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Abstract
Server works in discrete time, and is equipped with a given sequence of per-date
capacities. It has to accommodate a set of agents with unit jobs, arriving at different
dates. It can process a job in several installments, however no monetary transfers are
allowed. Server is given jobs’ birth dates and it only knows that agents want their jobs
done as soon as possible, but not agents’ complete preferences over delays (thus, this is
the model with ordinal input). We investigate how scheduling rules, coming from both
assignment and queueing literature, fare in this setting. The tension between fairness
and incentive compatibility, inherent to the assignment models, disappears on this
domain, as both Serial and Random Priority assignment rules become strategy-proof
and non-envious. This is also true for Uniform rule; but First Come First Serve or First
Come Last Serve rules are not strategy-proof and generate envy.

Keywords Random assignment · Scheduling · Strategy-proofness · Fairness

JEL classification C78 · D47 · D63

1 Introduction

We consider a scheduling problem for a central agency, which we call “server”, who
owns an ordered set of resources (we refer to them as “slots”) and wants to distribute
those slots between a group of agents. Server’s only interest is agents’ welfare. Thus, it
wants to allocate slots in an efficient and fair way. As it is often the case for centralized
assignment problems,monetary payments are not available (due to legislative or ethical
reasons), but fractional allocations are possible.

Each agent needs one unit of resource total, but the server’s capacity can vary with
the slots (and it is not necessarily integer).
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A. Bogomolnaia

Agents have common perception of slots’ ranking (from best to worst), which is
publicly known. However, each agent has her own private limit on what is the highest
ranked slot she can accept.

The benchmark example is when slots are dates on the timeline. Think of a machine
which can process certain amount of jobs on each day. Jobs arise at different dates,
and their owners want them to be done as soon as possible after that. Another case is
when all agents want their jobs to be done as late as possible, but before a deadline
(an example would be the delivery of perishable goods for scheduled events).

An alternative common ordering is the order of slots/objects by quality, where
agents want the best quality, but cannot deal with a too high one. Examples would
be firms competing for governmental projects, where each firm wants the largest one
among those it can manage due to technical constraints; people wanting to join a sport
club or an educational institution with the best reputation among those not too much
above their abilities; agents wanting to purchase the best quality good within their
budget (or the cheapest good above certain quality level), etc.

Agents only reveal the information on their highest ranked slots acceptable (“birth
dates”). Thus, server operates based on ordinal input. Agents’ preferences are private
information. They can potentially misreport birth dates, and they can have arbitrary
preferences over own fractional assignments, when a job is done over several slots
(consistent with “earlier better” idea).

We look for suitable allocation rules in this setting. We impose anonymity (or at
least ETE) and efficiency on the rules. Those are very natural and mild restrictions in
our setting; and, as we will see, efficiency structure turns to be rather simple on our
domain.

Our model combines the features of the assignment problem with ordinal input
(on a restricted preference domain) and of the queueing problem (with the arrival
times known from the beginning). We thus investigate the behavior of allocation rules,
coming from both queueing and assignment literatures. Queueing models usually
assume that server does not know the future, and so it cannot condition the allocation of
a current slot on the potential arrival of future jobs (“no forecast”). However, classical
assignment rules also satisfy no-forecast requirement in our model, so all rules we
discuss apply equally well to both settings.

Coming from queueing literature, First Come First Serve (FCFS) rules always
favor agents born earlier, First Come Last Serve (FCLS) favor those born later, while
Uniform (U) rule sequentially distributes each slot equally between all currently inter-
ested agents. Looking at traditional assignment rules, RandomPriority (RP) rule orders
agents randomly and lets them pick their best allocations in turn; Serial rule (S) lets
all agents simultaneously acquire shares of their best slots with the same speed.

We show thatU, RP, and S rules are efficient, strategy-proof, and non-envious. Thus,
the persistent incompatibility between efficiency, fairness and incentive compatibility,
prevalent in assignment models, even on restricted domains, disappears.

Interestingly, FCFS (aswell as FCLS) rules are neither strategy-proof nor envy-free.
The preference domain we study might look rather simple, but it is both important

for practical applications and difficult to analyze.
In particular, a large part of the literature on random assignment over last two

decades was devoted to two main rules: Random Priority and Serial. Even under
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significant restrictions on preferences, there is a strong trade-off between going for
eitherRPorS rule. S is usually not strategy-proof,whileRP fails no-envy and efficiency
criteria. This is true, for example, on the single-peaked domain; moreover, strategy-
proofness efficiency and fairness are not compatible there (see Kasajima 2013). The
“symmetric” to ours domain where all agents are born on day 1, but have different
“death dates”, proved much easier to investigate (see Bogomolnaia andMoulin 2002);
RP is still not efficient.

This conflict disappears on our domain for the first time. Both rules are shown to
satisfy all traditional properties in their strong form.

2 Related literature

Study of random assignment model with ordinal input and no transfers proliferated
over last two decades. Mostly, it assumes all “slots” and “jobs” to be of the same unit
size. While the idea of RP rule is an old one, S rule was introduced by Bogomol-
naia and Moulin (2001), who also first noticed the strong tension between traditional
requirements of efficiency, fairness, and incentive-compatibility. No rule satisfies all
three properties; S rule is not strategy-proof, while RP rule is envious (and inefficient).

Lately, several authors further explored the extent of (im)possibility frontiers on
the general domain, weakening the above requirements (see, for example, Nesterov
2017).

A number of works is devoted to the analysis of S rule, and its comparison with PR
rule. The two are found to behave similarly in large economies (Che andKojima 2010).
S rule was extended to the domain with indifferences, see Katta Sethuraman (2005).
Several axiomatic characterizations of S rule were proposed (RP is more elusive in this
respect), as in Hashimoto et al. (2014) Bogomolnaia and Heo (2012) or Bogomolnaia
(2015).

Closer to the current work, there is a handful of articles which investigate different
domain restrictions.

Schulman and Vazirani (2015) discusses lexicographic preferences over fractional
assignments (this is also one of a few works where “slots” and “jobs” can have differ-
ent, and in particular non-integer, capacities). They show that on this domain S rule
becomes strategy-proof, when capacity of all slots is larger than the size of any job.

A few works consider similar to ours “linear” domains, where slots (“objects”) are
naturally ordered along a line.

When preferences are single-peaked, Kasajima (2013) shows that strategy-
proofness, efficiency, and equal treatment of equals are still incompatible. Hougaard
et al. (2014) focuses on “aggregate gap minimizing” property on single-peaked
domain.1 It is shown to be incompatible with either strategy-proofness or no-envy.

In Bogomolnaia and Moulin (2002), all (unit) slots are ordered in the same way,
and all jobs are born on date one, but they have different (private) deadlines. Here, S

1 On our domain and for the integer case, this notion is reduced to “aggregate delayminimizing”. However,
here, contrary to the more general single-peaked domain, this condition is simply equivalent to efficiency.
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becomes strategy-proof, but no other rule is once we also require efficiency and mild
fairness condition of equal treatment of equals.

A small, but interesting set of papers is devoted to the model where agents’ utility
is quasi-linear in money, and monetary transfers are allowed. When agents with unit
jobs have private per period waiting costs, the well-known efficient and strategy-proof
Clarke–Groves mechanism is shown to be budget-balanced on the queueing domain.
Both the case of all agents born in period 1 and the case of different birth dates were
considered. This study was started in Suijs (1996) and Mitra (2000); see alsoMitra
and Sen (2010) and Ghosh et al. (2021).

Traditional literature on the queueing models (usually with random arrival and
arbitrary jobs’ sizes, very different interpretation of fairness or even efficiency, mone-
tary transfers used, and often no concerns for incentives’ issue) is rather far from our
subject. The main similarity lies in allowing for randomization (or processing jobs in
installments). See for instance (Demers et al. 1989; Friedman and Henderson 2003),
or Friedman et al. (2015).

Queuing protocols are sometimes discussed and compared based on fairness prop-
erties of a different nature. For example, Moulin and Stong (2002) consider jobs of
different size and characterize “fair queueing” discussed in Demers et al. (1989),
which is based on the round robin rule, by consistency and invariance properties.
Moulin (2007) is concerned with minimizing delays or “slowdown”, when jobs have
different sizes.

Finally we mention a stream of work on fair cost sharing in queueing/scheduling
models where agents arrive at the same time and must pay for service either in cash
or delay time. They usually have different job sizes, which drives the analysis as it
should result in different contributions to the total cost. See, for example, Moulin and
Shenker (1992).

3 Themodel

Server operates in discrete time, and can process certain amount of jobs per time slot
(period, date, etc.). Let N = (1, ..., k, ..., K ) be the ordered set of slots (potentially
infinite, i.e. it may be K = ∞). Each slot k ∈ N has the processing capacity zk ∈ R+.
Server is fully described by the vector z ∈ R

|N |
+ , the (potentially infinite) vector of

given slots’ capacities.
A = {a1, ..., an} is the set of n agents. Agents have unit jobs they want to be

processed by the server. Their jobs arise at different moments in time, and agents
want the job done as soon as it is ready. Thus, for any agent a, there is a “birth slot”
Ra ∈ N , the slot on which her job becomes ready. Given Ra , the preferences of a over
“integer” allocations, where her job is assigned to one slot only, are uniquely defined
as: Ra � Ra + 1 � Ra + 2 � ... � ∅ � [∀k ∈ N, k < Ra]. Birth dates are private
information. A (reported) birth profile is R = (Ra1 , ..., Ran ).

An instance of the problem is given by � = (A, N , R, z).
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We are interested in a scheduling problem. Agents report their birth dates Ra

beforehand.2 Server then needs to schedule jobs, based on R, respecting feasibil-
ity constraints: no one is assigned a slot before her job is born, and server’s capacity is
never exceeded. Servermay (and often is obliged to) use fractional assignments, where
an agent’s job is processed in installments over several slots. However, no monetary
transfers are allowed.

Clearly, agents’ preferences over fractional assignments are not fully determined by
the birth dates Ra . We assume that an agent a can have any preferences over fractional
allocations, consistent with her birth date Ra and the interest to be served earlier. Thus,
Ra only provides server with an incomplete information on how she ranks allocations,
based on first order stochastic dominance.3

Inmany practical applications, a job can only be processed in one shot. It is naturally
can be assumed then, that all capacities zk are integers.

In this case, no “fractional” assignments in the literal interpretation above are fea-
sible. However, with all zk ∈ Z+, a fractional assignment has a natural alternative
interpretation as a “random assignment”–a lottery over “deterministic” assignments
(where each job is processed in at most one slot). A variant of Birkoff theorem guar-
antees that such a representation exists.4 We refer to such problems with all zk ∈ Z+
as “integer” problems. They constitute an important subclass of our model, and can
be treated within it, keeping in mind the randomization interpretation.

We can also take an alternative “online” queueing modeling view. The “online”
assumptionmeans no forecast power, and thus implies that theway a slot k is distributed
cannot be affected by agents, “born” after the moment k.

It is easy to see that the mechanisms discussed below satisfy this “no forecast”
property. This is true for Priority, and hence Random Priority (with arbitrary weights
over its deterministic components); for First Came First Served (or FCLS), for Serial
rule, for Uniform, and for many others.

A (fractional) allocation is a matrix P = (pak)a∈A,k∈N with n rows, corresponding
to agents, and K (potentially infinite number of) columns, corresponding to slots. Here
pak ∈ [0, 1] is the share of slot k, assigned to the job of agent a.

Note: Given an instance �, we can sometimes truncate N with K = ∞ to be finite
without loss of generality. For example, in the case of an integer problem with all
zk > 0 (zk ∈ N then) it is enough to consider a finite number of slots K = max

a∈A
Ra+n.

However in general it may be not possible, as zk could be rather small.5

An allocation is feasible, if all following is true:

2 We can instead assume that server works “online”, and only becomes aware of a job once its (announced)
birth occurs. All our rules work equally well in both settings. See below.
3 An agent may even prefer her job to be processed only partially, but earlier, to it being done in full, but
later (as long as two allocations are not comparable by first order stochastic dominance). For example, she
might prefer any fractional allocation where she gets a positive fraction of her job processed in a given slot
l ≥ Ra (even if her job is never done in full), to the allocation where her job is fully processed in the slot
l + 1.
4 Since all zk are integer, without loss of generality T can be assumed finite in any given instance.
5 We can also assume that N always contains slot “∞ ” with infinite capacity, where no one is born, and
which is the worst option for everyone. Then all agents can be fully satisfied always.
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(i) the sum of agents’ shares of any given slot does not exceed its capacity: Pk =∑

a∈A
pak ≤ zk for any slot k;

(ii) it never allocates (even partially) to an agent a slot coming before her birth (i.e. a
slot she values less than the outside option ∅): pak = 0 for all (a, k)with k < Ra ;
and

(iii) it does not allocate any agent more then she needs:
∑

k∈N
pak ≤ 1 for all a.6

We say that an agent a with
∑

k∈N
pak = 1 is “fully satisfied” at P .

An allocation is exact, if it is feasible and fully satisfies all agents (this may be not
possible, even for K = ∞, if zk are small enough).

A rule specifies a feasible allocation for any given instance � = (A, N , R, z).
An ETE (“equal treatment of equals”) rule is the one which only depends on num-

bers nk = |{a : Ra = k}|—quantities of agents, born at each slot k, and treats equally
agents who report the same birth date.

Our goal is to propose reasonable allocation rules in this setting (both new and
adapted from existing ones in similar models), and to evaluate how they fair on norma-
tive properties—traditional ones of efficiency, fairness, and incentive compatibility, as
well as new ones, specifically applicable to our model. We thus first discuss properties
we might be interested in.

Our model is based on ordinal input only: all server receives is the (reported)
profile R of birth dates. Hence, it does not know full agents’ preferences over options
to process a job in several installments. It thus can only rely on partial comparisons
of fractional allocations, based on stochastic dominance, when evaluating agents’
welfare.

We say that an agent a “ordinally prefers” the vector of slots’ shares Pa = (pak)k
to Qa = (qak)k , and write Pa doma Qa , if Pa first order stochastically dominates Qa ,
i.e., if

∑

Ra≤k≤i
pak ≥ ∑

Ra≤k≤i
qak for all i ≥ Ra .7 She strictly ordinally prefers Pa to

Qa , if at least one of those inequalities is strict, and is indifferent otherwise.
These ordinal preferences, based on stochastic dominance, can be fully derived by

the server from the agent’s birth date. They are, however, much weaker than under-
lying preferences. For each agent a, born at Ra , doma defines an incomplete (though
transitive) relation on the set of fractional allocations, which is a subset of her full
(complete, but unknown to the server) preference relation over them. It is assumed
that she can have any preferences fully consistent with doma . Note also, that if an
agent ordinally prefers Pa to Qa , then all agents born in the same slot would.

In line with the established tradition in the literature on fractional allocations with
ordinal reports, these ordinal preferences will be our main tool to evaluate whether dif-
ferent properties are satisfied. It means, in particular, that the properties to be discussed
are formulated in the strongest possible form.

6 We can easily dispense with the requirement (iii) and just assume that an agent does not use the most late
slots in case she is assigned the total share of more then 1. Hence, we sometimes skip this requirement for
the sake of better notation or easier argument.We can also lift the requirement (ii) without loss of generality.
7 Note that our agent a does not care about pak , qak with k < Ra . This is important to keep in mind when
we later define properties such as envy-freeness or strategy-proofness.
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4 Efficiency structure

We start by looking at efficiency. In general, in fair division problems with no money,
the structure of efficient allocations is very difficult to describe or analyze, even for
very restricted domains. However on our domain it turns out to be rather simple and
tractable.

Given that the server does not know full preferences over options to process a job in
several installments, it cannot evaluate whether a fractional allocation is fully (Pareto)
efficient. In this setting we can talk about following notions, traditionally used in the
literature.

Ex-post efficiency (mainly for integer problems):
An allocation is “ex-post efficient” if it can be represented as a lottery over Pareto

efficient deterministic assignments. Note that an allocation can have several such
representations, and it is not immediately obvious whether if one representation only
uses efficient assignments, then all of them would. In the general assignment model it
is not true (see Abdulkadiroglu Sönmez [2005]). However, as we will see below, it is
true in our model.

Here we call an allocation P deterministic if any agent a has pak > 0 for at most
one k (so it is slightly more general than the 0-1 deterministic allocations traditionally
considered in the literature).

Ordinal efficiency:
A feasible allocation P is “ordinally efficient” if there is no other feasible allocation

Q, such that all agents ordinally prefer Q to P , i.e. Qa dom a Pa for every a ∈ A (with
at least one strictly preferring it).

In what follows we use the word “efficiency” to mean ordinal efficiency (which, as
we will see, coincides with ex-post one, whenever the later is well defined).

The following construction will be useful to characterize the set of efficient alloca-
tions. Given an instance � = (A, N , R, z), it creates a natural partition of the set of
slots N into “segments”, and “space between”. Those segments then can be considered
independently when deciding on how to distribute slots to jobs, once we impose the
efficiency requirement. We call it N (�), the “segment partition of N”.

Recall that nk = |{a : Ra = k}| is the number of agents/jobs born at slot k.
Step 1. Let l1 = min {l ∈ N |∃a s.t. Ra = l}, the first slot where some job is born,

and r1 = min{{r ∈ N | ∑

l1≤k≤r
nk ≤ ∑

l1≤k≤r
zk} ∪ {K }}. Thus, r1 is the earliest slot at

which the total number of agents born up to it does not exceed the total capacity of
all slots up to r1; and if there is no such slot then it is the “last” slot K (which may be
infinity). Let I1 = [l1, r1] = (l1, l1 + 1, ..., r1), a segment in N .

If either r1 = K or Ra ≤ r1 for all a ∈ A then we stop. Otherwise we go on to
create next segment in the same manner. Specifically:

Step m. Let lm = min {l ∈ N , l > rm−1|∃a s.t. Ra = l}, and let rm = min{{r ∈
N | ∑

lm≤k≤r
nk ≤ ∑

lm≤k≤r
zk} ∪ {K }}. Thus, lm the first slot beyond Im−1 where some

job is born, and rm is the earliest slot after that at which the total number of agents
born between lm and rm (inclusive) does not exceed the total capacity of all slots
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between lm and rm (inclusive). If there is no such slot rm , then it is the “last” slot K .
Let Im = [lm, rm], a segment in N .

If either rm = K or Ra ≤ rm for all a ∈ A then we stop. Otherwise we go on to
create next segment.

Since for each segment there is at least one agent born in it, this process will finish
after at most n steps.

We will get the (uniquely defined by �) partition of N into I1, ..., IM and I0 =
N\ ⋃

1≤m≤M
Im . Here I0 is the set of “empty” parts of server’s timeline, where no one

is born, lying in between our segments.
Fix an instance � = (A, N , R, z). Given an allocation P , we refer to Pk = ∑

a∈A
pak

as the “server’s workload” at the date k under P .

Lemma 1 The following are equivalent:

(i) An allocation P is (ordinally) efficient
(ii) For any k ∈ N, if Pk < zk then for all a with Ra ≤ k we have

∑

Ra≤i≤k
pai = 1 (if

on the date k the slot capacity is not exhausted, then all agents born up to date k
are fully satisfied by this date)

(iii) The vector (Pk)k∈N is feasible, and “stochastically dominates” the vector
(Sk)k∈N for any feasible allocation S, i.e.

∑

1≤i≤k
Pi ≥ ∑

1≤i≤k
Si for all k

(iv) < for integer assignments > P is ex-post efficient
(v) Given an arbitrary (ordinally) efficient allocation Q, we have Pk = Qk for any

k ∈ N
(vi) For the segment partition I1, ..., IM of N, all the following is true:

– for each Im with m < M, and for IM = [lM , rM ] if rM < K,
∑

a∈A
pak = zk for

all k ∈ [lm, rm − 1] and all agents born on Im are fully satisfied within Im;
– if IM = [lM , rM ] with rM = K < ∞ then

∑

a∈A
pak = zk for all k ∈ [lM , rM −

1]; in addition, ∑

a∈A
parM < zrM implies that all agents are fully satisfied;

– if IM = [lM , rM ] with rM = K = ∞ then
∑

a∈A
pak = zk for all k ∈ IM 8

Proof An easy proof is left to the reader.
The most important for us will be the characterization of the set of efficient

allocations, provided by (iii) and (v):
There exists a (unique) feasible vector of server’s workloads E(�) = (Ek)k∈N ,

which stochastically dominates any other. The efficient allocations are exactly the
ones with the workload vector E(�).

In addition, if an allocation is efficient, then in the segment partition of N it assigns
each interval Im only to agents born on it, and each slot on Im , except probably the last

8 Here, if rM < K , then all agents are fully satisfied. If, however, rM = K < ∞ and
∑

a∈A
; parM = zrM ,

or if rM = K = ∞, then either all agents are fully satisfied (“in the limit” for K = ∞), or some of the
agents born on [lM , rM ] are not satisfied.
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one, is fully distributed. Hence, if we look for efficient rules only, we can decompose
our problem into segments, and deal with each segment separately. Thus, in this case
without loss of generality we can assume that the whole N is just one segment (as
defined above).

In what follows, we will include the efficiency requirement in the definition of a
rule. We will thus only consider feasible and efficient allocations.

Note also, that:

Corollary (i) Any lottery over efficient allocations is itself efficient.
(ii) Given �, all efficient allocations P have the same size |P| = ∑

k∈N
Pk =

∑

a∈A,k∈N
pak. We refer to it as the “maximal size” at the instance �.9

(iii) Let � = (A, N , R, z) and �′ = (A, N , R, z′), with
i∑

k=1
zk ≥

i∑

k=1
z′k for all

i = 1, ..., r − 1,
r∑

k=1
zk ≤

r∑

k=1
z′k , and zk = z′k for k > r . Then �′ has at least

the same maximal size as �. I.e., if we redistribute server capacities to be still
available, but at later date(s), this does not decrease the maximal size.

5 Other properties and some rules

A rule f : � �→ P specifies a feasible and efficient allocation f (�) = P for any
given instance � = (A, N , R, z).

Often A, N , and z will be fixed, and we will study how a rule behaves when
R, the agents’ report, varies. We will hence often omit other parameters, and write
f : R �→ P = f (R).
We want to know till what extent feasible and efficient rules can satisfy traditional

normative concerns for fairness and incentive compatibility.
In terms of fairness, we care about symmetry or ETE, and absence of envy. We

might also look at the (resource or population) monotonicity conditions, requiring
that any change in the instance � affects all agents in the same way.

Since agents’ birth dates are private, an appropriate incentive compatibility
condition would be strategy-proofness.

The notion of ordinal preferences (as implied by announced birth dates), which
we used to define efficiency, is also used in other normative properties of importance.
Remember that the server has incomplete information about agents’ preferences, and
so cannot always evaluate how an agent would compare two allocations. However, all
our properties are defined in their strongest variant, where the server can guarantee
them based on the birth profile R only, no matter underlying individual preferences
over fractional assignments.

Anonymity and Equal Treatment of Equals (ETE)

9 No allocation can have larger size, but an inefficient one can be of maximal size—for example when all
agents are fully served, but later than in an efficient allocation.
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An allocation P is ETE, iff it gives identical assignments for agents born on the
same date. Thus, Ra = Rb implies Pa = (pak)k = Pb = (pbk)k .

An ETE rule is the one which always returns ETE allocations.
An anonymous rule is the onewhich does not depend on agents’ names. Specifically,

assume R′ differs from R only in that two agents, a and b, exchange their birth date
announcements: R′

a = Rb, R′
b = Ra , but R′

c = Rc for all c �= a, b. The rule f
is anonymous, if this results in exchanging allocations assigned to these two agents,
while all other agents get the same allocations as before.

I.e., for any such instances � = (A, N , R, z) and �′ = (A, N , R′, z) we have
f (�) = P and f (�′) = P ′, with (P ′)a = Pb, (P ′)b = Pa , and (P ′)c = Pc for all
c �= a, b.

No-envy
Agent a does not envy agent b for sure (in the ordinal sense) at the allocation P , if

agent a ordinally prefers her assignment Pa = (pak)k to the assignment Pb = (pbk)k
of agent b.

A rule is non-envious, if there is no instance at which some agent for sure envies
some other agent.

Resource monotonicity
A rule f is resource-monotonic, iff, for any vectors z and z′ of slots capacities

with z′k ≥ zk for all k, we have that all agents ordinally prefer f (A, N , R, z′) to
f (A, N , R, z).
Population monotonicity
A rule f is population-monotonic, iff, whenever some of the agents are removed

but the remaining agents keep the same birth dates, all remaining agents are better off.
Specifically, let B ⊂ A, and R′ = R|B (R restricted to B). Then any agent a ∈ B
ordinally prefers f (B, N , R′, z) to f (A, N , R, z).

Strategy-proofness
Assume that an agent a is born at Ra , but announces a different birth date R′

a . When
comparing two allocations P and Q, this agent ordinally prefers P to Q (under her
real birth date Ra) iff

∑

Ra≤k≤i
pak ≥ ∑

Ra≤k≤i
qak for all i ≥ Ra .

A rule f is strategy-proof, iff at any instance� each agent a ordinally prefers (under
Ra) her assignment in f (�) to her assignment in any f (A, N , R′, z), where the vector
of birth dates R′ only differs from R in that the birth date of this agent a changes from
Ra to some other R′

a .
Consistency
A rule f is consistent iff, whenever we remove an agent together with her personal

assignment, the remaining agents share the remaining slots capacities in the sameway.
Thus, for any � = (A, N , R, z), and any a ∈ A who is assigned by f the vector

of shares (pa1 , ..., p
a
k , ...) = ( f (�))a , let �′ = (A′, N , R′, z′) with A′ = A\{a}, R′ =

R|A′ , and z′k = zk − pak for all k ∈ N . The rule f is consistent iff
(
f (�′)

)b = ( f (�))b

for all b �= a.
We now turn to look at possible assignment rules.
Fix some ordering π = (a1, ..., an) of the set A of agents. A Priority allocation,

corresponding to the ordering π , is the (feasible and efficient) one where agents earlier
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inπ are fully served before server starts working on jobs of agents later inπ . Formally,
for any ai , a j with i < j , and for any slot r ≥ Rai , we have that pa j r > 0 implies

∑

Rai ≤k≤r
pai k ≥ 1.10 A Priority rule π f , based on the fixed ordering π , returns Priority

allocation corresponding to the ordering π for each instance.
The famous in the queueing theory “First Come First Serve” (FCFS) rules are those

where any agent born earlier is served earlier: for any a, b with Ra < Rb and any slot
r ≥ Ra we have that pbr > 0 implies

∑

Ra≤k≤r
pak ≥ 1.

A variant of FCFS rule π F , corresponding to the given ordering of agents π =
(a1, ..., an), obtains when for each reported birth profile R we implement the Priority
allocation, based on the ordering of agents π(R), in which agents with earlier birth
dates come earlier, and the ordering of agents with the same birth dates is the same as
in π (thus, π is used to “break ties”).

The symmetric FCFS rule F is the uniform averaging over all π F for all possible π .
In any allocation F = F(R) we have: Ra < Rb implies Fbr = 0 for all slots r ≥ Ra

where
∑

Ra≤k≤r
Fak(R) < 1, and Ra = Rb implies identical allocations Fa(R) =

Fb(R).
Another traditional queueing rules are “First Come Last Serve” (FCLS), where

agents born later are given absolute priority as soon as they are born: for any a, b with
Ra > Rb and for any slot r ≥ Ra , we have that pbr > 0 implies

∑

Ra≤k≤r
pak ≥ 1.

Similarly to the above, one can define FCLS rules π L corresponding to given fixed
orderings π , used to break ties between agents born on the same date; as well as the
symmetric FCLS rule L .

Note that π F , π L are not Priority rules (agents are ordered by their birth dates, so
the ordering is different for different instances).

FCFS and FCLS rules are efficient, and may be arguably considered as “fair” in
some circumstances. In particular, it is easy to see that F , L , and all π F , π L are
resource and population monotone, and that F , L are anonymous. However, they are
not incentive compatible and potentially envious.

Proposition 1 Any FCFS or FCLS rule is neither strategy proof nor envy-free.

Proof (i) Fix any FCFS rule f , and let n = 6, T ≥ 7, and all zk = 1. Consider
the profile R1 with four agents a1, a2, a3, a4 born at slot 1, and two agents a5, a6
born at slot 2. Agents a1 to a4 are fully served in first four slots. Without loss of
generality, let a1 be the one who gets the largest share of slots 2 and 3 (combined).
Hence, fa12(R

1) + fa13(R
1) ≥ 1/2.

Now consider the profile R, with three agents a2, a3, a4 born at slot 1, and three
agents a1, a5, a6 born at slot 2. In f (R) agent a1 does not get anything before
slot 4. Hence, at the profile R she might be willing to manipulate by announcing
birth date 1, which would result in the reported profile R1. (Given that she is not

10 Priority allocations are not deterministic: a job can be processed over several slots, and a slot can process
several jobs (including partially). However, each job is processed over some segment of consecutive slots,
and those segments do not overlap, except that the end of one such segment can coincide with the beginning
of the other.
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interested in slot 1, she may get only as little as 1/2 of her job done at all under
R1, but at least half of her job will be done earlier than at R.)
Further, under R, agents a1, a5, a6 may envy agents a2, a3, a4. Indeed, if, say,
agent a1 only cares about at least 2/3 of her job being processed early enough,
by the date 3, then she would envy the one out of a2, a3, a4 who gets the smallest
share in slot 1 (useless for agent a1).

(ii) Fix now any FCLS rule l, and let n = 3, T ≥ 4, and all zk = 1.
Consider the profile R with three agents a, b, c, all born at slot 1. Under the
true birth profile announced, at least one of these agents gets not more than 2/3
of her job done in slots 1, 2. Without loss of generality, la1(R) + la2(R) ≤
2/3. If this agent a now declares to be born at slot 2, then under the resulting
reported profile R′ she would get the slot 2 in full: la1(R′) = 0, but la2(R′) = 1.
Thus, her assignment under R′ is not dominated by one under R, which violates
strategy-proofness.
Further, under R′ at least one agent out of b and c is not fully satisfied in slots 1,
2, and so she may envy agent a.

��
Note: π F , π L are not even weakly strategy-proof (i.e., even if we only care to

prevent manipulations which result is ordinal improvement). F , L however are easy
to see to be weakly strategy-proof.

Uniform ruleU (again, coming from queueing models) distributes in turn each slot
equally to all the agents, who are already born but not yet fully satisfied at that slot,
subject to no personal allocation exceeding the total share of 1 unit.

We define it recursively. We have Ua1 = min
{
z1
n1

, 1
}
for all agents a born in slot

1, and Ua1 = 0 for all agents a born later.
For any slot r > 1 and any agent a with Ra ≤ r let dak = 1 − ∑

Ra≤k<r
Uak ,

the residual demand of agent a at slot r (in particular, dbk = 1 for agents b born
at r ). Pick the largest λ ∈ (0, 1] such that

∑

a:Ra≤r
min{λ, dak} ≤ zr (it obviously

exists and is unique, since left hand side is continuous and increasing in λ). Define
Uar = min{λ, dak} for all agents a with Ra ≤ r , and Uar = 0 otherwise.

Clearly, U is efficient and anonymous. Moreover, it is easy to see that:

Lemma 2 Uniform rule is envy-free, resource and population monotone, and strategy-
proof. It is also consistent.

6 Assignment rules: random priority and serial

We now turn to discuss classical well-known rules from the assignment literature:
Random Priority (RP) and Serial (S).

On the general domain both of them are (ordinally) efficient, anonymous, and
resource and population monotone. However, RP is strategy-proof but envious,
while S is envy-free while not strategy-proof. This is true even on many signif-
icantly restricted domains, like single-peaked one. Moreover, anonymity, no-envy
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and strategy-proofness are generally not compatible. Many other, stronger results are
obtained on impossibility of combining (even mild) efficiency, incentive compatibility
and some form of fairness, even on restricted domains.

In our model however, this impossibility finally disappears. As we saw, Uniform
rule satisfies all the above mentioned properties. Moreover, RP and S do it too. We
will show that RP is now non-envious, while S is strategy-proof. However, contrary
to Uniform rule, this is far from obvious. First, we formally define RP and S.11

Random Priority rule RP f is simply a uniform averaging between Priority rules
over all possible orderings of agents.

Serial rule S f returns “Serial allocation” for each reported profile R.
The Serial allocation S = S(R) is the result of the “serial consumption process”,

where agents simultaneously grab shares (“eat”) from their best still available slots,
with the same constant unit speed, over the time period [0, 1]. Consumption process
is a matrix function S[t], where S[0] is zero n by K matrix, S[1] = S, and S[t] is the
matrix with elements sak[t] representing shares of slot k, consumed by agent a up to
time t .

Let τk ∈ [0, 1] be the first time moment when slot k is fully consumed/distributed
in the Serial consumption process S[t]. Those τk are “switching” moments in the
consumption algorithm, corresponding to S: at each moment τk , all agents who were
consuming slot k just before it, stop eating it and switch to the nearest next along the
“line” N slot, which is not fully consumed as yet (note that they all go to the same
slot). I.e., they all switch to the slot l = min{r : r > k, τr > τk}.

There is clearly a finite number of switching moments on the total [0, 1] consump-
tion period. Between two consecutive switching moments, no agent changes slot she
eats from. Note also, that once an agent arrives to a slot k, she stays there until the
moment τk when it is exhausted.

We will use the convention that N is a horizontal left to right “timeline”, and say
that in a consumption process agents move “from left to right”.

We will also say that at the moment t agent a is “behind” (“strictly behind”) agent
b, iff at this moment agent a consumes at a slot (strictly) to the left of the slot agent b
consumes.

Illustration For illustration purposes, imagine slots located along the road going
down a mountain. Think of slot k as a field of crop of size zk , located at a given
horizontal level k on the mountain, with each next level k + 1 strictly below level k.
For any agent a, her “birth date” Ra is interpreted here as the level on which she lives.
Agents can only move down the road (“to the right”).

At time t = 0 they all go out of their houses on the levels they live, and start
consuming crop with the same constant unit speed (each agent a initially eats from the
field Ra). Once a group of agents finish consuming a given field, they all go down to
the next field which is still not fully consumed (if there is any), and join those who are
eating there. The process ends at time t = 1 (or when no feasible slots are available
anymore for anyone, if it happens before that).

11 Without loss of generality, we can think that the segment partition of N consists of one segment
I1 = [1, K ]. Thus, each slot except the last one is “over-demanded”.
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Example: Let T = 6, zk = 1 for all slots k, |A| = 9, Ra1 = Ra2 = 1, Ra3 = ... =
Ra8 = 2, Ra9 = 4.

For t ∈ [0, 1
6 ] all agents consume shares of their birth slots. At t = τ2 = 1

6 ,
slot 2 is exhausted, and six agents a3, ..., a8 move right, to consume from slot 3. At
t = τ3 = 2

6 = 1
3 , slot 3 is exhausted, and six agents a3, ..., a8 move further right to

consume from slot 4, joining agent a9 there. At this moment, there is only 2
3 available

at slot 4, and it is being now consumed by seven agents, a3, ..., a8. These seven agents
would finish consuming slot 4 at t = τ4 = 1

3 + 2
21 = 9

21 = 3
7 . Note that agents a1, a2

are eating from slot 1 up to t = 1
2 > 3

7 , so they would not join slot 4 before it is
finished. At t = 3

7 seven agents a3, ..., a9 together move to slot 5 and consume from
it until t = τ1 = 1

2 , when slot 1 is exhausted. At t = τ1 = 1
2 , agents a1, a2 join the

rest of agents at slot 5 (which is not exhausted at that moment). On the time interval
[ 37 , 1

2 ] each agent a3, ..., a9 eats 1
14 of slot 5, so by t = 1

2 half of it is consumed. Now
all nine agents share remaining half of slot 5, and exhaust it at t = τ5 = 1

2 + 1
18 = 5

9 .
Note that each of agents a3, ..., a9 consumes in total 1

14 + 1
18 = 16

126 = 8
63 of slot 5,

while agents a1, a2 consume 1
18 each. Finally, at t = τ5 = 5

9 all nine agents move to
the last slot 6, and fully consume it, getting 1

9 of it each. At t = τ6 = 5
9 + 1

9 = 2
3

slot 6 is exhausted. There are no feasible slots available anymore for any agent, so the
process stops.

S[1
6
] =

⎛

⎜
⎜
⎝

a\k 1 2 3 4 5 6
a1, a2 1/6 0 0 0 0 0

a3, ..., a8 0 1/6 0 0 0 0
a9 0 0 0 1/6 0 0

⎞

⎟
⎟
⎠ ;

S[1
3
] =

⎛

⎜
⎜
⎝

a\k 1 2 3 4 5 6
a1, a2 1/3 0 0 0 0 0

a3, ..., a8 0 1/6 1/6 0 0 0
a9 0 0 0 1/3 0 0

⎞

⎟
⎟
⎠ ;

S[3
7
] =

⎛

⎜
⎜
⎝

a\k 1 2 3 4 5 6
a1, a2 3/7 0 0 0 0 0

a3, ..., a8 0 1/6 1/6 2/21 0 0
a9 0 0 0 3/7 0 0

⎞

⎟
⎟
⎠ ;

S[1
2
] =

⎛

⎜
⎜
⎝

a\k 1 2 3 4 5 6
a1, a2 1/2 0 0 0 0 0

a3, ..., a8 0 1/6 1/6 2/21 1/14 0
a9 0 0 0 3/7 1/14 0

⎞

⎟
⎟
⎠ ;

S[5
9
] =

⎛

⎜
⎜
⎝

a\k 1 2 3 4 5 6
a1, a2 1/2 0 0 0 1/18 0

a3, ..., a8 0 1/6 1/6 2/21 8/63 0
a9 0 0 0 3/7 8/63 0

⎞

⎟
⎟
⎠ ;
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S[1] = S[2
3
] =

⎛

⎜
⎜
⎝

a\k 1 2 3 4 5 6
a1, a2 1/2 0 0 0 1/18 1/9

a3, ..., a8 0 1/6 1/6 2/21 8/63 1/9
a9 0 0 0 3/7 8/63 1/9

⎞

⎟
⎟
⎠ ;

Lemma 3 (i) In the Serial allocation, saRa + ... + sak ≥ τk for any a ∈ A, k ∈ N,
k ≥ Ra. If sak > 0, then saRa + ... + sak = τk .

(ii) In the Serial consumption process, whenever Ra < Rb agent a is strictly behind
agent b until she “joins” b, and after that their consumption is identical.

Proof (i) Indeed, saRa + ... + sak is the total amount of slots Ra to k, consumed by
agent a. She eats slots from left to right, always consuming from the earliest still
not exhausted slot. Given that τk is the moment when slot k is finished, she is
consuming on [1, ..., k] up to τk . If sak > 0, then she consumes slot k up to the
moment it is eaten away.

(ii) is obvious.
��

We will also need to define more general “eating” procedures in the same spirit.
“Serial allocation with delays” SD = SD(R, σ ) obtains when all agents always

consume their best still available goods, and do it with the same uniform speed, but
have different starting times. Each agent a only starts consumption at a prescribed
time σa (she remains idle on the time interval [0, σa]). SD(R) is thus determined by
the vector of delays σ = (σa1, ..., σan ).

Alternatively, fix R, and pick any allocation P . It can be thought of as a result
of a (general) “consumption process (defined by P )” P[t], where agents simultane-
ously eat from slots, with the same constant unit speed, over the time period [0, 1].
Consumption still occurs in decreasing order of preferences (according to R), “left
to right”–each agent consumes first from her best slot, then goes to second best, etc.
However, now they do not eat each next slot up to the moment it is exhausted. Instead,
each agent a only eats the share pak of each slot k, which is “prescribed” to her by the
given allocation P , and then she is forced to move on.

Moreover, let pa = (pi , pi+1,..., pk, ...) be an allocation of slots for an agent a,
born at slot Ra = i . We can think of it as a result of an individual consumption process
pa(t), defined for t ∈ [0, 1]. This agent a is assumed to consume slots along the time
period [0, 1] with constant unit speed, moving from left to right. And she is entitled
exactly to the share pk of each slot k ≥ i .

At time t this agent a will be consuming at a slot r = r(t, pa), such that
r−1∑

j=i
p j ≤

t ≤
r∑

j=i
p j .

Let pa = (pi , pi+1,..., pk, ...) and qa = (qi , qi+1,..., qk, ...) be two possible indi-
vidual allocations for an agent a, born at slot Ra = i . By the definition she ordinally

prefers pa to qa (we write it as pa dom qa), if and only if
k∑

j=i
p j ≥

k∑

j=i
q j for all

k ≥ i .
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Lemma 4 (obvious from the definition above) pa domqa, if and only if r(t, pa) ≤
r(t, qa) for all t ∈ [0, 1].
In words, pa domqa iff agent a at P(t) is always “behind” her position at Q(t).

Consider now an instance � = (A, N , R, z).
We denote by |S(�)| the total quantity of slots assigned to all agents together under

S(�) (it is the sum of all elements of the S(�) matrix).
More generally, we denote by |P(τ )| the sum of all elements of thematrix P(τ ), the

partial allocation at time τ in the consumption process P[t], and by |P(τ, r)| the sum
of all elements in first r columns of P(τ )—the total amount of first r slots consumed
by the moment τ under the consumption process P[t].

Let Z [ j, k] = ∑

j≤i≤k
zi be the total server capacity over the slots j to k; and let

N [ j, k] be the set of agents born between slots j and k (inclusive), with n[ j, k] =∑

j≤i≤k
ni = |N [ j, k]| be the total number of agents born between slot j and slot k.

As a preliminary result, we give formulae to find the slot where an agent with
given birth date consumes in S[t], and more generally in SD(σ )[t], at any given time
t ∈ [0, 1].
Lemma 5 (i) In the Serial consumption process S[t] under birth profile R
(ia) The switchingmoment τk (the time atwhich slot k is exhausted) is τk = min

j≤k

Z [ j,k]
n[ j,k] .

If an agent a gets positive share of k, then τk = min
j≤Ra

Z [ j,k]
n[ j,k] .

(ib) At any moment t agents a born at Ra consume from the slot k(a, t) ≥ Ra such
that

k(a, t) = min
k≥Ra

{

k : min
j≤k

Z [ j, k]
n[ j, k] ≥ t

}

= min
k≥Ra

{

k : min
j≤Ra

Z [ j, k]
n[ j, k] ≥ t

}

or, k(a, t) is the earliest slot k such that tn[ j, k] ≤ Z [ j, k] for all j ≤ k.
In other words (given (i)), k(a, t) is the earliest slot k ≥ Ra with τk ≥ t (i.e., the
earliest one not exhausted before time t).

(ii) In the Serial consumption process with delays, under birth profile R and vector
σ of delays

(iia) The switching moment τk is the smallest τ among those for which∑

a∈N [ j,k]
(τ − σa) = Z [ j, k] for some j ≤ k

(iib) At anymoment t agent a born at Ra with delayσa consumes from the slot k(a, t) ≥
Ra, the earliest slot k with τk ≥ t . In other words, it is the earliest slot k such that∑

a∈N [ j,k]
(t − σa) ≤ Z [ j, k] for all j ≤ k.

Proof (ia) Note that all agents born up to slot k consume at slots [1, ..., k] during
period [0, τk] (as long as slot k is still partially available they do not go beyond
it).
In particular, for any j ≤ k, all agents born on [ j, ..., k] consume at slots [ j, ..., k]
during period [0, τk]. Hence, τkn[ j, k] ≤ Z [ j, k] for any j ≤ k.
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Let now l be the earliest slot such that agents born at it receive positive share of
slot k in the allocation S. Each such agent consumes at slot k at least during time
period [̃τ , τk], where τ̃ is the latest switching moment before τk . Then:

– All agents born on [l, ..., k] consume at slot k during time [̃τ , τk]. Indeed, k is
< partially > available and feasible for them; but no other slot from [l, ..., k] is
available, or agents born at l would be eating there too.

– All agents born on [1, ..., l−1] consume at slots [1, ..., l−1] during the whole
time [0, τk]. Indeed, they do not consume slots after k, since k is available;
if any of them would move to eat a slot from [l, ..., k − 1] during this time,
then they would remain on this interval up to τk , hence there would be a slot
on [l, ..., k − 1] available up to τk and agents born at l would be consuming it
instead of k. Hence, during time period [0, τk] slots [l, ..., k] are eaten only by
agents from N [ j, k].

– All slots [l, ..., k] are exhausted by time τk (slots [l, ..., k − 1] are finished by
τ̃ , since at that time agents born at l already eat at slot k).
Given all this, we have τkn[l, k] = Z [l, k]. And if an agent a gets positive
share of k, then l ≤ Ra .

(ib) is obvious given (ia); (ii) is proven in the same way as (i).
��

Proposition 2 Serial rule is resource and population monotonic, and consistent.

Proof Let � = (A, N , R, z); �′ = (A, N , R, z′), with zk = z′k + ε for some k and
ε > 0, and zl = z′l for all l �= k; and �′′ = (A′, N , R′, z), with A′ = A ∪ {e},
R′|A = R.

Pick any a ∈ A. By Lemma above, the slot at which a consumes at any time t is

k(a, t) = min
k≥Ra

{

k : min
j≤Ra

Z [ j,k]
N [ j,k] ≥ t

}

, which is at � later than at �′, but earlier than at

�′′. This is because, when we move from � to �′ all Z [ j, k] (weakly) increase, while
when we move � to �′′ all N [ j, k] (weakly) increase.

Consistency is obvious.12 ��
Lemma 6 Let P = SD(R, σ 1) and Q = SD(R, σ 2) be Serial allocations with delays
where only one agent a is delayed: and σ 2

a > σ 1
a ≥ 0, while all σb = 0 for all b �= a.

This agent a then ordinally prefers her assignment Pa to her assignment Qa.

Proof At anymoment t , in both P[t] and Q[t], agent a eats at the earliest slot k(a, t, σ )

(at or after Ra) among those with switching moment at least t .
Fix k ≥ Ra . In each of P[t] and Q[t], its switching moment τk(σ ) =

min {τ ∈ [0, 1] |τ(n[ j, k] − 1) + (τ − σa) = Z [ j, k] for some j ≤ k }.
Denote by τ(σ, t, k, j) the unique τ for which τ(n[ j, k]−1)+(τ − σa) = Z [ j, k].

Sinceσ 2
a > σ 1

a , we have τ(σ 2, t, k, j) > τ(σ 1, t, k, j) for each j , and hence τk(σ
2) >

τk(σ
1), for all k. Therefore, k(a, t, σ 1) ≤ k(a, t, σ 2), i.e. agent a in P[t] always

consumes behind agent a in Q[t]. ��
12 Note that Serial rule is obviously consistent even on the general domain with strict preferences over
deterministic objects.
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Proposition 3 Serial rule is strategy-proof.

Proof Let � = (A, N , R, z), a ∈ A, and R′ is such that R′
b = Rb for all b �= a.

Assume agent a at true profile R contemplates manipulation by announcing R′
a .

Let S[t] be the Serial consumption process given R, and P[t] be the Serial con-
sumption process given R′. Let Sa = (sa1, ..., sak, ...) and Pa = (pa1, ..., pak, ...) be
agent a’s allocations in S and P .13

There are two possibilities.
(1) Suppose R′

a < Ra . Define �′′ = (A, N , R, z′), where z′k = zk − pak for
k < Ra and z′k = zk otherwise. Thus, slots’ capacities between R′

a and Ra are
decreased exactly by the shares assigned to agent a under misreporting. For this �′′,
consider Q[t], the Serial consumption process with delays σ , where σa = ∑

k<Ra

pak ,

while all σb = 0 for all b �= a. It is easy to see that in the final allocation Q agent
a will get Qa = (0, ..., 0, paRa , ..., pak, ...) (and all other agents will get the same
assignments as in P).

If her real birth date is Ra then she is indifferent between Qa and Pa . But by Lemma
6 and Proposition 2, she prefers Sa to Qa .

(2) Suppose R′
a > Ra .

At any moment t , agent a eats at the slot kS(a, t) in S[t] and at the slot kP (a, t)
in P[t]. The k(a, t) is earliest slot after she is born, among those with the switching
moment at least t . We need to show that kS(a, t) ≤ kP (a, t); we only need to consider
kS(a, t) > R′

a .
Now, for any k ≥ R′

a and j ≤ k, we have NS[ j, k] ⊂ N P [ j, k] (if Ra < j < R′
a

then in P[t] the set NS[ j, k] would not contain agent a, but N P [ j, k] would).
Hence, min

j≤k

Z [ j,k]
nS[ j,k] ≥ min

j≤k

Z [ j,k]
nP [ j,k] , and so

{

k ≥ R′
a : min

j≤k

Z [ j,k]
nS[ j,k] ≥ t

}

⊃
{

k ≥ R′
a : min

j≤k

Z [ j,k]
nP [ j,k] ≥ t

}

.

We then have

kS(a, t) = min
k≥Ra

{

k : min
j≤k

Z [ j,k]
nS[ j,k] ≥ t

}

= min
k≥R′

a

{

k : min
j≤k

Z [ j,k]
nS [ j,k] ≥ t

}

≤

≤ min
k≥R′

a

{

k : min
j≤k

Z [ j,k]
nP [ j,k] ≥ t

}

= kP (a, t). ��

Nowwe turn to RandomPriority rule. It is easy to see that for any ordering of agents
the corresponding Priority rule is resource and population monotone, and consistent.
Thus, Random Priority rule, being their averaging, is also resource and population
monotone. However, it is not consistent.

Proposition 4 Any Random Priority allocation is envy-free.

Proof Fix an instance � = (A, N , R, z), and any two agents a and b. Consider any
ordering π : b1 �π ... �π bn of the set A of agents, such that a �π b. Let π ′ be
almost the same ordering as π , except that agents a and b switch positions. We look
at Priority allocations corresponding to these orderings: P = Pπ and P ′ = Pπ ′

. Let

13 Feasibility implies sak = 0 for k < Ra , and pak = 0 for k < R′
a .
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H = 1
2 P + 1

2 P
′. It is sufficient to show that in any such allocation H agents a and

b do not envy each other. (RP allocation is an averaging of n!
2 allocations H , and No

Envy property is preserved by linear combinations).
Agents who come before a in π make the same choices under both P and P ′, and

agents who come after b in π do not affect assignments of a or b in both our Priority
allocations. Thus, we can assume without loss of generality (simply deleting early
agents and subtracting their assignments from z) that agent a is the first and agent b
is the last in π . Let A′ = A\{a, b}.

It is enough to show that agent a lexicographically prefers her assignment in P to
agent’s b assignment in P ′, and her assignment in P ′ to agent’s b assignment in P
(the same fact for agent b is shown in the same way). The first statement is immediate,
since in π agent a is the first and gets the best for her feasible assignment in �.

Consider the partial allocation P̃ in P (and P̃ ′ in P ′), just before the last agent b
(or a) picks her assigned slots. Next, reorder these n − 1 first agents, putting the first
agent a (or b) in the last, (n − 1)-th position, and consider the corresponding Priority
allocation S (or S′) for those n − 1 agents. Both those allocations are efficient ones
for fist n − 1 agents in the ordering π (or π ′). We know that all efficient allocations
use exactly the same total amount of server’s capacity at each time slot. Thus, both P̃
and S leave the same residual vector z̃ for the remaining agent b to pick time shares
from (and both P̃ ′ and S′ leave the same residual vector z̃′ for the remaining agent a).

Hence, agentb gets exactly the sameassignment in P and in thePriority allocationQ
corresponding to the ordering A′, a, b; while agent a gets exactly the same assignment
in P ′ and in the Priority allocation Q′ corresponding to the ordering A′, b, a (here A′
is always ordered in the same way—like in π or π ′).

We are thus left to show that agent a lexicographically prefers her assignment in Q′
to the assignment of agent b in Q. Agents in A′ make the same choices in Q and Q′,
and so leave the same residual vector of slot’s capacities to agents a and b. Because
of that, without loss of generality we can assume that A′ = ∅ and so there exist only
agents a and b.

Thus, we only need to show that in any problem with just two agents a and b, agent
a prefers her assignment in Priority allocation Q′, corresponding to the ordering b, a,
to the assignment of agent b in the Priority allocation Q, corresponding to the ordering
a, b. Or, in other words, that given any vector z of slots capacities, our agent a prefers
the best assignment she can get after b made her pick, to the best assignment she can
get after her “clone” (agent born on the same date as a) made her pick. But this is very
easy to see:

If Rb > Ra then agent b starts picking slots shares later than the clone of agent a,
and so gives to the agent a (lexicographically) better residual vector of capacities.

If Rb < Ra then agent b picks some slots shares before the birth dates of the clone
of agent a, and then picks the same slots shares, but finishes earlier; so she also gives
to the agent a better residual vector of capacities. ��
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7 Concluding comments

1. We presented an interesting and important in applications new preference domain
for random assignment model, where finally properties of efficiency, strategy-
proofness,and envy-freeness become compatible. Both Serial and Random Priority
mechanisms turn out to satisfy these axioms, and this is a non-trivial fact.14 Turning
to queueing rules, Uniform also satisfies all three properties, but, surprisingly, FCFS
(and FCLS) fail both strategy-proofness and no-envy.

Note that S, RP, and U are different rules, even though they often result in the same
allocation.

Example
Let A = {a, b, c}, K ≥ 5, and all zk = 3/5. Suppose Ra = Rb = 1, Rc = 2. It is

easy to see that for this instance

S =

1 2 3 4 5

a 3
10

1
10

1
5

1
5

1
5

b 3
10

1
10

1
5

1
5

1
5

c 0 4
10

1
5

1
5

1
5

, RP =

1 2 3 4 5

a 9
30

5
30

4
30

6
30

6
30

b 9
30

5
30

4
30

6
30

6
30

c 0 8
30

10
30

6
30

6
30

,

U =

1 2 3 4 5

a 3
10

1
5

1
5

1
5

1
10

b 3
10

1
5

1
5

1
5

1
10

c 0 1
5

1
5

1
5

4
10

.

As an illustration, let us calculate RPc2. In 1
3 of the 6 orderings c is the first in the

ordering and so she gets all z2 = 3/5. In another 1
3 of the 6 orderings c is the second;

so the first in the ordering agent (a or b) gets the whole z1 = 3/5 from slot 1 and then
2/5 from slot 2. Thus, c gets the remaining 1/5 from slot 2. Finally, when c is the last
she does not get anything from slot 2. We have RPc2 = 1

3 (3/5 + 1/5 + 0) = 4
15 . ��

2. One of the concerns in the queueing literature (see also Hougaard et al. (2014)
for the random assignment on single-peaked domain) is to minimize “delays”. In our
model, average delay is the same for all efficient allocations. We can however look at
the worst case scenario for the agents who mostly want their jobs to be finalized as
soon as possible, and try to minimize the longest possible (total) delay.

Define (total) delay for an agent a, born at Ra and whose job is fully done at slot
k, to be Da = k − Ra .

It is known that RP fares as bad as possible with respect to minimizing max
a∈A

Da .

Surprisingly, S is as bad. Consider K = n, all zk = 1, and Ra1 = Ran = 1, Rai = i for
all i �= 1, n. Here FCFS minimizes maximal delay (everybody has delay 1). However,
both RP and S have maximal delay n − 1, since in both rules agents a1 and an get

14 Note that this is not true on the single-peaked domain, and it is still unknown for the symmetric
singe-peaked domain.
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positive fraction of slot K = n, and so Da1 = Dan = n − 1. (In fact, for this instance
RP=S.)

3. All three “good” rules we discuss, S, RP, and U, satisfy “no forecast”. Another
similar requirement one might think of is “no memory”: the exact way the slots before
k were distributed does not affect how slot k itself is allocated (though it might affect
the demand of agents—in case their jobs were partially processed before k). This one
is however less natural and more difficult to define. One way is to assume that at slot k
the mechanism can only observe agents’ names (this is only if non-anonymous rules
are allowed) and and their residual demand.

It is easy to see that Serial15 and Uniform rules satisfy this property, while FCFS (as
well as FCLS) fail it. All Priority rules (which are not symmetric!) have no memory
as well. It seems that RP is no memory too.

Moreover, S, and U (and probably RP too), are “stationary”, as defined below.
Consider the set of all “one slot distribution functions” g : [0, 1]n ×R+ → [0, 1]n ,

g : (d, z) �−→ (sa1, ..., san ), symmetric with respect to first n variables, which satisfy:
0 ≤ sa ≤ da for all a;

∑

1≤i≤n
sai ≤ z; and

∑

1≤i≤n
sai < z implies all sa = 1. The class

� of stationary (and ETE and efficient) rules consists of fg which distribute vector of
residual demands at each slot according to the given g.

We have U , S ∈ �. Indeed, U distributes z equally, subject to no one getting more
than her da . S aims to equalize dai as much as possible (by satisfying first the largest
demands up to the level of 2nd largest demands, then satisfying agents with those
together, etc.).

A natural question would be whether there exist other attractive rules in � (in
particular, ones which satisfy the properties we discussed above).
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