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Abstract: In recent years, high-throughput technologies have facilitated the widespread use of
metabolomics to identify biomarkers and targets for oral squamous cell carcinoma (OSCC). As a
result, the primary goal of this systematic review is to identify and evaluate metabolite biomarkers and
their pathways for OSCC that featured consistently across studies despite methodological variations.
Six electronic databases (Medline, Cochrane, Web of Science, CINAHL, ProQuest, and Embase) were
reviewed for the longitudinal studies involving OSCC patients and metabolic marker analysis (in
accordance with PRISMA 2020). The studies included ranged from the inception of metabolomics in
OSCC (i.e., 1 January 2007) to 30 April 2023. The included studies were then assessed for their quality
using the modified version of NIH quality assessment tool and QUADOMICS. Thirteen studies were
included after screening 2285 studies. The majority of the studies were from South Asian regions, and
metabolites were most frequently derived from saliva. Amino acids accounted for more than quarter
of the detected metabolites, with glutamate and methionine being the most prominent. The top
dysregulated metabolites indicated dysregulation of six significantly enriched pathways including
aminoacyl-tRNA biosynthesis, glutathione metabolism and arginine biosynthesis with the false
discovery rate (FDR) <0.05. Finally, this review highlights the potential of metabolomics for early
diagnosis and therapeutic targeting of OSCC. However, larger studies and standardized protocols
are needed to validate these findings and make them a clinical reality.

Keywords: OSCC; metabolomics; metabolites; oral cancer; biomarkers; cancer diagnosis

1. Introduction

Oral cancer is one of the most prevalent cancers in the head and neck region [1]. It
is the 6th most common cancer globally, with an incidence of around 377,713 new cases
reported in the year 2020 and a projected increase of over 40% by 2040 [2]. The most
surprising aspect of oral cancer is that, despite its development associated with modifiable
risk factors, and the oral cavity being the most accessible region for examination, it still
poses a challenge to the healthcare system with a 5-year survival rate of 20–40% [3–6].
The survival rate is due to the majority of oral cancer lesions being either undetectable in
earlier stages or only being presented to the clinician in advanced stages. Clinical studies
have shown that the survival rate of this malignancy can be improved to greater than
80%, if detected in stage 0 (carcinoma in situ) or even stage I [7,8]. Therefore, a reliable
and trustworthy diagnostic/adjunctive diagnostic tool such as molecular biomarkers are
required to predict oral malignancy in the precancer/earlier stage with the potential to
improve the treatment outcome and prognosis.

In recent years, it is well established that chromosomal instability at the genetic level,
exhibited as alterations or mutations, drives multistep carcinogenesis [9]. Furthermore, oral
mucosal damage is established at the genetic or epigenetic level long before it is manifested
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clinically or histologically [10]. As a result, addressing these molecular pathways and
discerning the mechanisms underpinning the development of oral cancer might provide a
strategy for mitigating the mortality and morbidity caused due to oral cancer. This argu-
ment has prompted extensive research to identify novel, sensitive and specific biomolecules
that may serve as a less-invasive diagnostic tool in predicting the risk of malignancy before
clinical and histological alterations occur [11].

In fact, recent technological advances have assisted in better identifying and character-
ising tumour biomarkers. One such biomedical advancement is the discipline of “OMICS”,
which comprises various thrust areas such as genomics, proteomics, transcriptomics, and
metabolomics [12]. For the past two-and-a-half decades, 75% of the research related to
this utilised either genomic or proteomic techniques, revolutionising decision-making in
targeted drug therapy and personalised medicine in cancer [13,14]. However, although
genomic and proteomic studies provide a thorough understanding of genotype and ex-
pressed phenotype, they do not fully represent the altering phenotype. Hence, it might
be preferable to examine the downstream changes occurring at metabolite levels to poten-
tially understand oral cancer better [15,16]. Metabolomics is one such rapidly developing
high-throughput method that is often used to identify the metabolites and quantify their
concentration present in a given sample at a snapshot of time [17–19].

The clinical literature on metabolomics and oral cancer is growing and the field of
metabolomics-based oral cancer research is a novel, complex, dynamic and moving land-
scape [17–19]. In recent years, the interest in oral cancer metabolomics is increasing and
has been applied in various dimensions of its research. Individual studies have identified a
panel of metabolite biomarkers that not only discriminated between OSCC from healthy
controls/OPMDs but also potentially paved the way to better understanding the pathophys-
iology of OSCC and tackling the huge challenge of its early-stage diagnosis [11,17,20–23].

However, most of the studies regarding OSCC metabolomics have smaller sample
sizes, which makes it difficult to validate their findings and establish generalisability across
various populations. Moreover, a growing number of authors over the last decade have
subsequently incorporated this evidence on the OSCC metabolomics as a descriptive and
subjective overview of the literature. However, there is a dearth of studies that reported
OSCC metabolomics in a systematic review approach. As a result, the overarching goal
of this study is to systematically identify and evaluate metabolite biomarkers for OSCC
that featured consistently across various metabolomic studies despite methodological
heterogeneity. This would ensure a comprehensive and adequate coverage of metabolic
biomarkers across a variety of study designs and encourage further oral cancer research
into better understanding the pathophysiological alterations occurring at molecular level
and identifying new metabolite biomarkers and a specific set of pathways.

2. Materials and Methods

This research was designed a priori in accordance with the updated guidelines for
systematic review provided by the PRISMA 2020 statement [24]. The detailed protocol was
registered on PROSPERO (CRD42022373177).

2.1. Research Question

The following focussed research question was formulated using PECOS structured
framework [25].

“Are there any common dysregulated metabolites (O) that distinguish adult patients
(P) with a confirmed diagnosis of OSCC (E) and healthy patients or OPMDs (C) regard-
less of the methodological heterogeneity across various metabolomic studies, which can
potentially aid in early diagnosis and prognosis of OSCC?”.

2.2. Search Strategy

A comprehensive and unique approach was implemented to search six electronic
databases, including Medline (Ovid), Embase, EBM Reviews, CINAHL, Web of Science
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and ProQuest. To search each of these databases, a unique search strategy based on the
combination of keywords paired with the Boolean operators “AND” and “OR” were
utilised (Supplementary Table S1). The search was conducted since the early adoption of
metabolomics in oral cancer, i.e., 2007 until 30 April 2023. The studies were collected and
stored in the Mendeley reference manager software version 1.19, followed by the identifica-
tion of duplicates using the same software [26]. Two independent authors implemented
the complete search method.

2.3. Study Inclusion and Exclusion Criteria

The detailed study selection criteria were presented according to the PECOS do-
mains [25] as outlined below:

2.3.1. Inclusion Criteria

• P (Participants): Adult patients (>18 years of age) from any geographic location, any
age or gender.

• E (Exposure): Patients with confirmed diagnosis of OSCC.
• C (Comparison): Difference in concentration of metabolites between OSCC and prede-

termined controls.
• O (Outcomes): Dysregulation of metabolite concentrations between the predetermined

study groups, which are reported as either mean ± standard deviation, fold change
concentration or log fold change concentration.

• S (Study Design): Human-based observational studies (case-control, cohort, or cross-
sectional) published since inception of OSCC metabolomics, i.e., January 2007 and
April 2023 that used a metabolomic technique to quantify metabolite concentration.

2.3.2. Exclusion Criteria

• Patients diagnosed with neoplasms other than OSCC either in the past or currently.
• Patients suffering from any reported chronic systemic illness or on medication for

the same.
• Patients with oral lesions due to associated dermatological diseases, infections, lo-

calised trauma, recurrent aphthous ulcers, and systemic conditions.
• Targeted metabolomic experiments that are used to validate and translate already

identified metabolites from hypothesis generating studies.
• Components other than metabolites as biomarkers such as genetic and protein.
• Animal or cell-based studies.
• Non-observational study designs such as case reports, conference proceedings, letters

to editor, reviews, and meta-analysis.
• Metabolites quantified other than in concentration such as field of appearance, reten-

tion time, m/z ratio, etc.
• Studies published before January 2007 or after April 2023.

2.4. Study Selection

Following the application of inclusion and exclusion criteria, study selection was
carried out in two stages by two independent reviewers using RAYYAN AI Systematic
Review automation tool version 1.1.0 [27]. The first stage includes screening titles and
abstracts in all electronic databases. Studies that matched the inclusion or had insufficient
data in abstracts were chosen for the next phase. In the next phase, the complete text of
the included studies from the initial phase was assessed to ascertain whether they met
all eligibility criteria. A snowballing of all included studies was utilised to assess any
references that were mistakenly omitted critically. During the entire study selection process,
when a consensus could not be reached, a third independent reviewer was consulted to
make a final decision. The complete text for each of the studies was used to make the
final decision.
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2.5. Data Extraction and Outcomes

Following study inclusion, the necessary information from the selected studies were
extracted by two independent reviewers and then tabulated. The key results that were
collected from the included studies were title, year published, country, author(s), sample
size (cases & controls), diagnosis, comparison (case vs. control), type of sample, sample
collection, handling, storage methods, metabolomic approach (targeted or untargeted),
metabolites detected, metabolite names standardised in MetaboAnalyst 5.0 [28] and their
concentrations (either as mean ± standard deviation, fold change concentration or log fold
change concentration), analytical methods used, and key results reported in the respective
studies. For those who reported metabolite concentrations as mean ± standard deviation,
fold change is calculated as case/control followed by logarithmic transformation.

Primary outcomes of the included studies were fold-change concentrations of the
metabolites between case and control (and/or) mean ± standard deviation concentration.
Following the identification of metabolites, the MetaboAnalyst 5.0 online platform was
used to identify these metabolites in databases such as The Human Metabolome Database
(HMDB) [29], Kyoto Encyclopaedia of Genes and Genomes (KEGG) [30], PubChem [31]
and Lipid maps [32]. Unidentified metabolites were not archived.

2.6. Data Synthesis

Given the heterogeneity of sample type, their collection, handling, storage and analyti-
cal methods used to evaluate their concentrations and limited availability of patient specific
raw data, it was pertinent to perform a systematic review without pooling data for metanal-
ysis following PRISMA and SWiM reporting guidelines. Hence, the included studies and
their results are presented in a systematic narrative format, beginning with an overview of
the quality assessment of the included studies and ending with a detailed description of
metabolites with a focus on the most featured metabolites and their dysregulated pathways.

2.7. Risk of Bias Assessment

In our study, the risk of bias and quality assessment of the included studies were
assessed by two reviewers and any disagreements were resolved through discussion. This
was evaluated using a modified version of the quality assessment tool for observational
cohort and cross-sectional studies by the NIH [33] and QUADOMICS tool [34], which is
specific to OMICS-based studies. To assess the quality of studies included in this systematic
review, we addressed 12 selected questions for each to assess methodological subheadings
used in metabolomic investigations. Each question is either answered ‘yes’, ‘no’ or ‘not
clear’. This tool is used only to assess a study’s internal quality but not to determine
individual study quality, as the cut-off for assessing individual study quality has not been
published by NIH or QUADOMICS.

2.8. Statistical Analysis

The included studies were pooled together with the primary outcomes such as metabo-
lite name, comparison order, log2 fold change in concentration or mean ± standard devia-
tion. The pooled data were then analysed for their differentially regulated metabolites using
R and visualised using ggplot2 in R-Studio and GraphPad Prism version 9. Furthermore,
the metabolite biomarkers that featured in at least two studies were analysed for their
pathway analysis using MetaboAnalyst 5.0. The hypergeometric enrichment method and
topology analysis based on relative-betweenness centrality were then performed using
the standard reference metabolome and KEGG pathway library. For a pathway to be
identified as significantly enriched, an adjusted p-value (false discovery rate, FDR) of less
than 0.05 was considered necessary.
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3. Results
3.1. Search Strategy and Study Selection

A total of 2285 records were retrieved after the identification phase, out of which
749 duplicate records were excluded from the initial screening. The remainder of the
1536 records were screened for their title and abstract, from which 1446 records were
excluded from the full-text assessment. Ninety records were sought for phase IV screening,
out of which 77 were excluded from inclusion because of their study design, targeted
approach, un-usability in data or unavailability of the full text. Finally, 13 studies were
included in the qualitative analysis. Because two of the studies included in this review had
the same group of participants, we used different sample groups from each study to avoid
any potential bias and ensure a wide range of metabolites [35,36]. Figure 1 depicts the
flowchart summarising the study identification, screening, eligibility and inclusion process.
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Figure 1. PRISMA flow diagram of search strategy and inclusion according to the PRISMA 2020
updated guidelines.

3.2. Study Characteristics

The characteristics of the 13 included studies are presented in Table 1. In brief, the
selected studies were published in the last seven years (2016–2022) and were conducted
largely (92%) in South Asian countries such as China, Japan, and India, followed by Brazil.
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Of the studies that reported age, sex and cancer staging, the OSCC group ranged in age
from 23 to 94 years, with 56% of them being male. The OSCC cohort was further evenly
distributed across all clinical cancer stages. Most of the research compared metabolomics
data between OSCC and healthy controls, while only a few studies compared OSCC
and OPMD to healthy controls. The bulk of the studies looked at metabolomic data in
saliva followed by serum, tissues and urine. Mass spectrometer (MS) based technologies
were the most widely employed analytical tools for quantifying the global metabolite
concentration in the samples. Finally, in terms of study design, all the studies included
used a case-control approach.

3.3. Risk of Bias and Quality Assessment

Secondly, we assessed the risk of bias and quality assessment findings obtained using
the modified version of the QUADOMICS tool. According to the quality assessment, all
of the included studies clearly outlined their research question and objectives with each,
and every sample representative of the disease researched. While only a minority of the
studies justified sample size (7.5%) and randomised the samples (7.5%), the bulk of them
detailed the type of sample (70%), its collection, handling, and storage (85%), pre-analytical
processing (85%), and the method used to quantify metabolites concentration (85%). Finally,
just under 90% of the samples included a detailed description of the statistical methodology
used to analyse the data shown in Figure 2 and Supplementary Table S2.
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Figure 2. Summary of quality assessment of included studies based on the modified version of
NIH quality assessment tool and QUADOMICS. The proportion of studies satisfying the criteria are
plotted on a scale of 100%.

3.4. Identification of Unique Metabolites

A total of 337 distinct metabolites were identified from the studies included. Among
these unique metabolites, 321 metabolites were differentially abundant between the OSCC
and healthy controls, and 21 metabolites classified OSCC from OPMD. One-third of the
obtained metabolites are organic acid derivatives (35%), followed by lipids (27%) and or-
ganic oxygen compounds (15%) on clustering into their super classes. On further clustering
into subclasses, amino acids form the majority followed by fatty acids and carbohydrates.
Figure 3 depicts the frequency of metabolite super classes and subclasses across 13 studies.
The frequency of metabolite superclass and subclass is detailed in Supplementary Table S3.
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Table 1. Detailed characteristics of the included studies.

Author/Year Country Cases/Controls Age
(Range)

Sex
(Male/Female)

Cancer
Staging

(I/II/III/IV)
Inclusion/Exclusion

Criteria for Cases
Sample

Type
Sample
Storage

Sample
Preparation

(Yes/No)
Analytical Methods

De Sa Alves.,
(2021) [37] Brazil 27 OSCC/41

Healthy controls

OSCC: 57 ± 13.87
Healthy Controls:

57.34 ± 11.66
[mean ± SD] (28–88)

OSCC:19/8
Healthy

controls: 21/20
4/4/6/13

IC: Patients aged 18 &
above with confirmed

diagnosis of OSCC.
EC: Patients diagnosed

with other cancers/have
undergone prior

treatment with surgery,
chemo/radio therapy

Saliva −80 ◦C Yes GC-MS

Enomoto et al.,
(2018) [38] Japan

48 OSCC/29
other oral
diseases

OSCC: 66.3
Other oral diseases:

60.3 [mean]

OSCC: 25/23
Other oral

diseases: 15/14
9/10/11/18

IC: Confirmed OSCC
EC: History of malignant

tumour, metabolic
disease, or

endocrine disease

Serum −80 ◦C Yes GC-MS

Ishikawa et al.,
(2016) [35] Japan 24 OC/44

Healthy controls

OC: 72 (23–94)
Healthy controls: 68

(21–90) [median]

OC: 14/10
Healthy

controls: 16/28
5/6/8/5 Not reported Saliva, Tissue −80 ◦C Yes CE-TOFMS

Ishikawa et al.,
(2017) [36] Japan 22 OSCC/44

Healthy controls

OSCC: 72 (23–94)
Healthy controls: 68

(21–90) [median]

OSCC: 12/10
Healthy

controls: 16/28
3/6/8/5

IC: None of the OSCC
patients received prior
chemo/radio treatment.

EC: History of
malignancies or

autoimmune disorders

Saliva −80 ◦C Yes CE-TOFMS

Ishikawa et al.,
(2018) [39] Japan

6 OSCC, 10
OED/32
PSOML

OSCC: 63.5 (49–83)
OED: 69 (57–81)

PSOML: 62.5
(21–86) [median]

OSCC: 6/0
OED: 6/4

PSOML: 21/11
NR

IC: Pathologically
confirmed OSCC, OED

and OELP.
EC: Prior

chemo/radio therapy

Saliva −80 ◦C Yes CE-TOFMS

Ishikawa et al.,
(2019) [40] Japan 34 OSCC/

26 OLP
OSCC: 70.5 (29–87)

OLP: 67.5
(34–98) [median]

OSCC: 20/14
OLP: 5/21 14/9/2/9

IC: Pathologically
confirmed OSCC, OLP.

EC: Prior
chemo/radio therapy

Saliva −80 ◦C Yes CE-TOFMS

Li et al.,
(2022) [23] China

72 OSCC,75
OELP/47

Healthy controls

OSCC: 66 ± 12
OELP: 61 ± 7

Healthy controls:
65 ± 9 [mean ± SD]

OSCC: 35/37
OELP: 38/37

Healthy
controls: 23/24

17/21/19/14
Unknown: 1

IC: Pathologically
confirmed OSCC, OELP
confirmed as per WHO

diagnostic criteria of
lichen planus.

EC: No
released/refractory
OSCC/OELP, free

from chronic
systemic diseases

Serum −80 ◦C Yes UHPLC-Q-Orbitrap
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Table 1. Cont.

Author/Year Country Cases/Controls Age
(Range)

Sex
(Male/Female)

Cancer
Staging

(I/II/III/IV)
Inclusion/Exclusion

Criteria for Cases
Sample

Type
Sample
Storage

Sample
Preparation

(Yes/No)
Analytical Methods

Song et al.,
(2019) [22] China

125 OSCC, 124
PML/124

Healthy controls

OSCC: 35–65
PML: 35–65

Healthy controls:
30–60

OSCC: 65/60
PML: 64/60

Healthy
controls: 64/60

29/40/23/33

IC: Histologically
confirmed OSCC, PML.

EC: Prior
chemo/radio therapy

Saliva −80 ◦C Yes CPSI-MS coupled
with ML

Sridharan et al.,
(2019) [41] India

22 OSCC, 21
OLK/18

Healthy controls

OSCC: 43
OLK: 48

Healthy controls: 32
[median]

OSCC:
81.9%/18.1%

OLK:
90.5%/9.5%

Healthy
controls:

66.7%/33.3%

NR

IC: OSCC: clinical and
histopathological

confirmed OSCC; OLK:
clinically

diagnosed OLK.
EC: history of systemic
illness and medications;

history of therapy for
OLK and OSCC and

with recurrent
oral lesions.

Saliva −80 ◦C Yes UPLC-QTOFMS

Syed et al.,
(2016) [42] Pakistan

21 OSCC, 15
OSF/15 Healthy

controls
NR NR NR

IC: Clinically confirmed
OSCC and OSF.

EC: Prior therapy and in
either remission or

relapse stage.

Tissue −80 ◦C Yes GC-MS

Tsai et al.,
(2020) [43] Taiwan

110 OSCC
(37 normal

tissue,
36 tumour

tissue,
44 plasma,
98 urine)

52.4 (28–79) [median] NR NR

IC: Oral cavity cancers
EC: Any other

tumours including
oropharyngeal cancers

Tumour tissue,
plasma & urine −80 ◦C Yes NMR

Yang et al.,
(2020) [44] China 8 OSCC/8

Healthy controls NR NR NR Not Reported Tumour tissue −80 ◦C Yes GC-MS

Yang et al.,
(2021) [20] China 578 OSCC/241

Healthy controls NR NR NR
IC: Histopathological

confirmed OSCC.
EC: Not reported.

Serum −80 ◦C Yes CPSI-MS

OSCC: Oral squamous cell carcinoma, OELP: Oral erosive leukoplakia, PML: Premalignant lesion, OLK: Oral leukoplakia, OSF: Oral sub-mucous fibrosis, IC: Inclusion criteria,
EC: Exclusion criteria, GC: Gas chromatography, LC: Liquid chromatography, MS: Mass spectrometer, CE: Capillary electrophoresis, NMR: Nuclear magnetic resonance, CPSI: Conductive
polymer spray ionisation, UHPLC: Ultra-high performance liquid chromatography, UPLC-QTOF-MS: Ultra Performance Liquid Chromatography coupled to a hybrid quadrupole
orthogonal time of flight mass spectrometer, TOF: Time of flight, ML: Machine learning, CE-TOF/MS: Capillary electrophoresis time-of-flight mass spectrometry, SD: Standard deviation,
NR: Not reported in the original publication.
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Figure 3. Stacked bar graph depicting the frequency of super-classes and sub-classes of distinct
metabolites in various studies that reported metabolomics data of oral cancer (OSCC). The outer scale
determines the percentage of metabolites, whereas inner numeric signifies the frequency. Different
colours signify different metabolite super-classes and sub-classes.

3.5. Identification of Differentially Regulated Metabolites

Next, out of the deduced 337 unique metabolites, 14 differentially regulated metabo-
lites were identified to be cited in at least five studies. On plotting the log2 fold change
concentration of these metabolites as shown in Figure 4, we found that compared to
healthy controls/OPMDs, most of the metabolites were upregulated in OSCC. An amino
acid L-glutamic acid is the most featured metabolite, which appeared across six out
of 13 included studies [22,23,35,36,42,43]. Glutamine was followed by another amino
acids, L-methionine [22,35–38] and L-leucine [22,23,35,36,43] both of which were found
to be upregulated in five studies respectively. Likewise, purine derivatives hypoxan-
thine [22,23,35,36,38] and guanosine [22,23,35,36,43] reported to be upregulated in five
studies. Moreover, on further classifying the metabolites downregulated, we found that
L-acetyl carnitine and Ornithine [22,37,38,42] are the two most downregulated metabolites
reported in four studies (Figure 5).
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Figure 4. Heatmap depicting the comparison of log2 fold change of top featured metabolites in OSCC
and OPMD across different studies and their samples [20,22,23,35–44]. The heatmap is faceted into
two groups according to the comparison. Each row signifies log2 fold change of metabolite and
are displayed as colours ranging from blue (highest concentration) to brown (least concentration)
as shown in the legend, whereas each column signifies the study in which they are featured. The
unfeatured metabolites are valued at ‘0’. The legend signifies the log2 fold change concentration of
various metabolites. * Saliva, ** Tissue, *** Healthy vs. OC group 3.
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Figure 5. Bar graph depicting the frequency of top upregulated and downregulated metabolites
in 13 studies that reported metabolomics data of oral cancer (OSCC). L-glutamic acid was the top
upregulated metabolite which had six hits out of 13 studies. Blue coloured bar signifies metabolites of
amino acids and their analogues, whereas the yellow coloured bar relates to non-amino acid classes.

3.6. Pathway Analysis of Top Featured Metabolites

Finally, we extracted 100 distinct metabolites from the included studies that were found
to be dysregulated in more than one study. These metabolite candidates were submitted to
the MetaboAnalyst 5.0 for pathway enrichment analysis. As shown in Figure 6, the pathway
enrichment analysis demonstrated six dysregulated metabolic pathways with FDR < 0.05,
including aminoacyl-tRNA biosynthesis (17/48 hits, Impact 0.49), glutathione metabolism
(6/28 hits, Impact 0.67), arginine metabolism (8/14 hits, Impact 0.51), leucine, isoleucine and
valine metabolism (4/8 hits, Impact 0.62), purine metabolism (10/65 hits, Impact 0.46), and
serine and glycine metabolism (7/33 hits, Impact 0.53). Further information on the extracted
metabolites and their enriched pathways can be found in the Supplementary Table S3.
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Figure 6. A scatter bubble graph illustrating the pathway analysis based on hypergeometric en-
richment method of top 100 significantly dysregulated metabolites in OSCC. The y-axis depicts the
log10 of p-value, while the x-axis represents the pathway impact values evaluated from the topol-
ogy analysis; the circular node colour is determined by its p-value with red being most significant,
and circular node size is determined by the pathway impact values. The most significantly altered
pathways (FDR < 0.05) have a high log-(p) value as well as a high impact value (top right region).
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4. Discussion

The central objective of this systematic review was to identify possible metabolite
candidate biomarkers and their dysregulated pathways from various metabolomic studies
on OSCC. Hence, in this systematic review, we screened 1536 research publications and
identified 13 of them that met our selection criteria for quantitative analysis.

In general, the majority of the research on oral cancer metabolomics originated from
the South Asian region, which accounts for more than 2/3rd of the OSCC case load world-
wide [2]. This is because of the distinct cultural behaviours such as betel nut chewing, as
well as varying patterns of alcohol and tobacco usage, both of which are designated as
substantial risk factors for development of OSCC [45]. Saliva has been the sample of choice,
followed by sera and tissue to capture the metabolomic picture of OSCC. This can be accred-
ited to saliva’s ease of collection and proximity to the OSCC lesions [46,47]. Furthermore,
compared to NMR, MS based (GC-MS, LC-MS & CPSI-MS) analytical technologies are
most employed, owing to their low sample volume and potential to detect a broad range of
metabolites. This also led us to observe no observable differences between the metabolites
identified using these techniques. As the majority of the studies included did not offer raw
data, rather they reported the fold change or mean and standard deviation of statistically
significant metabolites, we integrated and analysed the latter.

4.1. Identification of Metabolite Candidate Biomarkers

The pooled data revealed 337 distinct metabolites. Lack of methodological homogene-
ity resulted in such a broad range of metabolites. One-third of the metabolites identified
belong to the class of amino acids, the building block of proteins. This can be attributed to
greater need for protein synthesis, owing to rapid cellular proliferation [48,49]. L-glutamic
acid also known as glutamate (6/13 hits) followed by L-methionine (5/13 hits) were the
most reported metabolites and amino acids across different studies. glutamate is known
to be the primary nutrient source of tumours, which replenishes the TCA cycle via alpha
ketoglutarate to synthesise citrate and fatty acids [50]. Furthermore, the nutritionally and
oxygen deprived tumour microenvironment frequently relies on glutamine catabolism
for energy and protein synthesis. Glutamate, the initial product of glutamine catabolism
catalysed by glutaminase enzyme fuels the glucose-independent TCA cycle in a nutrient
deprived tumour microenvironment [51]. Moreover, multiple studies have confirmed the
enzyme glutaminase which converts glutamine to glutamate is over expressed in OSCC for
their increased energy and proliferation needs and that its expression is correlated to poor
prognosis in OSCC patients [52–55]. Next, considering L-Methionine, the primary methyl
donor, contributes to initiation and progression of OSCC via epigenetic modifications
like DNA hyper/hypo-methylation and histone modifications [56,57]. A study reported
that tumour cells utilise methionine as a substrate to induce abnormal methylation in the
tumour promoter region of the tumour suppressor gene to promote tumorigenesis and
cancer development [58]. Taken together OSCC exhibits abnormally increased metabolism
and absorption of certain amino acids. This is to help cancer cells survive and proliferate
unhindered in the face of nutritional, genotoxic and oxidative stresses.

Not only amino acids but also purine derivatives like hypoxanthine and nucleosides
like guanosine were upregulated in OSCC patients across different studies. This upregu-
lation has been linked to increased demand for nucleotides that support nucleic acid and
protein synthesis during cellular proliferation [59,60]. Hence in order to sustain increased
cell growth and proliferation, tumour cells tend to replenish purine and nucleoside pool,
which is correlated to the up regulated levels of purines and nucleosides [61].

In addition to amino acids and purines, many studies included in our systematic
review reported down regulation of glucose and up regulation of lactic acid across three
and four studies in the OSCC group respectively. This is indicative of the universal
phenomena of cancer, the Warburg effect, where tumour cells increase the rate of glucose
uptake (up to 20 times) and preferential production of lactic acid instead of breaking it
down to CO2, even in the presence of oxygen [62]. Similarly, branched chain amino acids
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(BCAA) like valine and leucine are also upregulated across four different studies in OSCC
patients. In recent years, it has become evident that various tumours uptake BCAA and
oxidise them into acetyl-CoA, which then enters the TCA cycle to produce energy [63,64].

4.2. Identification of Significantly Enriched Pathways

Pathway enrichment analysis is a commonly used method to identify biological
pathways that are enriched in a set of differentially regulated metabolites. This analysis has
demonstrated the most influential pathways in the overall metabolic profile, which were
identified as aminoacyl-tRNA biosynthesis, arginine biosynthesis, glutathione metabolism,
purine metabolism, BCAA metabolism, and glycine and serine metabolism.

Firstly, Aminoacyl-tRNA synthesis (aaRSs) is known to play a fundamental role in the
upkeep of proteins, primarily through loading of amino acids to tRNAs; hence, it is essential
for the maintenance of cellular equilibrium and normal bodily functions [65,66]. Interest-
ingly, in disease states such as cancer, there is evidence to suggest that Aminoacyl-tRNA
synthases (ARSs) are involved in a variety of biological processes such as the regulation of
inflammatory, immunological and apoptotic processes, as well as angiogenesis [67]. Recent
studies have revealed their role in oncogenesis through the regulation of cell apoptosis,
alteration of the tumour microenvironment and the promotion of PMN migration [68,69].

However, Arginine, a conditionally essential amino acid during cancer cell growth
and development, is involved in a number of metabolic pathways, including the urea cycle,
glycolysis and the pentose phosphate pathway [70]. It has been proposed that arginine syn-
thesis is upregulated in cancer cells compared to normal cells, and its increased availability
provides a metabolic advantage for cancer cells, allowing them to proliferate more quickly
and evade apoptosis [70,71]. Several studies have found that the upregulation of arginine
synthesis is linked to the increased demand for cellular components such as citrulline, nitric
oxide and numerous polyamines during cancer cell proliferation causing the cancer cells to
become auxotrophic to arginine, deregulating both its anabolism and catabolism [71–74].
This is because citrulline is the precursor of arginine in the urea cycle, whereas arginine
is the precursor molecule for nitric oxide (NO) and polyamines [75,76]. Thus, dysregula-
tion of metabolic pathways, including aaRS and arginine synthesis, can be attributed to
tumorigenesis as well as to increased tumour growth, angiogenesis and metastasis.

In addition, to keep pace with the heightened proliferation of cancer cells and tu-
mour growth, there is a need for more of the basic components such as proteins, nucleic
acids and nucleotides, as well as additional energy [49,77]. For this metabolic pathway
such as purine metabolism, BCAA metabolism, and glycine and serine metabolism are
overexpressed to mitigate these needs. BCAAs include essential amino acids like leucine,
valine and isoleucine. Cancer cells preferentially uptake BCAAs and either degrade them
for protein synthesis or use them as a substrate in conversion of α-ketoglutarate to gluta-
mate; they serve as an indirect source of nitrogen for nucleotide biosynthesis and become
further catabolised to yield acetyl-CoA and succinyl-CoA that feed into the TCA cycle to
contribute to energy production [63,78]. Moreover, it has also become evident in recent
years that enzymes catalysing this degradation are overexpressed in various cancers, in-
cluding pancreatic cancer and small-lung cell adenocarcinoma [78,79]. Similar to BCAAs,
serine and glycine metabolism also play an important role in cancer progression by aiding
in nucleotide synthesis and DNA methylation, but by acting as a source of one carbon
donor [63,80]. Moreover, studies have shown that serine and glycine starvation inhib-
ited the proliferation of cancer cells in in vitro and tumour growth in in vivo [80–82]. In
addition to pathways related to amino acids, purines and their enzymes involved in the
purine biosynthesis pathway are increased in tumours because purine nucleotides are
critical for tumour cell growth [61]. This is because the three metabolites involved in this
metabolic pathway, hypoxanthine, xanthine, and uric acid, are elevated by cancer cells to
promote nucleic acid production, which substantiates the accelerated cancer cell growth
and proliferation [83]. Altogether, dysregulation of BCAA and non-essential amino acid
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metabolism as well as purine metabolism are essential for the upregulated synthesis of
essential cellular components and energy.

In the end, for cancer progression, the ability to survive and resist treatment are just
as essential as increased growth and development. Glutathione, which is an antioxidant
produced by our body, is responsible for this, taking part in various cellular activities such
as detoxification and keeping cells in a balanced reduction-oxidation state [84]. Numerous
studies on various malignancies, however, have found that glutathione metabolism is
connected to carcinogenesis and progression by involving in the regulation of autophagy
in cancer cells, which is important for the maintenance of cancer cell survival [85,86]. In
addition, a rise in glutathione expression promotes antioxidant mechanisms and several
oncogenic pathways, such as the PI3K/Akt/mTOR and NF-κB pathways, as well as modu-
lating the apoptotic mechanisms in cancer cells, making them more resistant to oxidative
stress and apoptosis [87]. Thus, glutathione metabolism is significant for the cancer’s
proliferation, survival and response to the treatment.

4.3. Limitations

This is, to the best of our knowledge, the first systematic review focusing on the
application of global metabolomics across various sample types and analytical methods
to identify several metabolites and their dysregulated pathways, which can distinguish
OSCC patients from healthy people, consistent with other cancer metabolomics-based
systematic reviews. However, its shortcomings primarily attributable to the methodology
of the included studies should be acknowledged as well.

First, most of the studies included scored poorly in factors such as sample size justifi-
cation and randomisation. Both can be attributed to the small sample sizes used in many
studies. Small sample size may also result in the diminished power of the study and the
lack of applicability of the results. Second, the majority of the studies considered did not
include raw data, but instead only selectively reported data, resulting in reporting bias
and the overlooking of potential metabolites. Even if raw data is available, there is little
information on how it is handled and filtered.

Third, results were not reproducible due to the opaque methodology and a lack of
validation of the reported metabolites. Next, many of the studies did not adequately
address the confounding risk factors associated with OSCC, which makes it difficult to
understand how these risk factors might potentially modulate the expression of some
metabolites and their pathways. Finally, despite the stricter inclusion criteria, there was
heterogeneity in the sample type, OSCC lesion location and stage, sample collection,
processing and the analytical method employed. These factors significantly impact the
results and may be one of the leading factors for the inconsistencies in the metabolite
concentrations between studies.

5. Conclusions

For many years, early detection of OSCC has been a major challenge. However,
this could change with the emergence of the developing field of metabolomics. Despite
several limitations, this systematic review identified several metabolite biomarkers and
their associated dysregulated pathways that distinguished OSCC from healthy controls.
L-glutamic acid, L-methionine, hypoxanthine and Warburg effect metabolites (glucose and
lactic acid) were particularly promising.

Based on our systematic review and the challenges we encountered, we foresee the
need for improvement in validating the identified features in larger cohorts and standard-
izing the recommendations for sample preparation and data processing. This would allow
the future researchers to confirm the findings of previous studies and make it easier to
interpret and reproduce results and to develop clinical applications for metabolomics.
Finally, creating cost-effective, fast-paced analytical platforms and integrating them with
AI and ML can make the metabolomic approach a more reliable and useful tool for the
clinical diagnosis and treatment of OSCC.
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