-type transformation of the resulting point-wise
force density can be identified as

𝑗 ∫0

𝒑|d𝑁 | = ∫𝑡

𝒔|d𝑛| with 𝒔| ∶= 𝒑|

◦𝒀 (𝒙) . (39)

Note that different to the Piola transform for second-order tensors that
involves the cofactor of the deformation gradient, for the point-wise
vectorial force densities only the Jacobian is involved.

If the potential energy functional 𝐼 (𝒀 ;𝒙) is alternatively parame-
terised in 𝒙 as in Eq. (35)𝑏 its material variation d𝛿 can be considered,
resulting in a release of potential energy  ≤ 0, that is

d𝛿𝐼 (𝒀 ;𝒙) = 1
2 ∫𝑡

∫𝑡

𝜕𝛬| 𝑤|

𝑡 𝑬
|

⋅ d𝛿𝜰
|d𝑛|d𝑣

=∶ 1
2 ∫𝑡

∫𝑡

𝑷 |

⋅ d𝛿𝜰
|d𝑛|d𝑣 = −∫𝑡

∫𝑡

𝑷 | d𝑛|

⋅ d𝛿𝒀 d𝑣

=∶ ∫𝑡

𝑩⊙
𝑡 ⋅ d𝛿𝒀 d𝑣 =∶  ≤ 0 .

(40)

Here, 𝑷 | and 𝑩⊙
𝑡 , respectively denote the material bond-wise Piola-type

interaction force and the resulting material point-wise force density
that are power conjugated to configurational changes of the material
positions d𝛿𝒀 of the physical points constituting the body, that is

− ∫𝑡

𝑷 | d𝑛| =∶ 𝑩⊙
𝑡 with 𝑷 | ∶= 𝜕𝛬| 𝑤|

𝑡 𝑬
| . (41)

An equivalent expression for the material variation of the potential
energy functional with material parameterisation can be written in
terms of the material bond-wise Eshelby-type interaction force 𝑺 | =
𝑺 | (𝑿 | ;𝑿) ∶= 𝑷 |

◦𝒚(𝑿) as

−∫𝑡
∫𝑡

𝑷 | d𝑛|

⋅ d𝛿𝒀 d𝑣 = − ∫0
∫0

𝑺 | d𝑁 |

⋅ d𝛿𝒀 d𝑉

thus − 𝑺 |d𝑁 | =∶ 𝑩⊙
0 .

(42)
∫0
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Recalling that 𝑩⊙
0 and 𝑩⊙

𝑡 denote the same point-wise force density
xpressed either per material unit volume in 0 or per spatial unit
olume in 𝑡, respectively, a Piola-type transformation of the resulting
oint-wise force density can finally be identified as

∫𝑡

𝑷 |d𝑛| = ∫0

𝑺 |d𝑁 | with 𝑺 | ∶= 𝑷 |

◦𝒚(𝑿) . (43)

.2.3. Energy–momentum format of spatial and material bond-wise inter-
ction forces

The spatial bond-wise Cauchy-type interaction force 𝒔| can also be
ritten in energy–momentum format in terms of 𝑤|

𝑡 using the fact that
| and 𝒑| are essentially the same measure parameterised in either 𝒙 or
, respectively, together with the product and chain rule

| (𝒙| ;𝒙) ∶= 𝒑|

◦𝒀 (𝒙) =
[

𝑤|

𝑡 − 𝛬|𝜕𝛬| 𝑤𝑡
|

]

𝒆|

⇒ 𝒔| = 𝑤|

𝑡 𝒆
| − f| t ⋅ 𝑷 | . (44)

ere the presentation in terms of 𝑷 | and f| is due to Eq. (41)𝑏 and
he abbreviation in Eq. (26). Note that this format for 𝒔| compares
avourably to the energy–momentum format of the Cauchy stress 𝝈 in

CCM.
Likewise, the material bond-wise Eshelby-type interaction force 𝑺 |

an also be written in energy–momentum format in terms of 𝑤|

0 using
he fact that 𝑺 | and 𝑷 | are essentially the same measure parameterised
n either 𝑿 or 𝒙, respectively, together with the product and chain rule
|

(𝑿 |

;𝑿)∶= 𝑷 |

◦𝒚(𝑿) =
[

𝑤
|

0− 𝜆
|

𝜕𝜆|𝑤0
|

]

𝑬 |

⇒𝑺 |

=𝑤
|

0 𝑬
|

−F
| t ⋅ 𝒑|

. (45)

Here the presentation in terms of 𝒑| and F| is due to Eq. (37)𝑏 and the
abbreviation in Eq. (25). Note that this format for 𝑺 | is comparable to
the energy–momentum format of the Eshelby stress 𝜮 in CCM (9).

3.3. Relating spatial and material point-wise force densities

With the aim of determining a relation between spatial and material
point-wise force densities, the Gauss theorem on the horizon is con-
sidered. The integral on the boundary of the horizon of an arbitrary
density 𝑢|0 can be expressed using the Gauss theorem by

∫𝜕0

𝑢
|

0d𝑨
|

= ∫0

Div𝛯|
(𝑢

|

0 𝑰)d𝑉 |

= ∫0

∇𝛯|
𝑢
|

0 d𝑉 |

, (46)

where ∇𝛯|
is the gradient with respect to the relative coordinates of the

horizon in the material configuration, i.e., the material horizon gradient.
Recall that in PD the bond-wise interactions between points are re-

stricted to a finite neighbourhood 0. In other words, the contributions
to the potential energy are zero from points outside 0, i.e., the bond
energy density per length 𝑤0

| is zero on 𝜕0 (the decay to zero on
𝜕0 is assumed smooth but may otherwise be arbitrarily abrupt). With
this, applying the Gauss theorem to the integral of the potential energy
double-density on the boundary of the horizon renders

∫𝜕0

[

𝑤
|

0 𝛯
|

𝜚
|

0

]

d𝑨|

= ∫0

∇𝛯|

(

𝑤
|

0 𝛯
|

)

d𝑁 | ≡ 𝟎 . (47)

Here, the assumption that the material bond number double-density
is constant within the horizon, i.e., 𝜚|0 ≠ 𝜚|0(𝜩

| ), has directly been
incorporated into the second term. Recalling next that 𝑤|

0 = 𝑤|

0(𝜆
| ),

i.e., 𝑤|

0 ≠ 𝑤|

0(𝜩
| ), and noting that ∇𝛯|

𝛯 | = 𝑬 | , the material horizon
gradient of the bond-wise potential energy can be calculated using the
product and chain rules as

∇𝛯|

(

𝑤
|

0 𝛯
|

)

= 𝜕𝜆|𝑤0
|

∇𝛯|
𝜆
|

𝛯
|

+𝑤
|

0 𝑬
|

. (48)

The material horizon gradient in the first term on the RHS can
be further expanded using the product rule and the definition of the
horizon deformation gradient 𝜱| = 𝜕𝝊|∕𝜕𝜩 | in Eq. (30) as

∇
(

𝑤
|

𝛯
|

)

= 𝜕 𝑤
|

[

𝒆| ⋅𝜱|

− 𝜆
| 𝑬 |

]

+𝑤
| 𝑬 |

. (49)
9

𝛯| 0 𝜆| 0 0 b
Observing that 𝒑| as defined in Eq. (37) is contained in the first term,
expressing the second term with the neighbour-wise spatial secant map
F in Eq. (25) and then recognising the energy–momentum format of the
bond-wise Eshelby-type interaction force 𝑺 | in Eq. (45), the material
horizon gradient of the bond-wise potential energy is finally given by

∇𝛯|

(

𝑤
|

0 𝛯
|

)

= 𝒑|

⋅𝜱|

−Ft ⋅ 𝒑|

+𝑤
|

0 𝑬
|

= 𝒑|

⋅𝜱|

+ 𝑺 |

. (50)

Substituting this result back into Eq. (47) renders

∫0

𝑺 |d𝑁 |

= −∫0

𝒑|

⋅𝜱|d𝑁 |

= −𝑭 t ⋅ ∫0

𝒑|d𝑁 |

−

[

1
1! ∫0

𝒑|

⊗ 𝜩 |d𝑁 |

∶ ∇𝑿𝑭

+ 1
2! ∫0

𝒑|

⊗ 𝜩 |

⊗ 𝜩 |d𝑁 |

⋅ ∶ ∇2
𝑿𝑭 +⋯

]

=∶ −𝑭 t ⋅ ∫0

𝒑|d𝑁 |

− 𝑩⊙
0 .

(51)

bserve that the first term on the right-hand side is a local covariant
ransformation from the spatial to the material point-wise force density,
hereas the remaining terms, abbreviated as the material force density
⊙
0 , capture the contribution of non-locality via higher-order moments
f the bond-wise spatial interaction force 𝒑| and higher-order deforma-
ion gradients ∇1,2,…

𝑿 𝑭 . Collectively, these non-local terms disappear for
anishing horizon size 𝛿0 → 0 and/or a point-wise smooth deformation
ith vanishing higher-order deformation gradients ∇1,2,…

𝑿 𝑭 → 𝟎. The
on-local material body force density 𝑩⊙

0 arises from non-locality due
o the integrals over the horizon and is thus different from the material
nhomogeneity force density 𝑩0 in CCM that occurs due to the depen-
ence of the potential energy density on the material placement 𝑿. In
D an additional material inhomogeneity force density would arise if
he current assumption on the homogeneity of the bond-wise potential
nergy 𝑤|

0 ≠ 𝑤|

0(𝜩
| ) were relaxed.

In the same manner that the localised force balances in the dif-
erent settings in CCM are related through Piola transforms and pull-
ack/push-forward operations (see Fig. 2), the point-wise force bal-
nces in the different settings in PD can also be related through suitable
iola transforms (reducing here to a scaling by the Jacobian) and
ovariant pull-back/push-forward operations, i.e., by the transposed
ocal deformation gradient (see Fig. 7). Most of the contributions on
D are formulated in a Lagrangian framework, with a few recent works
hat investigate the updated Lagrangian or Eulerian approaches, see for
xample (Bergel and Li, 2016; Behzadinasab and Foster, 2020; Silling
t al., 2017; Menon and Song, 2022). One of the key features of this
ontribution is that it provides a unifying approach to consistently
elate the point-wise force balances in Lagrangian and Eulerian settings.

Finally, the energy release in Eq. (40) is rewritten as

∶= −∫0
∫0

𝑺 | d𝑁 |

⋅ d𝛿𝒀 d𝑉 = ∫0

𝑩⊙
0 ⋅ d𝛿𝒀 d𝑉 ≤ 0 . (52)

n contrast to CCM the energy release in PD is due to the non-local force
ensity 𝑩⊙

0 , which stems from the non-local pull-back operation acting
n 𝒑| (Eq. (51)1). The non-local material force density 𝑩⊙

0 vanishes
n the local limit 𝛿0 → 0, while retaining localised contributions at
oundaries and interfaces as in CCM.

emark 7. In Steinmann et al. (2011, 2021) the relation between
he spatial and material atom-wise forces was not explicitly given;
owever, conceptually its derivation would follow similar steps as in
he case of PD with integrals substituted by summations. The procedure
ill be detailed in a separate contribution. □

.4. Energy release at a crack tip

When considering a crack tip, the corresponding energy release can

e determined by considering the contribution of the non-local force
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Fig. 7. Transformations between equivalent point-wise force balance equations in PD.
Fig. 8. Crack tips are considered by cutting out a ball ℬ0 with radius 𝑟0 and letting
it tend to zero.

density 𝑩⊙
0 within a ball ℬ0 with radius 𝑟0 containing the crack tip and

letting the radius of the ball shrink to zero, that is

crack = − lim
𝑟0→0∫ℬ0

∫0

𝑺 | d𝑁 |

⋅ d𝛿𝒀 d𝑉

= −∫0

lim
𝑟0→0∫ℬ0

𝑺 |

⋅ d𝛿𝒀 d𝑉 d𝑁 |

= −∫0

𝑺 |

|

|

|𝑟0=0
d𝑁 |

⋅ d𝛿𝒀
|

|

|𝑟0=0

∶= −∫0

𝑱 | d𝑁 |

⋅ d𝛿𝒀
|

|

|𝑟0=0
= −𝑱⊙ ⋅ d𝛿𝒀

|

|

|𝑟0=0
.

(53)

Here 𝑱 | ∶= 𝑺 |
|

|

|𝑟0=0
refers to a neighbour-wise measure analogous to the

vectorial 𝑱 from classical fracture mechanics. The point-wise measure
𝑱⊙ ∶= ∫0

𝑱 | d𝑁 | corresponds to the vectorial version of the J-integral
from classical fracture mechanics and should be compared to Eq. (11)𝑏

𝑱⊙ =∶ ∫0

𝑺 |

|

|

|𝑟0=0
d𝑁 |

=∶ ∫0

𝑱 | d𝑁 |

. (54)

Here the non-locality stems from the fact that even though we let
the ball ℬ0 shrink to zero, the size of the neighbourhood remains
unchanged, i.e., there are contributions from all the neighbours within
 (see Fig. 8).
10

0

4. What can peridynamic configurational forces tell us?

The purpose of this section is to elucidate the theory developed
through a computational example, which, for the sake of demonstra-
tion, is restricted to two dimensions. These are devised to highlight
key features of configurational forces in PD. The pertinent results are
contrasted to their counterparts in CCM as obtained via the finite
element method (FEM). To this end, to allow for meaningful compar-
ison, bi-linear finite elements are used for CCM with their edge size
equal to the grid-spacing 𝐿 of the PD computations. The computational
domain is a unit square with a square hole at its centre, with an edge
size of 0.4. A uniform expansion of 1% is imposed via Dirichlet-type
boundary conditions on the outer boundary of the unit square. The
resulting configurational forces within the domain, and in particular
at the corners of the square hole, are computed and assessed. For
PD, additional boundary layers, with size proportional to 𝛿0∕𝐿, are
introduced in order to prescribe the displacement boundary conditions.
The domain is discretised with 20, 40, 100 and 200 divisions per side.
For PD, this gives grid points with 𝐿 = 0.05, 𝐿 = 0.025, 𝐿 = 0.01 and
𝐿 = 0.005, respectively, see Fig. 9. For the PD simulations 𝛿0∕𝐿 ≈ 3.
This gives the same number of integration points within the horizon,
hence the same numerical accuracy for the calculations within the
horizon. With 𝛿0∕𝐿 fixed, the influence of non-locality is studied by
varying the grid-spacing 𝐿 as a smaller 𝐿 implies a more local material
behaviour. The FEM simulations do not show a significant difference
when the number of elements is varied. This is expected as CCM is
a local formulation. By contrast, the PD simulations demonstrate the
non-local attributes of the underlying model with configurational forces
arising both on the boundary and in the interior of the domain. The
latter is absent in the FEM simulations of CCM.

The constitutive behaviour in CCM follows the model of classical
neo-Hookean hyper-elasticity with the potential energy density 𝑈0 per
volume in the material configurational given by

𝑈0 =
1
2 𝜇 [𝑭 ∶ 𝑭 − 2 − 2 log 𝐽 ]

+ 1
2 𝜆

[ 1
2 [𝐽

2 − 1] − log 𝐽
]

with 𝐽 ∶= Det𝑭 ,
(55)

where 𝜆 and 𝜇 are the first and second Lamé parameters, respectively.
To allow for direct comparison with bond-based PD in 2D, the material
parameters for CCM are selected to be 𝜇 = 𝜆 = 100 so as to recover
a Poisson ratio of 𝜈 = 1∕3. Note that the term 2D here refers to a
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Fig. 9. The discretisation and deformation of the unit square domain with a hole under an expansion of 1% prescribed on its external boundary. The deformation is magnified
20 times. Bi-linear finite elements are employed for FEM with their edge size equal to the grid-spacing 𝐿 of PD computations. The blur on the PD results is artificially added, for
the sake of a better illustration of the region as a continuous domain.

Fig. 10. The deformation of the unit square domain with a hole under an expansion of 1% prescribed on its external boundary, magnified 20 times. The arrows indicate the
configurational forces for FEM in the first row and for PD in the second row. The four columns correspond to the PD grid-spacing 𝐿 = 0.05, 𝐿 = 0.025, 𝐿 = 0.01 and 𝐿 = 0.005
from left to right and FEM computations employ bi-linear elements associated with the discretisation of their PD counterparts. For PD simulations 𝛿0∕𝐿 is fixed resulting in higher
non-locality when increasing the grid-spacing 𝐿. The configurational forces in FEM are nearly independent of the discretisation. However, for PD computations, via decreasing 𝐿
and thus 𝛿0 ≈ 3𝐿 from left to right, the non-locality decreases and the corresponding configurational forces are affected.
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Fig. 11. Energetically favoured configurational changes of the domain for FEM (left) and PD (right). In order to obtain these results, the reference domains are modified either
positively or negatively proportional to the configurational force vectors. The magnitude of the change in FEM is five times larger than its PD counterparts.
truly two-dimensional manifold in a two-dimensional space reminiscent
of surface elasticity theory, i.e., it is neither the degenerate three-
dimensional cases of plane-stress nor plane-strain. The neighbour-wise
bond energy density 𝑤|

0 per length 𝛯 | in the material configuration is
chosen to be a harmonic function given by

𝑤
|

0 =
1
2 𝐶

|

[𝜆
|

− 1]2 with 𝜆
|

∶= 𝜐|

𝛯 |

, (56)

where 𝐶 | is the neighbour-wise stiffness coefficient. Under infinitesimal
affine deformations, the energy density of CCM and PD match resulting
in the following relationships between their material parameters (see
Ekiz et al., 2022):

𝐶
|

= 24
𝜋 𝛿30

𝜇 ⇔ 𝜇 = 𝜆 =
𝜋 𝛿30
24

𝐶
|

. (57)

All the numerical examples are configured to exhibit small deforma-
tions such that both CCM and PD will follow a near-linear material
response to aid comparison.
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Fig. 10 shows the distribution of configurational forces within the
domain for each discretisation together with a magnified version of
a quarter of the domain in each case. The numerical results show
clearly that the distribution of configurational forces in FEM is almost
independent of the mesh size. Here the configurational forces are
concentrated at the corners and nearly vanish completely within the
domain, consistent with 𝑩0 = 𝟎. For PD, the configurational forces
in the domain correspond to 𝑩⊙

0 which capture the contribution of
non-locality via higher-order moments of 𝒑| and higher deformation
gradients. The PD computations differ further from those of FEM as the
discretisation of the domain impacts the results. The reason for this is
that the PD computations here have a fixed 𝛿0∕𝐿. A larger 𝐿 therefore
naturally results in a proportionally larger 𝛿0 which consequently in-
creases the degree of non-locality. Furthermore, the largest magnitude
of the configurational forces in PD are individually significantly smaller
than their FEM counterparts. However, their sum agrees with that
of FEM as the horizon size goes to zero. This is simply due to the
non-locality of the PD computations in the sense that the classical
concentration due to the ‘‘corner effect’’ is far less pronounced in the



Mechanics of Materials 185 (2023) 104751P. Steinmann et al.
case of PD as compared to FEM. Obviously, non-localities are absent
in these FEM computations and therefore, the results in the upper
half are more self-similar compared to their PD counterparts in the
lower half. Finally, for illustrative purposes, in Fig. 11 we modify
the reference domain either positively or negatively proportional to
the configurational force vectors to capture the energetically favoured
configurational changes so as to either release or consume energy
upon configurational changes. Both FEM and PD computations predict
similar configurational changes, especially near the corners.

The example could be modified to have a rigid inclusion rather
than a void in the centre. It is expected that for this extension the
configurational force would act in the opposite direction to that shown
here, as known from J-integral/energy release rate considerations for
rigid inclusion problems in elasticity (Wang et al., 1985; Bigoni et al.,
2008).

5. Summary and outlook

PD is a non-local continuum formulation combining concepts from
both atomistic and continuum mechanics. It is characterised by the ab-
sence of spatial derivatives in the expression of the point-wise internal
force density that results from an integration over the horizon rather
than from the divergence of a stress measure. Being free from spatial
derivatives has made PD popular for problems involving initiation
and propagation of discontinuities, such as cracks. This perception is
however somewhat deceptive since apparent crack initiation and sub-
sequent propagation in PD is due to a constitutive prescription allowing
the bond-wise interaction forces to decay with increasing elongation of
the bonds. Thus, as in atomistic mechanics, without further artificial
criteria for bond deletion, classical PD does not include irreversibility
or dissipation upon crack initiation and propagation and, therefore,
can at best describe monotonic loading situations. This situation is
not dissimilar to phase field modelling of cracks that also requires
additional irreversibility criteria to give it the flavour of a gradient
damage formulation. Our rational, and the motivation for the work
that has been presented, is that in a continuum body i) initiation of a
true crack always comes with an alteration of the topology describing
the geometry of the body, and (ii) propagation of a true crack is irre-
versible and comes with energy dissipation in the body, or, differently
expressed, energy release from the body. These important aspects of
crack initiation and propagation are jointly captured by configurational
changes, a notion that has been entirely absent in treatments of PD to
date.

This contribution addresses these deficiencies by laying the ground-
work for a rigorous formulation of configurational peridynamics. To
reconcile further the summation over neighbours in discrete atomistic
systems with the integration over the horizon in PD, the novel concept
of bond number double-density has been introduced. Using this con-
cept, spatial and material variations of the potential energy functional
result in the quasi-static localised force balances in spatial and material
setting. Interestingly, these can be related by non-local pull-back and
push-forward operations that degenerate in the local limit to the com-
mon covariant transformation with the deformation gradient of local
continuum mechanics. Our approach allows one to distinguish, for the
first time, between Piola-type and Cauchy-type versions of the common
bond-wise (spatial) interaction forces. Moreover, our approach has
introduced novel Piola-type and Cauchy-type versions of bond-wise
material interaction forces; remarkably, the latter in an Eshelby-type
energy–momentum format. Their horizon integral equilibrates with the
point-wise material body force density arising due to non-locality. The
non-local material body force density is directly responsible for the
energy release (or consumption) upon configurational changes in a PD
continuum. For the geometrically limiting case of a crack tip, a true PD
version of the celebrated J-integral of fracture mechanics taking into
account the non-locality of PD follows as the horizon integral of the
13

bond-wise material interaction forces evaluated at the crack tip.
This work provides the necessary configurational framework (tool-
box) to consider true cracks in PD with topology altering crack initia-
tion and irreversible, i.e., dissipative, crack propagation. Our illustra-
tion of the implications of configurational PD for a two-dimensional
problem with singular geometry clearly demonstrates that the compu-
tationally determined configurational forces in PD vary with the degree
of non-locality and can be used to determine, in a rational way, either
energy releasing or energy consuming configurational changes. We are
thus convinced that configurational peridynamics holds great promise
for treating problems with configurational changes such as true cracks
and other topology altering defects in a PD continuum.

In our forthcoming work we will extend the present configurational
peridynamics framework to the case of Continuum-Kinematics-Inspired
PD (CPD), i.e., from the here considered case of one neighbour in-
teractions to the general case including also two and three neighbour
interactions.
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