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On lines of constant polarisation in structured light beams
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Abstract – We show that skyrmion field lines, constructed from the local Stokes parameters,
trace out lines of constant optical polarisation.
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Structured light beams are characterised by an engi-
neered spatial variation of amplitude, phase and polari-
sation [1–4]. Important examples of these include beams
carrying orbital angular momentum [5–9], helicity lat-
tices [10–15], and the vector vortex beams [16–19]. Some
of these beams, in particular those with spatially varying
polarisation, have been shown to exhibit skyrmionic struc-
ture [20,21]. Typically, these have a polarisation pattern
in the transverse plane that, at its centre, has one polar-
isation but at the outer reaches of the plane has the or-
thogonal polarisation. In general, all possible polarisations
appear at some point in this transverse plane in a winding
pattern, and skyrmions are characterised by a correspond-
ing winding number, the skyrmion number [20–26]. There
exist numerous variations on this theme [22–26]. What
has not yet been identified, however, is the physical signif-
icance of the skyrmion field itself: we rectify that in this
letter.

We present an unexpected property of skyrmion field
lines that has application whether or not a structured light
beam has a non-zero skyrmion number, as long as the po-
larisation pattern covers the whole Poincaré sphere contin-
uously [27]. Put simply, it is that skyrmion field lines trace
out contours of constant polarisation. Moreover, all such
lines of constant polarisation are skyrmion field lines. Sev-
eral important properties of structured light beams then
follow from the mathematical properties of the skyrmion
field. The central theme of our paper is the application of
these ideas to paraxial light beams, but we conclude with
a brief discussion of these ideas in other fields of physics,
including electron [28–30] and neutron [31] optics and also
gravitational waves [32].
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Skyrmion field lines for paraxial light beams are defined
in terms of the normalised Stokes parameters, S1, S2 and
S3 [33]. The i-th component of the skyrmion field is [20,21]
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where εijk is the alternating or Levi-Civita symbol and we
employ the summation convention in which a summation
is implied over repeated indices. The specific form of Σi is
crucial to an appreciation of the link with lines of constant
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Note that this z-component depends on the variation of
the Stokes parameters, and therefore of the polarisations,
only in the x- and y-directions. Each term, moreover,
depends on all three Stokes parameters.

The skyrmion number associated with our structured
beam is readily obtained by integration over the plane
transverse to the direction of propagation. If we take this
direction to define our z-axis, then the skyrmion number
is

n =
1
4π

∫
Σz dxdy, (3)
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where the integral runs over the whole transverse plane.
This value is typically an integer, although structures with
non-integer skyrmion number can be constructed [20].
Our present concerns do not involve skyrmions or the
skyrmion number explicitly, but rather focus on the
skyrmion field. This exists wherever there is a continu-
ously spatially varying polarisation apart from a few spe-
cial cases, such as where there is a polarisation variation
only in one direction. We note that the skyrmion field is
a transverse field in that

∇ · Σ = 0, (4)

and, therefore, the integral over any closed surface is zero∮
Σ · dS = 0. The only exception to this condition will

occur if there are lines along which the polarisation is un-
defined.

Let us turn to the properties of lines of constant po-
larisation. As is well known, structured light beams are
threaded by lines of constant polarisation. The most stud-
ied example is the C-lines along which the polarisation
is purely left- or right-handed circularly polarised [1,34].
There is nothing in this context, however, that is specific
to circular polarisation, and we can trace such contours
of constant polarisation for any chosen polarisation. Con-
sider a point p in a structured paraxial light beam, as
depicted in fig. 1. From this point there extends a line (in
two directions) along which the polarisation is the same as
at p. Note that the amplitude and phase will not, in gen-
eral, remain the same along this line. Let us introduce a
local right-handed coordinate system at (u,v,w) at p, in
which the line of constant polarisation extends in the di-
rection u. As the polarisation in the direction u (and −u)
is unchanged, it follows that the direction of the Stokes
vector S is also unchanged:

(u · ∇)S =
∂

∂u
S = 0, (5)

where u is a unit vector in the direction of the coordinate
u. We can write the components of the skyrmion field at
p in the u, v, w basis and find
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The derivatives of the Stokes parameters with respect to
u are zero and it follows that Σv = 0 = Σw, and, there-
fore, that the skyrmion field line points in the direction of
constant polarisation. This is our principal result.

It is straightforward to confirm that the skyrmion field
is independent of the basis used to denote the Stokes vec-
tors and hence the identification of the skyrmion field lines
with lines of constant polarisation holds for every possible

Fig. 1: Plot of a line of constant elliptical polarisation and the
local coordinate system u,v,w at p.

polarisation. Such a global transformation changes the po-
larisation at every point in the field but does not alter the
skyrmion field, which is associated with lines of constant
polarisation, but not the specific polarisation along these
lines. Identifying a skyrmion field line does not determine
the polarisation along the field line, merely the line itself.
More formally, the skyrmion field is invariant under any
unitary transformation of the Poincaré sphere and so is
not dependent on the basis used to express S1, S2 and S3.
In this way, the skyrmion field extends the characteriza-
tion of lines of constant circular or linear polarisation [35]
to every polarisation.

The mathematical properties of the skyrmion field al-
low us to make general statements about lines of constant
polarisation. The simplest and most important among
these follows from the transverse nature of the skyrmion
field, ∇ · Σ = 0. Like other transverse fields, such as the
magnetic induction B in electromagnetism, skyrmion field
lines cannot start or end (no monopoles) and nor can they
branch or coalesce. The identification of skyrmion field
lines with lines of constant polarisation means that the
same properties must hold for lines of constant polarisa-
tion. The only exception to this rule occurs along lines
at which the polarisation is undefined, where several lines
of different polarisation can meet. At such lines, however,
the transverse condition on Σ will fail.

One remaining subtlety needs to be addressed. This is
the fact that lines of constant polarisation do not have
a preferred sense of direction: such a line is independent
of whichever direction we choose to move along it. The
skyrmion field line, however, has a specific direction; if we
change the sign of Σ, then it reverses its direction along
the line of constant polarisation. In this sense, at least,
there seems to be a significant difference between lines
of constant polarisation and skyrmion field lines and we
should explain the origin of this difference.

We have seen that the skyrmion field lines do not de-
termine the local polarisation, merely the local direction
along which the polarisation does not vary. For the struc-
tured light beam, however, there is a further class of
symmetries that leaves the pattern of lines of constant
polarisation unchanged. This is to apply the operation
of complex conjugation to the polarisations. To be spe-
cific, let eH and eV be the real unit vectors corresponding
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to horizontal and vertical polarisation, so that left- and
right-circular polarisations are eL = (eH + ieV)/

√
2 and

eR = (eH−ieV)/
√

2. If we apply the complex conjugation
operation then the left- and right-circular polarisations
switch, but the horizontal and vertical are unchanged, as
are all the other possible linear polarisations, and we ar-
rive at an alternative (but physically allowed) polarisation
pattern with the same lines of constant polarisation. This
transformation is antiunitary in nature [36]. Such trans-
formations are familiar from the study of time-reversal
and CP symmetries in particle physics [37]. The complex
conjugate transformation coupled with rotations provides
a second set of symmetries under which the polarisation
changes but the lines of constant polarisation do not. The
skyrmion field lines, however, switch direction under the
antiunitary transformation as their value is based on a
right-handed coordinate system for the Poincaré sphere.
The complex conjugation operation applied to polarisa-
tion, however, changes a right-handed arrangement of the
Stokes parameters into a left-handed one and, in doing so,
flips the sign of the skyrmion field.

It is interesting to ask if there is always a skyrmion field
in a structured beam. The answer follows from the discus-
sion in the preceding paragraph; if, for example, the field
is unchanged by performing complex conjugation on the
polarisation then the skyrmion field is everywhere equal to
its negative and therefore is equal to zero. Simple exam-
ples are the radially and azimuthally polarised beams [16]
for which the polarisation is everywhere linear. For such
beams we have planes of constant polarisation rather than
lines.

The connection between the skyrmion field and lines of
constant polarisation has been established here for parax-
ial structured light beams, but we may expect it to have
wider applications. For electrons and neutrons, a similar
association will hold for the skyrmion field lines and lines
along which the particle spin does not change. For non-
paraxial optical fields there exists a variety of features that
can be associated with skyrmions and, by extension, with
a skyrmion field. It will be interesting to see how these
are related to the spatial arrangement of spin-related prop-
erties of the electromagnetic field. Finally, gravitational
waves have two orthogonal polarisations and so we would
expect skyrmion field lines to be associated, also, with
spatial variations of the polarisation of these fields.

In summary, we have shown that lines of constant polar-
isation in any structured paraxial light beam are identified
with skyrmion field lines. It follows that there is a more
intimate relationship between structured light beams and
skyrmion fields than simply whether or not a particular
beam has an associated skyrmion number or skyrmionic
structures.

∗ ∗ ∗

This work was supported by a Royal Society Re-
search Professorship, grant No. RP150122, and the UK

Engineering and Physical Sciences Research Council,
grant Nos. EP/R008264/1 and EP/V048449/1.

Data availability statement : No new data were created
or analysed in this study.

REFERENCES

[1] Nye J. F., Natural Focusing and Fine Structure of Light
(Institute of Physics Publishing, Bristol) 1999.

[2] Zambrini R. and Barnett S. M., Opt. Express, 15
(2007) 15214.

[3] Dennis M. R., O’Holleran K. and Padgett M. J.,
Prog. Opt., 53 (2009) 293.

[4] Forbes A., de Oliveira M. and Dennis M. R., Nat.
Photon., 15 (2021) 253.

[5] Allen L., Beijersbergen M. W., Spreeuw R. J. C.

and Woerdman J. P., Phys. Rev. A, 45 (1992) 8185.
[6] Allen L., Barnett S. M. and Padgett M. J., Opti-

cal Angular Momentum (Institute of Physics Publishing,
Bristol) 2003.

[7] Bekshaev A., Soskin M. and Vasnetsov M., Paraxial
Beams with Angular Momentum (Nova Science Publish-
ers, New York) 2008.

[8] Franke-Arnold S., Allen L. and Padgett M., Laser
Photon. Rev., 2 (2008) 299.

[9] Yao A. M. and Padgett M. J., Adv. Opt. Photon., 3
(2011) 161.

[10] Cohen-Tannoudji C. N. and Phillips W. D., Phys.
Today, 43, issue No. 10 (1990) 33.

[11] Dalibard J. and Cohen-Tannoudji C., J. Opt. Soc.
Am. B, 6 (1989) 2023.

[12] Cameron R. P., Barnett S. M. and Yao A. M., New
J. Phys., 14 (2012) 053050.

[13] Cameron R. P., Barnett S. M. and Yao A. M., J.
Mod. Opt., 61 (2014) 25.

[14] van Kruining K. C., Cameron R. P. and Götte J.

B., Optica, 5 (2018) 1091.
[15] Kravets N., A. Aleksanyan and Brasselet E., Phys.

Rev. Lett., 122 (2019) 024301.
[16] Zhan Q., Adv. Opt. Photon., 1 (2009) 1.
[17] Radwell N., Hawley R. D., Götte J. B. and

Franke-Arnold S., Nat. Commun., 7 (2016) 10564.
[18] Zhan Q. and Leger J. R., Opt. Express, 10 (2002) 324.
[19] Dorn R., Quabis S. and Leuchs G., Phys. Rev. Lett.,

91 (2003) 233901.
[20] Gao S., Speirits F. C., Castellucci F., S. Franke-

Arnold, Barnett S. M. and Götte J. B., Phys. Rev.
A, 102 (2020) 053513; 104 (2021) 049901.

[21] McWilliam A., Cisowski C. M., Ye Z., Speirits

F. C., Götte J. B., Barnett S. M. and Franke-

Arnold S., Topological approach of characterizing op-
tical Skyrmions and Skyrmion lattices, arXiv:2209.06734
[physics.optics].

[22] Guitiérrez-Cuevas R. and Pisanty E., J. Opt., 23
(2021) 024004.

[23] Sugic D., Droop R., Otte E., Ehrmanntraut D.,

Nori F., Ruostekoski J., Denz C. and Dennis M. R.,
Nat. Commun., 12 (2021) 6785.

[24] Cisowski C., Ross C. and Franke-Arnold S., Adv.
Photon. Res., 4 (2023) 2200350.

35002-p3



S. M. Barnett et al.

[25] Shen Y., Zhang Q., Shi P., Du L., Zayats A. V.

and Yuan X., Topological quasiparticles of light: Opti-
cal skyrmions and beyond, arXiv:2205.10329 [physics.opt-
ics].

[26] Shen Y., Yu B., Wu H., Li C., Zhu Z. and Zayats

A. V., Adv. Photon., 5 (2023) 015001.
[27] Beckley A. M., Brown T. G. and Alonso M. A., Opt.

Express, 18 (2010) 10777.
[28] El-Kareh A. B. and El-Kareh J. C. J., Electron

Beams, Lenses and Optics (Academic Press, New York)
1970.

[29] Klemperer O. and Barnett M. E., Electron Optics,
3rd edition (Cambridge University Press, Cambridge)
1971.

[30] Hawkes P. W., Electron Optics and Electron Microscopy
(Taylor and Francis, London) 1972.

[31] Rauch H. and Werner S. A., Neutron Interferometry
(Oxford University Press, Oxford) 2015.

[32] Maggiore M., Gravitational Waves (Oxford University
Press, Oxford) 2008.

[33] Born M. and Wolf E., Principles of Optics, 6th edition
(Pergamon Press, Oxford) 1980.

[34] Nye J. F., Proc. R. Soc. Lond. A, 389 (1983) 279.
[35] Berry M. V. and Dennis M. R., Proc. R. Soc. Lond. A,

457 (2001) 141.
[36] Wigner E. P., J. Math. Phys., 1 (1960) 409.
[37] Bigi I. I. and Sanda A. I., CP Violation (Cambridge

University Press, Cambridge) 2009.

35002-p4


