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Abstract: Sampling groundwater quality monitoring wells is a costly and time
intensive process that incurs health and safety risks. Reducing the number of
wells whilst minimising information loss can greatly increase the sustainability
of long-term monitoring. Wells that provide redundant information can be iden-
tified by assessing their observations’ influence on statistical model estimates.
Well-based cross-validation (WBCV) could be used to obtain such a measure
of influence for each well, however, the associated computational cost renders
this option unfavourable. In this paper, we propose a method based on influ-
ence statistics of regression-based, groundwater solute concentration models, as
a computationally efficient, approximate alternative. The method, named well in-
fluence analysis (WIA), approximated WBCV results in a simulation study and
real groundwater contaminant observations with an average 77% and 73% accu-
racy respectively. WIA will be implemented in the ”well redundancy analysis”
feature of GWSDAT, an open-source software for the spatiotemporal modelling
of groundwater monitoring observations.

Keywords: Groundwater Monitoring; Groundwater Contamination; Statistical
Modelling; Spatiotemporal; Influence Statistics.

1 Introduction

The aim of groundwater quality monitoring during the remediation of con-
taminated sites is to understand the behaviour of the solutes of concern
by observing changes in their concentration levels at fixed sampling loca-
tions called wells. Spatiotemporal statistical models can be used to estimate
contaminant concentrations over spatial domains of interest using these
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2 Well Influence Analysis

observations. However, collecting and analysing samples from groundwater
monitoring wells is costly, time intensive and incurs health and safety risks.
Reducing sampling intensity whilst minimising the loss of information can
greatly increase the efficiency and sustainability of long-term groundwater
quality monitoring. Sampling intensity can be decreased by reducing the
number of sampling locations. In many cases, fewer wells can be sufficient
for supporting robust statistical models, provided they adequately capture
the spatiotemporal heterogeneity in solute concentrations. Therefore, the
choice of monitoring wells to omit from sampling is crucial, and should
be based on qualitative and quantitative analyses. A possible quantita-
tive approach using statistical models is assessing sampling wells based on
their observations’ impact on solute concentration estimates. Wells whose
data provide redundant information to the model, could be considered for
omission from future sampling campaigns. Feedback from users of the open-
source, spatiotemporal groundwater quality modelling software, GWSDAT
(Jones et al. 2014), highlighted the need for a tool to facilitate this well re-
dundancy analysis. Ranking wells by influence prior to testing the impact of
omitting one, aims to reduce the need for a trial-and-error approach. Assess-
ing well influence can be done iteratively, using well-based cross-validation
(WBCV). However, the computational cost associated with re-fitting the
model in each iteration makes this approach unfavorable. In this work, we
aim to show that for regression-based groundwater contamination models,
well influence analysis (WIA) could be a computationally efficient, approx-
imate alternative to the cross-validation-based method. WIA provides a
suggested sequence for omitting wells, by ranking them using influence
statistics commonly used in regression analysis. The proposed method was
tested in a simulation study and on real groundwater monitoring data.

2 Simulation Study

A simulation study (Radvanyi, 2023) was designed to analyse how closely
WIA approximated the cross-validation-based well influence rankings in
different scenarios, and to compare different influence statistics that could
be used for WIA. The simulation study was conducted using synthetic data
sets.

2.1 Synthetic Data

The synthetic data (McLean et al. 2019) contained coordinates, sampling
times and solute concentrations for three hypothetical contaminant plumes
of increasing complexity simulated using process based models (Figure 1).
15 % multiplicative random noise was applied to the data to mimic the
measurement errors of real groundwater observations. Samples were then
drawn at select times and coordinates to mimic sampling from monitoring
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wells. Nine monitoring network designs were created for each plume using
6, 12 and 24 wells with 3 well placement strategies. These strategies were
random, grid and expert, the latter implying knowledge of plume charac-
teristics, such as origin and groundwater flow direction. Each scenario ran
for 100 iterations.

FIGURE 1. Hypothetical plumes: simple (l), moderate (c) and complex (r).

2.2 Modelling Approach

Concentration estimates over the full spatial domain were obtained using
P-splines models, also used in GWSDAT (Evers et al. 2015). P-splines
(Eilers & Marx, 1996) are regression splines fitted by least-squares with a
roughness penalty. The P-splines model can be written as

yi =

m∑
j=1

bj(xi)αj + ϵi,

where yi, i = 1, 2, ...n, are the natural logarithm of the solute concen-
trations, xi are the corresponding coordinates and sampling times, bj ,
j = 1, 2, ...m, are B-spline basis functions, αj are the basis coefficients
and ϵi are errors, assumed to be independent with N(0, σ2).

2.3 Well-Based Cross-Validation

The baseline ranking of well influence on estimated solute concentrations
was computed via well-based cross-validation (WBCV; Evers et al. 2015).
WBCV is a form of leave-one-out cross-validation, where each well (and
hence associated observations) was removed sequentially and used as the
test set for a model trained on the remaining data. The well ranking was
given by the numerical order of corresponding root-mean-square errors
(RMSE) calculated by:

RMSEk =

√∑nk

l=1 (ykl − ŷkl)2

nk
,

where k = 1, .., w and w is the total number of wells, ykl is the l-th obser-
vation from the k-th well, ŷkl is the l-th fitted value and nk is the number
of observations.
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2.4 Well Influence Analysis

Different influence metrics were compared for approximating the WBCV
rankings. Cook’s distance (CD; Cook, 1977), which is a measure of the sum
of changes in regression estimates if an observation is deleted, produced the
most informative results. It can be expressed using leverages, which are the
diagonal elements of the projection matrix from the P-splines model:

CDi =
1

p
(rsi )

2 hii

1− hii
,

where p is the effective degrees of freedom, rsi is the standardised residual
and hii is the leverage of the i-th observation. The rankings were given by
the numerical orders of the median CD values for each well. The studied
influence metrics were originally derived for linear regression. Their appli-
cation in this case is supported by the fact that P-splines are analogous to
linear regression.

2.5 Assessing Performance

The performance of WIA was quantified by calculating the normalised dif-
ference score Dn, which indicated the total difference in well ranks between
WIA and WBCV. Dn is bounded by 0 ≤ Dn ≤ 1 with 0 meaning the rank-
ings were equivalent. Dn was calculated by

Dn =

∑w
i=1 |owbcv

i − oiai |
Dmax

,

where owbcv
k is the rank of the k-th well based on WBCV and oiak is its rank

based on WIA. The maximum difference between the two rankings, Dmax

is a function of the number of monitoring wells such that Dmax = w2

2 .

2.6 Results

The mean Dn for CD-based WIA was 0.23, which means that on average,
it approximated the baseline (WBCV) rankings with 77% accuracy. Figure
2 shows the results in the form of a boxplot categorised by scenario design
features. Mean Dn values increased with plume complexity from 0.20 to
0.27. The complex plume is also associated with the highest variance. The
monitoring well network design also seemed to play a role in the outcome
of the analysis. The results show that WIA has better performance if well
placement is done based on site characteristics as opposed to randomly or
in a grid pattern. In terms of the number of monitoring wells, the smallest
mean Dn results were obtained with 6 wells. However, this is most likely an
artifact related to fewer possible differences in well ranks between WIA and
the baseline. This effect also seems to disappear given a sufficient number
of wells, since there is little difference in results between 12 and 24 wells.
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FIGURE 2. Breakdown of mean normalised difference scores (Dn; 0 ≤ Dn ≤ 1)
by design attributes plume complexity, well placement and the number of wells.
A smaller Dn indicates a more accurate estimation of WBCV rankings by WIA.

3 Real Data Application

The comparison of WIA and WBCV was also performed on real groundwa-
ter contamination data from an undisclosed monitoring site. The data set
contained the concentrations of five contaminants in groundwater samples
from 32 monitoring wells collected over a 4 year period. The contaminants
were modelled separately. Table 1 shows the results of the analysis by con-
taminant.

TABLE 1. Breakdown of normalised difference scores (Dn; 0 ≤ Dn ≤ 1) by
contaminant from the groundwater monitoring data. A smaller value indicates a
more accurate estimation of WBCV ranking by WIA.

Contaminant Dn

Ethylbenzene 0.36
Toluene 0.25
Nitrate 0.18
Sulphate 0.23
TPH 0.32
Mean 0.27

The mean Dn was 0.27, which translated to an average of 73% accuracy in
comparison to WBCV. Just as in the simulation study, most of the devia-
tion in the WIA ranking compared to WBCV was due to an aggregation
of minor rank differences. This means that wells generally occupied similar
positions in both rankings.
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4 Conclusions

In conclusion, empirical evidence was presented to support the applica-
tion of influence statistics in the proposed context. WIA estimated WBCV
results with an average 77% and 73% accuracy in the simulation study
and real data examples respectively. These results were positive given the
aim and the approximate nature of the analysis. The simulation study also
showed that the monitoring network design and contaminant plume char-
acteristics also affect the accuracy of WIA. WBCV would be the preferred
ranking method, but it is computationally unfavorable because it requires
fitting w models for each well that is considered for omission from future
sampling campaigns. In contrast, WIA only requires a single model be-
fore each omission, which makes it a more efficient alternative to WBCV
for ranking wells by influence on solute concentration estimates. In other
words, there is trade-off between accuracy and computational efficiency, but
the results indicate that in this case, the gain in efficiency is greater than
the loss in accuracy. WIA is easy to implement in software built around
regression-based groundwater quality models, such as GWSDAT, and it
can help determine the sequence in which wells should be omitted during
well redundancy analysis.
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