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Inverse design of arbitrary optical helicity patterns
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Superposing multiple plane waves can generate helicity lattices in which the optical helicity varies regularly in
space. Here we propose an inverse design method for constructing arbitrary helicity structures based on placing
a digital object consisting of dielectric inclusions in three-dimensional space. We apply the method to design
structures that reproduce two-dimensional lattices embedded within a three-dimensional region using only a
single plane wave as an input. In order to demonstrate the power and flexibility of our method, we go beyond
the paradigm of a regular lattice and propose structures which can create arbitrary images consisting of regions
of varying helicity, again using only a single plane wave as an input.
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I. INTRODUCTION

The concept of chirality appears across the sciences and
describes a phenomenon where an object cannot be super-
imposed on its mirror image. Circularly polarized light fits
the criteria of a chiral object as spatial inversion transforms
left-handed circularly polarized light into its right-handed
form—the chiral structure is the combination of its propa-
gation direction and polarization. This property makes light
with circular polarization exert influence on other chiral ob-
jects with which it interacts. For example, the dependence of
a chiral molecule’s absorption cross section on the type of
circularly polarized light that illuminates it is described by an
effect known as circular dichroism (see, for example, [1]). In
essence, the rate of excitation is sensitive to the molecule’s
handedness and that of the illuminating light. The degree to
which an electromagnetic field influences such an interaction
can be related to a product of the field vectors, a parity-odd
scalar density called optical chirality [2] (originally intro-
duced by Lipkin as the scalar component of the “00-zilch” [3],
but not assigned a physical interpretation at that early stage).
In our example, we are interested in monochromatic fields.
For this case, the optical chirality is equal—up to a con-
stant [4]—to a quantity called electromagnetic helicity [5].
Familiar from particle physics, as well as analogous quantities
in plasma physics [6], helicity describes the projection of the
spin angular momentum onto the direction of propagation.
Our specific focus is the electromagnetic helicity density (see,
e.g., H [7]), which for a monochromatic plane wave of fre-
quency ω reads

H = − i

4cω
(E · H∗ − E∗· H), (1)
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where E and H are the complex electric and magnetic fields,
respectively, and c is the speed of light.

A. Helicity lattices

We will consider circumstances where the helicity density
given by Eq. (1) varies regularly in space and forms a so-called
helicity lattice [8], a periodic structure resembling the arrange-
ment of intensity patterns in optical lattices. Helicity lattices
are defined by having a helicity density that varies in space
but an electric field intensity that remains constant—the latter
feature is of particular importance when considering the inter-
actions of chiral matter with the lattice. A chiral optical force
mediated by the helicity gradients in the field can accelerate
enantiomers (molecular species of opposite handedness) in
different directions [9], providing a means of separating them.
Importantly, the homogeneity of the electric field intensity
in a helicity lattice means that achiral optical forces are (in
principle) completely suppressed, allowing the much weaker
chirality-dependent forces to be isolated. Oppositely handed
species often exhibit drastically different properties, so that
methods for efficiently separating and distinguishing them
are an active area of research—for a comprehensive review,
see [10]. Helicity lattices are already finding their place in this
field; for example, a scheme was recently proposed to utilize
helicity lattices in separating cold, chiral molecules via their
chirality-sensitive quantum phase transitions [11].

With their potential in industrial applications, the study of
helicity lattices is ready to move from theoretical curiosity
toward an exploration of more practical methods for their gen-
eration. In their original formulation [8], helicity lattices were
discovered by superimposing up to six idealized plane waves
with particular well-defined polarizations. Aside from the im-
possibility of generating a true plane wave in the laboratory,
the need to align and manipulate up to six differently polarized
beams is a significant technical challenge—our goal in this
work is to define a proof-of-principle method for generating
helicity lattices in a more robust way. The problem is similar
to that encountered in generating magneto-optical trapping
potentials, where again up to six beams can be required. A
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way of circumventing this issue in that context has been to
use reflective or diffractive optical elements to generate the
required number of beams in an integrated and compact ap-
paratus (see, for example, [12–14]). While it may indeed be
possible to follow similar design principles to create a helicity
lattice, the additional complexity found therein (especially
regarding polarization sensitivity) leads us to take a different
approach, employing the techniques of inverse design.

B. Inverse design

Traditional “forward” design of optical components relies
on a human designer using some combination of general
principles, intuition, and previous experience to produce a
candidate design which is then tested and refined against some
desired figure of merit. Inverse design turns this paradigm
around—only the figure of merit is specified, following which
a computer algorithmically builds up an appropriate device.
The vast space of possible designs originally necessitated
some imposition of geometrical constraints in early work in
this direction [15,16], for example, the sizes and positions
of fixed circles and rectangles would be altered such that an
improved design is reached. The introduction to photonics
of adjoint methods from aerospace engineering [17], coupled
with increased computing power, allowed such constraints to
be lifted, kicking off the era of completely free-form photonic
inverse design [18,19]. The combination of this and the rel-
atively recent ability to manipulate matter on the micro and
nanoscales has initiated an explosion in the application of in-
verse design methods (for a comprehensive review, see [20]).
In contrast to the earlier constrained approaches, the pool of
available designs is unlimited—the shapes of the structures
are dictated by their impact on performance (and manufac-
turability) and are no longer guided by intuition or arbitrary
constraints. Some of the more recent diverse applications of
these ideas have been concerned with the conversion of solar
energy [21], integrated photonic devices [22], subwavelength
focusing [23], and heat transfer [24]. Most recently, ID has
been applied to atomic coherence [25], light-matter interac-
tions [26], and nuclear quantum optics [27].

As discussed in the previous sections, it has been shown
analytically in Ref. [8] that helicity lattices can be constructed
from up to six idealized plane waves in various configurations,
and that we would like to come up with a way of relaxing
this requirement. To accomplish this, we will use a freeform
inverse design approach to generate a dielectric structure that
can refract a single beam multiple times in such a way that
a lattice structure emerges in a given plane. The placement
of the elements forming such a structure will turn out to be
nonobvious and not easily inferred from a wave analysis point
of view. The desired outcome will be chosen, and an algorithm
will adjust the geometry to bring a chosen merit function as
close as possible to a designated goal.

This paper is organized as follows. In Sec. II, we will
set up the problem of helicity lattice generation in terms
of an optimization task, develop the mathematical structure,
and propose an algorithm capable of reproducing a helicity
lattice. In Sec. III we will then outline the specifics of the
actual inverse design process. Subsequently, in Sec. IV we
will present the results of two single-beam simulations repro-

FIG. 1. The schematic of different stages of building the dielec-
tric structure using a single beam source. As it grows in size and
complexity, the more the underlying field approximates the helicity
lattice.

ducing lattices originally formed by a superposition of three
sources. Additionally, in that section we present an approach
where we simulate a helicity density that is not periodic and
can take an arbitrary (user-defined) shape. Critical analysis of
the method and conclusions follow in Secs. and V and VI.

II. DESCRIPTION OF THE PROBLEM

We aim to produce a two-dimensional optical pattern re-
sembling a helicity lattice as closely as possible. Instead of
superposing multiple light sources, we want to effect it by
shining a single beam onto a crystallike (not uniformly pe-
riodic) structure that will refract the beam in such a way to
ensure that a helicity lattice emerges. Our idea is to create such
a structure algorithmically; instead of iterating over possible
geometries, we let an algorithm grow the shape of the crystal.
This idea is shown schematically in Fig. 1, where we see the
underlying field progressively changing and starting to resem-
ble the target lattice as more inclusions are added. At every
step, the algorithm will decide on the optimal placement of a
dielectric inclusion—we will use an inverse design algorithm
based on the adjoint method.

The adjoint method relies on the fact that Maxwell’s equa-
tions in (reciprocal) media are symmetrical with respect to
the exchange of source and observation points; this is known
as Onsager reciprocity [28].1 This concept is most naturally
expressed in terms of the (dyadic) Green’s tensors that solve
Maxwell’s equation via the inhomogeneous Helmholtz equa-
tion. The correspondence between the sources in terms of
Green’s tensors has been outlined in, for example, [29], thus
we are going to state the important results which form the
foundational symmetry argument used in the adjoint method.
The Cartesian component i j of a Green’s tensor describing
an electric field at r1 that originates from a pointlike electric
dipole source at r2 can be written as GEP

i j (r1, r2). Analogously,
the elements of a Green’s tensor relating magnetic source with
its field are GHM

i j (r1, r2). We can express the source-observer

1This type of reciprocity is often known as Lorentz reciprocity
when applied to electrodynamics.
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symmetry in reciprocal media in terms of GEP/HM as

GEP/HM
i j (r2, r1) = GEP/HM

ji (r1, r2). (2)

The ith component of an electric/magnetic field at r2 arising
from the jth component of an electric/magnetic dipole at r1

is equal to the jth component of an electric/magnetic field
at r1 from the ith component of an electric/magnetic dipole
at r2. This relation shows that a purely electric or magnetic
source can be exchanged with its respective field at the ob-
servation point. The relationship is not as straightforward for
an electric/magnetic field radiating from a magnetic/electric
dipole. If we let GHP

i j define a Green’s tensor encapsulating
a magnetic field from an electric dipole, and GEM

i j contain an
electric field from a magnetic dipole, the relation reads (see,
e.g. [29])

GEM
i j (r2, r1) = −GHP

ji (r1, r2). (3)

Equations (2) and (3) enable us to simplify the expression
describing the interplay between the fields and our goal struc-
ture. This is discussed in detail in the next section.

A. Choosing a merit function

To create an algorithm capable of producing a helicity
lattice with a desired geometrical pattern, we need to choose
a merit function that will output a number that encodes the
closeness of a given field to the goal, which we will aim to
optimize. Inspired by [30], wherein a method of controlling
3D optical fields and their intensity is proposed, we seek to
control the value of helicity density at points in 3D space.
Since we possess a goal pattern H0 given by the helicity
lattices reported in [8], a natural choice would be to define a
set S of N critical points, where H0 is “close” to maximum and
minimum values, respectively. A simulated helicity density
H[E, H], can be compared with the values H0 takes at these
coordinates; hence, a measure of similarity between the two
fields can be established. Assuming that our goal structure
lies in the plane z = z0, we define the set of points S, as a
collection of N tuples of the form si = {xi, yi, z0}. We then
seek points si for which H0(si) is close to its minimum and
maximum. We can then define an arbitrary bound a ∈ (0, 1]
and form the set S of size N , such that si ∈ S if

H0(si ) < a · min[H0] or H0(si) > a · max[H0]. (4)

Our simulation space is discretized, thus the N is finite and
will depend on the size of the domain and the resolution, as
well as the value of a. The merit function �[E, H] will thus
take the form

�[E, H] =
N∑

k=1

θ2
k (sk ), (5)

where,

θk (sk ) ≡ H[E, H](sk ) − H0(sk ), (6)

is the error between the goal pattern and the simulated field at
a coordinate sk . The closer � is to zero, the closer H[E, H]
will approximate the desired pattern H0. The merit function
� is a sum of N functionals θ2

k , that are evaluated at sk; by

linearity, their variation can be evaluated as

δ�[E, H] = δ

N∑
k=1

θ2
k (sk ) = 2

N∑
k=1

θk (sk )δθk (sk )

= 2
N∑

k=1

θk (sk )δH[E, H](sk ). (7)

We want to calculate the δH[E, H] at each site in S. H[E, H]
is dependent on the complex fields E and H, suggesting that
we write

δH[E, H] = ∂H
∂E

· δE + ∂H
∂E∗ · δE∗

+ ∂H
∂H

· δH + ∂H
∂H∗ · δH∗. (8)

By plugging in the definition of helicity density from Eq. (1)
into Eq. (8) and simplifying, we obtain

δH[E, H] = 1

2cω
Re{H∗ · δE − E∗ · δH}, (9)

where all the fields are evaluated at sk .
The final step in the method is calculating δE and δH. We

employ an approach called shape calculus, which is estab-
lished on understanding the relationship between Maxwell’s
equations and small changes in geometry [31]. In our present
problem, this manifests as the link between introducing small
pieces of dielectric material and their effect on the existing
electric and magnetic fields. The principle behind evaluating
these can be illustrated with the example of the electric field E.
The effect of modifying the geometry by adding a piece of a
polarizable dielectric will cause a change δE = Eafter − Ebefore

in the electric field, with a similar argument applying for
the magnetic field H; δH = Hafter − Hbefore. As discussed in
detail in, for example, [29], the variations in the fields E and
H are given by a product of a Green’s tensor G with a source
current P,

δE(sk ) =
∫

φ

d3r GEP(sk, r)P(r), (10)

δH(sk ) =
∫

φ

d3r GHP(sk, r)P(r), (11)

where φ is a 3D region containing the inclusion. Taking into
account the reciprocity relations in Eq. (3), we can write the
variation in θ2

k at a point sk as

δθ2
k (sk ) = 1

2cω

∫
φ

d3r Re{P(r) · Fk (r, sk )}, (12)

where we defined

Fk (r, sk ) = [H∗(sk )GEP(r, sk )+E∗(sk )GEM(r, sk )]θk (sk ).
(13)

Here lies the most important step of the adjoint method; since
the structure of Eq. (13) is that of an electric field, that is,
a Green’s tensor multiplying a source current at the observa-
tion point sk , Fk (r, sk ) is the kth adjoint field. Exploiting the
source-observer symmetry in reciprocal media, each source
at sk provides us with a field profile at r. It is worth noting
that the use of reciprocity means that Eq. (13) contains only
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Green’s tensors which have the optimization position in the
observation point. If the converse was true, i.e., the reciprocity
did not hold, we would have the optimization position as the
source point, i.e., GEP/EM(sk, r), necessitating a new simu-
lation for each candidate inclusion (see [29] for a thorough
explanation).

We can further simplify Eq. (12) by taking the dielectric
inclusion’s relative permittivity εI to be homogenous and
isotropic. The induced polarizability, P(r) can then be written
as

P(r) = 	εE(r), (14)

where 	ε ≡ εI − ε(0) is the difference in relative permittivity
between the inclusion and the background ε(0). Moreover, we
assume that the inclusion is sufficiently small that we can
take its center to be at r′, thus approximating the fields in the
integrand of Eq. (12) by their value at r′. This gives

δθ2
k (sk ) ≈ 	εV

2cω
Re{E(r′) · Fk (r′, sk )}, (15)

where V is the volume of the inclusion. We are only interested
in relative changes in the merit function between sites, thus the
scalar prefactor (	εV/2cω) can be ignored. This allows us to
finally write the variation in θ2

k at a site sk as

δθ2
k (sk ) ≈ Re{E(r′) · Fk (r′, sk )}, (16)

and by linearly adding N adjoint fields we have for the total
variation:

δ�[E, H]≈ Re

{
E(r′) ·

N∑
k=1

Fk (r′, sk )

}
= Re{E(r′) · F(r′)}.

(17)

The change (variation) in the merit function � is thus given
by the overlap between the forward field E and the adjoint
field F.

B. Advantages of adjoint method over brute force optimization

To find a structure producing a helicity lattice, one might
either use intuition or follow a brute-force process of building
it. The latter involves trying every coordinate one by one and
measuring what effects placing the inclusion there has on the
merit function. One then would narrow it down to the single
coordinate where the dielectric inclusion exerts the largest
influence and place it there. The whole procedure would have
to be repeated for every element added to the structure until
the goal field is reached. A 3D simulation would require a
number of iterations equal to the number of inclusions needed
to reach the goal, multiplied by n3, where n is the number of
grid points along the side of the simulation box.

By employing the adjoint method instead, we no longer
need to check each coordinate to see how the function re-
sponds to adding an inclusion. This information is contained
in the δ�, an array of values corresponding to each coordinate
in the domain. By picking the highest value of the array,
i.e., placing the dielectric at the coordinate with the greatest
number, we are guaranteed to produce the highest change in
the function �. This process saves computational resources
and makes certain optimization goals feasible by dramatically
decreasing simulation time.

FIG. 2. A brute-force optimization in (a) and adjoint method
in (b). In (a) the algorithm has to iterate through every coordinate
in 3D space placing a test inclusion there and running a separate
simulation before it can determine the optimal location. In (b) the
adjoint method finds this coordinate by doing only two simulations:
the forward (F) and adjoint (A), depicted inside the central box. The
overlap of (F) and (A) produces the derivative field δ�, from which
a coordinate with the maximum value (red outline) is chosen to place
an inclusion there. Both (a) and (b) continue until the merit function
value can no longer decrease.

The comparison between the brute force and adjoint ap-
proaches is illustrated schematically in Fig. 2. The brute force
approach (left) scans each coordinate and measures the impact
on the merit function by placing a test inclusion there. Only
after finding the location with the highest influence does the
algorithm commit to placing the inclusion permanently. The
adjoint method (right) scans the 3D space for the highest
value of δ� from Eq. (17). It then places an inclusion there,
circumventing the need for additional simulations.

III. PROCEDURE

We aim to create a two-dimensional pattern embedded in a
three-dimensional region; it is, therefore, sufficient to generate
EM waves that agree with the goal lattice only at the particular
plane where the structure resides (say, z = 0). Every point
in space apart from the region immediately surrounding the
observation slice is thus a potential target for the placement
of a dielectric inclusion. Since we want our structure to allow
for physical access to the helicity lattice, we leave a margin of
width l at each side of the z = 0 slice. The simulation space is
discretized in units of wavelength; any design that we produce
can be adapted to an arbitrary length regime as Maxwell’s
equations are scale invariant (in the absence of charges or
currents, as is the case here). We define our optimization target
as H0, which is the normalized (between −1 and 1), analytical
expression for the chosen helicity lattice. We will choose the
parameter a, in line with Eq. (4), effectively controlling the
tolerance in any small mismatch between the lattice produced
and the goal.

The first step of the optimization process is to run the
simulation in the specified region and record the values of the
steady-state fields E and H, as shown in box A in Fig. 3. We
then construct the sources for the adjoint simulation (box B
in Fig. 3); at each site sk , we place dipoles whose amplitude
depends on the steady-state values of the fields and the pattern
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FIG. 3. Schematic illustration showing the adjoint optimization cycle (boxes ABCD), and the depiction of the comparison between the
goal structure and the simulated field in E. The control points are depicted in yellow, both pictorially, and symbolically, i.e., sk , inside the
expressions. The red dots, along with the red coloring of the fields’ E∗ and H∗symbols, signify the sources of the adjoint field (situated at the
yellow control points). Starting the cycle at A, we obtain the values of the fields E(sk ) and H(sk ) at the yellow control points, arising due to
the single light source with amplitude one MEEP unit (modeled as a plane wave, and depicted by the red arrow). In B, we use the field values
E(sk ) and H(sk ) from A, and use them as amplitudes of the adjoint dipoles (in red) that we excite at every control point sk , to produce the
adjoint field F. Then in C, we combine the fields from A and B obtaining the derivative of the merit function, i.e., δ� = E · F, and find the
coordinate where the value of δ� is the highest. In D, we place the dielectric inclusion at this coordinate, and rerun the simulation in A with
the updated geometry. The cycle repeats until the value of the merit function � is sufficiently low, i.e., the fields in box E look alike. The mesh
in C and D shows that a maximum value of δ� is sought across the 3D space; the algorithm is not favoring any particular plane, only a south
facing wall is being shown for clarity of the image.

defined at sk , i.e., E(sk ), H(sk ), and H0(sk ). At each sk , we po-
sition both an electric dipole with the amplitude θk (sk )H∗(sk ),
and a magnetic dipole with the amplitude θk (sk )E∗(sk ), where
θ (sk ) is defined in Eq. (6) and depicted schematically in
box E of Fig. 3. Running the backward (adjoint) simulation
concludes the first step. Upon recording the values of the
steady-state fields F, we combine them with the values of E
via Eq. (17). The result encapsulates the relationship between
the placement of a dielectric inclusion and a corresponding
change to the merit function �. In other words, picking a
coordinate rmax such that Re{E(rmax) · F(rmax)} is maximum
ensures that placing an inclusion at rmax will result in the
largest change in � (boxes C and D in Fig. 3). We then update
the geometry and repeat the previous step until the desired
pattern has been achieved.

The overall algorithm can be summarized in the following
way;

(1) First stage:
(i) Define a 3D simulation space; choose a plane where

the 2D helicity pattern is to be created and situate its
normalized analytical expression there.

(ii) In the chosen plane, pick a set S of critical points
sk , where the analytical function is “close” to its maximum
absolute values (box E in Fig. 3).

(iii) By running the forward simulation, obtain steady-
state values of the fields E and H at every point in the 3D
domain, including the points of interest sk (box A in Fig. 3).

(iv) Place electric and magnetic dipoles at every sp as
functions of the E(sp) and H(sp) at the first step. Obtain
the steady state values of the fields by running the adjoint
simulation (box B in Fig. 3).

(v) Combine the forward and adjoint fields, as in
Eq. (17). Pick the coordinate where the δ� is the highest

and place the dielectric inclusion there (boxes C and D in
Fig. 3).
(2) Second stage (iterative):

(i) Repeat steps (iii)–(v) from the first stage.
(ii) Repeat until the forward field approximates the de-

sired pattern at the chosen plane.

IV. RESULTS

Using the single beam technique supported by the adjoint
method, we have created the patterns approximating the helic-
ity density originally arising as a superposition of three waves
in two different configurations. While we have chosen just
two, many other noninterfering superpositions are realizable,
and the list of their explicit constituent light sources can be
found in [8].

The parameters defining the simulations are as follows.
All distances in all computations are expressed in units of
wavelength, and each has a chosen resolution parameter R
such that there are R pixels per wavelength. The dielectric
inclusions are chosen to be cubic with side length equal to
1/R wavelengths (i.e., one pixel) and are referred to hereafter
as “blocks.” In all simulations the relative permittivity of
the blocks was ε = 1.3, the coefficient a in Eq. (4) was set
to 0.3, the gap l was chosen to be three blocks (i.e. three
pixels, or 3/R wavelengths), and the incident plane wave is
y polarized and propagating in the x direction. All simula-
tions were performed using the FDTD library MEEP [32],
within which we used a built-in implementation of perfectly
matched layers [33] as boundary conditions at the edge of the
simulation box. The underlying code, along with detailed doc-
umentation can be found online at Ref. [34]. All plots showing
the helicity density H[ε0|E |2/2ω] are expressed in units of
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FIG. 4. Comparison between the goal pattern (upper left panel) and that obtained by using an inverse-designed structure and a single
source (upper right panel) for an originally three-source helicity lattice in a checkerboard configuration. The lower panels show the obtained
field’s normalized inhomogeneity in the square of the electric (left) and magnetic (right) fields, respectively. The simulation was run for 4000
iterations with resolution of 10 pixels per wavelength λ. The dimensions of the simulation box were 3 × 3 × 3 wavelengths plus the boundary
box .

electric field intensity scaled by the reciprocal of the angular
frequency.

A. Rectangular three wave superposition

We first use the above-described method to produce the
simplest two-dimensional helicity lattice, namely a rectan-
gular three-wave superposition that results in a checkerboard
pattern (see Table 2 and Fig. 3 in [8]), but here from a single
plane wave input. The goal and optimized patterns are shown
in the upper two panels in Fig. 4, with the lower two panels
here (and in the two subsequent figures) included for later
discussion in Sec. V. We observe that since the source plane
wave oscillates perpendicular to the lattice’s vertical lines of
symmetry, the resulting simulation approximates the helicity
lattice well (showing clear periodicity by agreeing with the
goal pattern at the H = 0 points) even in lower resolution
settings (i.e., less than six pixels per wavelength). The reason
for this is suggested by noting that the goal structure H0 has
the form

H0 = N cos[(2 −
√

2)πx] sin(
√

2πy), (18)

where the factor N carries the units of ε0|E |2/2ω. This lattice
has two orthogonal lines of symmetry: x = (2 − √

2)n/2 and

y = n/
√

2, n ∈ N, where H0 is zero. The algorithm can thus
independently influence the fields along those degrees of free-
dom more “naturally,” resulting in the outline of the correct
structure emerging at a very early point of the simulation
(<100 iterations, well before the 4000th iteration shown in
Fig. 4).

B. Triangular (diamond) three-wave superposition

The same number of sources as in the previous example,
albeit angled differently [8], produces a new lattice. The ana-
lytical expression in this case reads

H0 = N {− sin(2πx) + sin[2π (x − y)] + sin(2πy)}. (19)

The results of the optimization are plotted in Fig. 5, and for
this calculation we also show in Fig. 7(a) the geometry of the
resulting 3D dielectric crystal which, as anticipated, shows
no recognizable structures that could have been reached by
intuition.

In contrast to that described by Eq. (18), this lattice pos-
sesses more than two lines of symmetry. This can be inferred
from inspecting the arguments of the sin function in (19); for
n ∈ N, lines x = n/2, y = n/2, and y = x − n/2 are the zeros
of H0. As a result, it takes more iterations for the pattern
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FIG. 5. Comparison between the goal pattern (upper left panel) and that obtained by using an inverse-designed structure [see Fig. 7(a)]
and a single source (upper right panel) for an originally three-wave helicity lattice in a triangular (diamond) configuration. The lower panels
show the obtained field’s normalized inhomogeneity in the square of the electric (left) and magnetic (right) fields, respectively. The simulation
was run for 2000 iterations with a resolution of 14 pixels per wavelength λ. The dimensions of the simulation box were 2 × 2 × 2 wavelengths
plus the boundary box.

to become apparent as the initial blocks force the simulated
lattice to have the zeros at y = x − n/2, exploiting the wave
nature of the source and modulating the helicity density in
the diagonal direction. The other lines of symmetry emerge
later as more blocks are added to the structure, approximating
the original lattice to a precision controlled by the overall
resolution (number of pixels per wavelength).

C. Arbitrary helicity pattern

Although our technique has shown itself to be effective
in constructing helicity lattices, there is nothing in principle
tying it to a regular, repeating pattern (if we relax the ho-
mogeneous intensity requirement). The algorithm understands
any helicity pattern as a series of pixels, which can be viewed
as an input to the algorithm and therefore chosen arbitrarily.
To demonstrate this, we constructed a grayscale image of the
letter “G,” whose gray values were then normalized to lie
between −1 and 1 in the same way as the lattices previously
investigated. The algorithm was tasked with reproducing this
image; the results are shown in Fig. 6 and the corresponding
structure is shown in Fig. 7(b). We note that the algorithm
correctly distributes the regions of positive and negative he-
licity density (the inside of the G is positive), whereas the

outline of the letter has helicity density close to zero. The
shape itself is recognizable; however, some distortion occurs
and artifacts are present even though the simulation was left to
run for much longer than the lattices discussed in the previous
two sections (16 000 iterations, rather than 4000 and 2000, re-
spectively). The process constructs the base and the top of the
G first as these align with oscillations of the source field; the
“ripples” of positive helicity spread to the bounds of the shape,
and further details are added successively later. The size of
the simulation volume constrains the quality of the resulting
lattice; such images without periodicity and increased level of
detail require a large computational volume. Additionally, if
one was mostly concerned with the fidelity of the reproduced
image, another input beam could be incorporated into the
process to improve the quality and speed up the process.

V. ANALYSIS

In the case of analytical solutions for helicity lattices
(four sources or fewer), the electric field intensity can al-
ways be made homogeneous [8]. This is not always the case
for simulated structures, as can be observed in Figs. 4–6.
This important detail influences their potential experimental
use. As mentioned in the introduction, forces on atoms and
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FIG. 6. Comparison between an arbitrary user-defined helicity image (upper left panel) and that obtained by using an inverse-designed
structure [see Fig. 7(b)] and a single source (upper right panel) producing a helicity density pattern in the shape of a letter “G.” The lower
panels show the obtained field’s normalized inhomogeneity in the square of the electric (left) and magnetic (right) fields, respectively. The
simulation was run for 16 000 iterations with a resolution of 10 pixels per wavelength λ. The dimensions of the simulation box were 3 × 3 × 3
wavelengths plus the boundary box.

molecules in trapping potentials is constrained by optical
forces induced by gradients in the electric intensity. Thus,
to create an efficient helicity lattice, one would require the
absence of intensity gradients in the region spanned by the
structure to allow for interrupted chiral interactions between
the enantiomers and the lattice. The fields generated by our
simulation possess inhomogeneities due to the finite width
of the plane waves generating the helicity. For the lattices
shown in Figs. 4 and 5, the inhomogeneity is dependent on
the size of a computational vs observational region; the larger
the gap between the boundaries of a computational volume
and an observation box, the closer the source resembles a
plane wave. This, in turn, produces an electric field intensity
with smaller variations; an infinitely sized computational box
would allow one to obtain a perfectly homogenous intensity.
Consequently, a tradeoff exists between a reasonable compu-
tational time and fidelity of the lattice compared to the goal
structure. Routes toward reducing the larger inhomogeneity in
intensity exhibited by arbitrary patterns such as that shown in
Fig. 6 are not clear to us. Since they are artificially introduced
as a result of interacting fields, the relationship between their
shapes and the resulting intensity gradients is unclear. Future
work will address this issue and focus on developing more

sophisticated methods for producing an arbitrary pattern. An
additional merit function could be defined, specifically con-
trolling the intensity gradients. Additionally, a weight function
between the two merit functions would be introduced. A link
could potentially be established between certain shapes and
the homogeneity of the intensity; this could be revealed by a
machine-learning algorithm.

As can be seen in Fig. 7, some of the elements of the crystal
are “floating.” This is a particularly extreme example of the
structural integrity issues that arise in general in inverse design
(see, e.g., [35]). Such problems can be rectified by running
a longer simulation, effectively allowing the algorithm to fill
the larger gaps by chance and then manually removing any
remaining “islands” of the dielectric material. Alternatively, a
weight function can be implemented to penalize the algorithm
for placing isolated blocks. A similar issue occurs as the struc-
ture comprises two halves, allowing access to the lattice; the
crystal can be grown within the bounds of an existing structure
providing support, or additional dielectric elements can be
incorporated to join the two halves near the edges. When
considering manufacturing challenges for structures such as
this, it is worth recalling that Maxwell’s equations (without
charges or currents) are scaleinvariant, and therefore so are
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FIG. 7. The three-dimensional models of the crystallike structure. In (a), the arrangement produces the three-wave triangular (diamond)
lattice as shown in Fig. 5. In (b), the structure produces an arbitrary pattern (letter “G”) as shown in Fig. 6. In both cases the gap at the level
z = 0 is three blocks high. The red and blue regions show roughly the lattice pattern, i.e., where the helicity density H reaches positive and
negative values respectively.

the helicity lattices and the structures proposed here. Thus, at
this proof-of-principle stage, the choice of the size regime will
dictate the difficulty of potential manufacturing challenges.

VI. SUMMARY AND CONCLUSIONS

In this work, a gradient-based formalism was used to de-
velop a proof-of-principle scheme capable of reproducing a
helicity lattice pattern, only with a reduced number of input
sources. The problem was cast as a minimum-seeking algo-
rithm, iteratively growing a crystallike structure. This object
refracts a single beam in such a way as to reproduce the
effect of superposing multiple beams, resulting in the for-
mation of a helicity lattice. We have presented the results of
reproducing two originally three-wave helicity lattices using
a single source input. Additionally, we introduced a modified
scheme where the pattern to be reproduced was not a result
of superposing light sources but rather an arbitrary image
provided by the user. This approach opens up a possibility
for designing bespoke helicity patterns suited to the needs of
a particular experiment; it is worth mentioning that using the
same principles, a different merit function can be provided,
thus it appears to be possible to use versions of this method to
achieve structures arising from various mutual arrangements

of the electric and magnetic fields, not just those where a
helicity structure arises.

The simulations reproducing known helicity patterns serve
as proof-of-principle concepts and demonstrate the feasibil-
ity of using a single light source and a refracting object to
mimic the behavior of a field composed of multiple sources.
We have described how increasing the computational volume
approximates the plane wave more closely and, as a result,
produces an increasingly homogeneous intensity in the case
of known helicity patterns. We outlined possible strategies to
resolve the issue of intensity gradients in arbitrary patterns
bringing practical helicity lattices a step closer to reality.
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