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Abstract
In this work we address the role of the microstructural properties of a vascularised poroelastic material, characterised by 
the coupling between a poroelastic matrix and a viscous fluid vessels network, on its overall response in terms of pressures, 
velocities and stress maps. We embrace the recently developed model (Penta and Merodio in Meccanica 52(14):3321–3343, 
2017) as a theoretical starting point and present the results obtained by solving the full interplay between the microscale, 
represented by the intervessels’ distance, and the macroscale, representing the size of the overall tissue. We encode the influ-
ence of the vessels’ density and the poroelastic matrix compressibility in the poroelastic coefficients of the model, which are 
obtained by solving appropriate periodic cell problem at the microscale. The double-poroelastic model (Penta and Merodio 
2017) is then solved at the macroscale in the context of vascular tumours, for different values of vessels’ walls permeability. 
The results clearly indicate that improving the compressibility of the matrix and decreasing the vessels’ density enhances 
the transvascular pressure difference and hence transport of fluid and drug within a tumour mass after a transient time. Our 
results suggest to combine vessel and interstitial normalization in tumours to allow for better drug delivery into the lesions.

Keywords Poroelasticity · Asymptotic homogenization · Multiscale modelling · Vascular tumours

1 Introduction

The mechanical response of solid, deformable, media inter-
acting with fluid flowing within their pores is typically dealt 
with by means of the theory of poroelasticity (Biot 1955, 
1956a, b, 1962), and its numerous extensions developed in 
the past few decades. Such poroelastic systems are of para-
mount importance in the context of biomechanical problems, 
as they provide a sound basis to investigate the mechanical 
response of tissues (Byrne and Preziosi 2003), cells (Moe-
endarbary et al. 2013) and extracellular matrices (Han et al. 
2011).

While meaningful parameters related to stiffness, solid/
fluid volume changes, porosity and overall fluid hydraulic 
conductivity, can be sometimes estimated on the basis of 
experimental measurements (see, e.g. Jain and Baxter 1988; 
Netti et al. 1995; Jain et al. 2007 in the context of solid 
tumours), these are usually related to fields such as veloci-
ties, pressure and displacements evaluated at a macroscale 
level and performed on the basis of simplified models which 
cannot always accurately consider the actual role of the 
underlying pore structure at the microscale.

As such, it is desirable to provide a link between the pore 
and overall scales characterising the material in order to 
ensure that experimental results concerning real-world phys-
ical systems can be interpreted in the light of the properties 
and behaviour of the microstructure. This way, it becomes 
possible to enhance the reliability of routinely adopted 
experimental setups, as done in Dehghani et al. (2020), 
where the authors show that parameters measurements per-
formed over a not sufficiently long period of time can be 
highly inaccurate in terms of matrix compressibility. In addi-
tion, multiscale modelling strategies support the formulation 
of predictions which can inform the optimal microstructural 
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arrangements to aim at target mechanical properties, as in 
Penta et al. (2016) and Miller and Penta (2023).

In fact, while the theory of poroelasticity was first derived 
on the basis of reasonable physical principles, it was sub-
sequently formalised and rigorously derived by means of 
various averaging upscaling techniques, including Repre-
sentative Elementary Volume methods, Mixture Theory and 
Asymptotic Homogenisation, see, e.g. Cheng and Cheng 
(2016), Rajagopal (2007), Burridge and Keller (1981) 
and Penta et al. (2020) and references therein. This latter 
approach is particularly suitable to obtain closed formulas 
relating the poroelastic coefficients with auxiliary quanti-
ties which can be obtained via solving differential problems 
on a limited portion of the pore-scale domain when local 
periodicity applies.

In Dehghani et al. (2018), the authors perform a system-
atic study by computing the poroelastic coefficients arising 
via the asymptotic homogenisation technique numerically 
and primarily focussing on the interplay between compress-
ibility and porosity and its relevance in the context of bio-
materials and (tumour) tissue mechanics.

However, real-world systems such as biological tissues 
are usually hierarchical in nature, which means that they can 
exhibit different geometrical and functional properties across 
multiple scales, and that their overall behaviour depends on 
the complex interactions that happen between these various 
levels of organisation.

There has been a substantial focus on hierarchical model-
ling in poroelasticity in the past decades (Pena et al. 1998; 
Cowin et al. 2009), with an emphasis on systems where the 
pore-scale structure can only be clearly resolved at the fin-
est level of organisation. In fact, the authors in Rohan et al. 
(2016) addressed multiscale modelling of the interaction 
between a poroelastic compartment and a Newtonian fluid 
by means of the asymptotic homogenisation technique. In 
particular, they focus on two subsequent applications of the 
two-scale asymptotic homogenisation technique, rather than 
employing a three-scale multiscale approach from the com-
mencement, as done for instance in Ramírez-Torres et al. 
(2018, 2019a, 2019b) in the context of elastic composites 
and bone modelling. The work Zampogna et al. (2019) 
also concerns a model derived by analogous assumptions 
but with an emphasis of the numerical computations of the 
effective properties and their influence on wave propaga-
tion. In 2021, Miller and Penta (2021a) derived an effective 
model for the interactions between two poroelastic phases, 
thus generalising the previous works Royer et al. (2019) and 
Chen et al. (2020) which addressed the interaction between 
a solid and a poroelastic compartment.

In Penta and Merodio (2017) the authors derived a 
double-poroelastic model characterised by mass exchange 
between the interstitial compartments and the vessels via 
upscaling a fluid structure interaction problem between a 

poroelastic matrix and a Newtonian fluid flowing in a net-
work of interconnected vessels. By considering the walls of 
the vessels as a semi-permeable membrane, they generalised 
the results in Shipley and Chapman (2010) to deduce a new 
model which is relevant for deformable porous tissues perco-
lated by a network of vessels such as vascularised tumours. 
The model in Penta and Merodio (2017) provides a link 
between the microstructure, characterised by the intercapil-
lary distance (the microscale), and the macroscale, where 
the difference between the vessels and the poroelastic matrix 
can no longer be fully appreciated.

Here we present a set of results concerning the numeri-
cal solution of the model presented in Penta and Merodio 
(2017). Our simulations describe the mechanical response of 
the biological system at the tissue scale, informed by micro-
structural changes in terms of vascular volume fraction and 
compressibility of the interstitial poroelastic matrix. This 
is done by fully embracing the link between the micro- and 
macroscales in that the microscale cell problems derived in 
Penta and Merodio (2017) are solved for relevant ranges of 
both the vessels’ volume fraction and the Poisson ratio of 
the matrix by following the approach illustrated in Dehghani 
et al. (2018). The macroscale effective parameters in terms 
of stiffness, hydraulic conductivities and Biot’s moduli and 
coefficients are then computed on the basis of the micro-
scale results. The macroscale problem is then solved for an 
in silico tissue specimen to investigate the time-dependent 
behaviour of pressures, relative velocities and stresses for 
various microstructural configurations. The results are 
finally illustrated in the context of tumour modelling in par-
ticular by investigating the interplay between vascular den-
sity, matrix compressibility and vessels’ permeability and its 
implications on the design of efficient anti-cancer therapies. 
In Sect. 2 we summarise the multiscale double-poroelastic 
model derived in Penta and Merodio (2017) and specialise 
the functional form of the coefficients for a fully intercon-
nected vessels’ network which is invariant under permuta-
tions of the three coordinate axes. In Sect. 3 we present the 
results of our analysis at both the micro- and the macroscale. 
We conclude by summarizing our findings and illustrating 
further development of our work in Sect. 4.

2  Methods

In Penta and Merodio (2017) the authors present a math-
ematical model for the behaviour of vascularised poroelastic 
materials. This class of deformable solids is characterised 
by the presence of a porous skeleton, filled with fluid, that 
embeds a network of channels (e.g. vessels in biological 
applications), see Fig. 1.

The model is derived from the fluid–structure interaction 
between an isotropic and homogeneous Biot’s poroelastic 



1903The impact of vascular volume fraction and compressibility of the interstitial matrix on…

1 3

compartment (Biot 1955, 1956a, b, 1962) and an incom-
pressible Newtonian fluid, flowing in the network of ves-
sels. The two compartments are coupled by interface condi-
tions that take into account global conservation of mass and 
momentum, slip of the fluid over a porous surface and fluid 
transport across the interface between the two compartments 
(Penta and Ambrosi 2015), i.e. the blood vessels and the 
tumour interstitial space, in our setting. Then, the asymptotic 
homogenisation technique is exploited to derive the effec-
tive governing equations for the material at the macroscopic 
scale. In particular, it is assumed that the microscale char-
acteristic length d, related to the distance between adjacent 
vessels, is well separated from the tissue macroscale char-
acteristic length L, over which only global variations of the 
fields are relevant. This allows to decouple the two scales by 
introducing a small-scale separation parameter � , such that

In (1), x and y are the two formally independent macroscale 
and microscale spatial variables, respectively (Sanchez-
Palencia 1983). The problem can then be upscaled by 
relying on the typical steps involved in the asymptotic 
homogenisation technique, namely: the relevant fields are 
represented in power series of � , and they are assumed to 
be functions of both x and y . Then, the system of equations 
is non-dimensionalised according to suitable characteristic 
quantities in terms of length scales and velocity fields. After 
that, by equating the coefficients of the same power of � for 
� = 0, 1,… in the resulting system of PDEs one obtains a 
number of differential conditions. Finally, these conditions 
are used to obtain a closed differential problem for the lead-
ing (i.e. zeroth) order components of the fields. Notably, 
the coefficients that appear in the final equations encode the 

(1)𝜀 =
d

L
≪ 1, y =

x

𝜀
.

information on the microstructure of the material, as they 
are obtained by solving the microscale differential problems 
originating from the upscaling process (Cheng and Cheng 
2016; Rajagopal 2007; Burridge and Keller 1981; Penta 
et al. 2020). The final set of PDEs describes the effective 
behaviour of the homogenised material, in terms of elas-
tic displacements, pore and vascular pressures, and aver-
age fluid velocities. To this regard, the governing system 
of equations in the macroscale domain ΩH ∈ ℝ

3 for the 
leading-order contribution to the elastic displacement u(0) , 
vascular and pore pressures p(0)v  , p(0)p  reads

where ṗ(0)v  , ṗ(0)p  and u̇(0) denote the time derivatives of the 
pressure fields and solid displacement, ⟨w(0)

v
⟩v and ⟨w(0)

p
⟩p 

are the average fluid velocities in the vascular and poroe-
lastic compartments, and �vp is the total stress in the tissue. 
Then, Γ and Ω are the exchange surface and volume of the 
unit microscopic cell, whereas L̄p is the non-dimensional 
vascular permeability. Finally, the variables Mvp , �v and 
�p are effective Biot’s-type poroelastic coefficients whose 
relationship with the microstructure will be discussed in the 
remainder of this section.

The constitutive relation for the total stress �vp in the 
homogenised material is given by

(2)∇x ⋅ �vp = 0,

(3)

ṗ
(0)
v

Mvp

= −∇x ⋅ ⟨w(0)
v
⟩v − �v ∶ ∇xu̇

(0) +
ṗ
(0)
p

Mvp

−
�Γ�L̄p
�Ω�

�
p(0)
v

− p(0)
p

�
,

(4)

ṗ
(0)
p

Mvp

= −∇x ⋅ ⟨w(0)
p
⟩p − �p ∶ ∇xu̇

(0) +
ṗ(0)
n

Mvp

+
�Γ�L̄p
�Ω�

�
p(0)
v

− p(0)
p

�
,

Macroscale (L) Microscale (d) Pore scale (r) 

Inters��al fluid

Ωp
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Matrix fibers
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Fig. 1  Macroscopic scale ( ΩH ) and zoom over the microscale, where 
the vascular ( Ωv ) and poroelastic ( Ωp ) domains are separated by the 
interface Γ . The zoomed region shows an example of the periodic 
cells used in the cell problems. At the pore scale, the solid matrix is 

constituted by a dense fibre network and is filled by interstitial fluid. 
We assume all the scales to be well-separated, i.e. L ≫ d ≫ r , and 
apply asymptotic homogenisation from the micro- to the macro-scale
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where ℂ̃ is the effective elasticity tensor. Then, the average 
fluid velocity in the vascular and poroelastic compartments 
is obtained as

where � and k̄� are the effective hydraulic conductivity ten-
sors of the vascular and poroelastic compartments, while k̄ is 
the non-dimensional hydraulic conductivity of the isotropic 
poroelastic matrix.

Equations (2)–(7) describe a double-poroelastic homog-
enised material, in which (2) represents the balance of 
linear momentum, while (3) and (4) account for the fluid 
exchange across the vascular and poroelastic compart-
ments. In the following, we briefly describe the signifi-
cance of the homogenised coefficients and the derivation 
process.

The upscaling process naturally leads to the constitutive 
relation in Eq. (5) for the total stress and to Darcy-like laws 
(6) and (7) for the vascular and pore average velocities. The 
non-dimensional numbers L̄p and k̄ are defined by

where Lp and k are the physiological vascular hydraulic per-
meability and poroelastic hydraulic conductivity, respec-
tively, and � is the fluid viscosity. Both L̄p and k̄ play a 
key role in the biomechanical response of the tissue. On 
the one hand, higher values of L̄p represent more perme-
able vessels—as in the case of tumours, where abnormal 
angiogenesis leads to leaky vasculature (Maeda 2015). On 
the other hand, the value of k̄ controls fluid flow in the inter-
stitial space and is related to the chemical and geometrical 
properties of this compartment (Jain 1990). The behaviour 
of the homogenised material is modulated by the effective 
elasticity tensor ℂ̃ , the vascular and poroelastic Biot’s coef-
ficients �v and �p , the geometric Biot’s modulus Mvp , and 
the vascular and poroelastic hydraulic conductivities � and 
� . All these quantities can be expressed in terms of suitable 
averages over the microscale domain, spanned by the spatial 
coordinate y . In practice, some regularity assumptions are 
enforced in order to compute the coefficients with a low 
computational cost. Following the traditional approach in 
asymptotic homogenisation for biological tissues (Shipley 
and Chapman 2010; Penta and Ambrosi 2015), we assume 
microscale periodicity (that is, with respect to the variable 
y ) in the calculations. With this simplification, the coeffi-
cients introduced above can be calculated through integral 

(5)�vp = ℂ̃ ∶ ∇xu
(0) − �vp

(0)
v

− �pp
(0)
p
,

(6)⟨w(0)
v
⟩v = −�∇xp

(0)
v
,

(7)⟨w(0)
p
⟩p = −k̄�∇xp

(0)
p
,

(8)L̄p =
Lp𝜇L

2

d3
, k̄ =

k𝜇

d2
,

averages performed on a single periodic cell. These are 
defined through the cell average operator

where Ω is the periodic cell domain, with corresponding vas-
cular and poroelastic subdomains Ωv and Ωp , respectively. 
The scalars |Ωv| and |Ωp| are the vascular and poroelastic 
volumes in the unit cell ( |Ω| = |Ωv| + |Ωp| ). We define the 
vascular and poroelastic volume ratios as

whereas the cell exchange surface Γ is defined by the surface 
integral

in which Γ denotes the interface between the vascular and 
poroelastic compartments, i.e. Γ = �Γv ∩ Ωp . Higher values 
of |Γ| translate into an increased surface area that is available 
for solute and fluid exchange between vessels and interstitial 
space.

The macroscale coefficients in terms of averages of the 
microscale auxiliary variables read

The fourth-rank tensor � and the second-rank tensors � , 
� and � that appear in (12) are computed by solving the 
microscale cell problems discussed in the next section. As 
such, they directly account for the influence of the unit cell 
microstructure on the tissue-level mechanical properties. In 
the next section we will show the necessary steps involved 
in their derivation.

2.1  Cell problems

The analysis is performed in non-dimensional form, so that 
the cell problems for the auxiliary variables � , � , � and � 
are solved in a unit cubic cell Ω . The latter is composed of 
the vascular domain Ωv , given by a cross-shaped cylindrical 
structure accounting for a fully connected porous medium, 
and the poroelastic domain Ωp = Ω∕Ωv . This geometry is 
the simplest configuration describing a fully three-dimen-
sional flow in a saturated porous material. It also allows to 
keep to a minimum the number of macroscale parameters 
(see the schematics in Fig. 1).

(9)⟨∙⟩j =
1

�Ω� ∫Ωj

∙ dy, j = v, p,

(10)�v =
|Ωv|
|Ω| , �p =

|Ωp|
|Ω| ,

(11)|Γ| = ∫Γ

dSy,

(12)

ℂ̃ = ⟨ℂ𝕄 + ℂ⟩p, �v = 𝜙v� − Tr⟨𝕄⟩p, �p = 𝜙p� + Tr⟨𝕄⟩p,

Mvp = −
1

Tr⟨�⟩p
, � = ⟨�⟩�, � = 𝜙�� − ⟨�⟩p.
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2.1.1  Hydraulic conductivity tensors

The second-rank tensor � involved in the calculation of 
the effective vascular hydraulic conductivity tensor � (see 
Eq. (12)) is determined by solving the following auxiliary 
Stokes’-type cell problem on the microscale:

where n and ti are the unit vectors normal and tangential to 
the interface Γ , respectively, � is the identity tensor, and Pv is 
an auxiliary vector. The parameter � is the non-dimensional 
Beavers and Joseph coefficient (Penta and Merodio 2017), 
accounting for the boundary effects arising at the interface 
between the vessels and the (porous) interstitial space.

The cell problem for the second-rank tensor � , which 
appears in the definition of the effective interstitial hydraulic 
conductivity tensor � defined in (12), is given by:

where the auxiliary vector Pp is such that � = (∇yPp)
T , cf. 

(12). Equations (13)–(18) are equipped with y-periodic con-
ditions on the remaining part of the unit cell boundary and 
are supplemented by the uniqueness conditions

We refer the interested readers to the discussion in Penta 
and Ambrosi (2015) and Dehghani et al. (2018) for addi-
tional details concerning the numerical implementation of 
the above cell problems.

2.1.2  Effective elasticity tensor

The fourth-rank tensor ℂ̃ describes the effective drained 
stiffness tensor for the homogenised material. To give an 
intuitive description of its biological significance, this tensor 
accounts for the contribution of the interstitial space to the 
total mechanical stress in the tissue. According to Eq. (12), 
ℂ̃ depends on the stiffness tensor of the poroelastic compart-
ment and on the auxiliary tensor � defined as

(13)∇yPv = ∇2
y
�T + � in Ω�,

(14)∇y ⋅�
T = 0 in Ω�,

(15)�Tn = 0 on Γ,

(16)�Tti = −𝛼−1
√
k̄
��
∇y�

T + (�T)T
�
n
�
ti on Γ,

(17)∇2
y
Pp = 0 in Ωp,

(18)(� − ∇yPp)n = 0 in Γ,

(19)⟨Pv⟩v = 0, ⟨Pp⟩p = 0.

(20)� = (∇yA)s,

where (∙)s represents the symmetric part of the argument, 
and the third-rank tensor A is obtained from the following 
cell problem on the poroelastic compartment:

in which the system is also equipped with periodic condi-
tions on �Ωp∕Γ . As thoroughly exposed in Dehghani et al. 
(2018), the problem in Eqs. (21)–(23) is formally equivalent 
to solve six elastic-type cell problems equipped with inho-
mogeneous Neumann interface conditions.

For the sake of simplicity, we limit the discussion to 
standard poroelasticity, in which the drained stiffness ten-
sor ℂ is the one of linear isotropic materials. Therefore, the 
latter is completely determined by assigning the (drained) 
Young modulus E and (drained) Poisson’s ratio � . Due to 
the assumption of isotropy, the invariance properties of the 
geometry dictate that both � and ℂ̃ possess cubic symmetry. 
In the following, we will describe the mechanical properties 
of the tissue in terms of the effective Young modulus Eef , 
Poisson’s ratio �ef and shear modulus �ef . These quantities 
are defined by the relations (Dehghani et al. 2018)

2.1.3  Vascular and poroelastic Biot’s coefficients

As per Eq. (12), the expression for the vascular and poroe-
lastic Biot’s coefficients Av and Ap requires the calculation 
of the trace of the auxiliary tensor � . Thanks to the cubic 
symmetry, the latter can be calculated as

so that both Biot’s effective coefficients assume a diagonal 
form, see Eq. (12).

2.1.4  Geometric Biot’s modulus

Finally, the geometric Biot’s modulus defined in Eq. (12) 
depends on the auxiliary tensor � , which is given by

(21)∇y ⋅ (ℂ(∇yA)s) = 0 in Ωp,

(22)(ℂ(∇yA)s)n + ℂn = 0 on Γ,

(23)⟨A⟩p = 0,

(24)Eef =
C̃11(C̃11 + C̃12) − 2C̃2

12

C̃11 + C̃12

,

(25)𝜈ef =
C̃12

C̃11 + C̃12

,

(26)𝜇ef = C̃44.

(27)Tr� = (M1111 + 2M1122)�,
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in which a is the solution of the periodic cell problem

As previously, the latter cell problem on the poroelastic com-
partment is formally equivalent to a linear elastic problem 
equipped with inhomogeneous Neumann interface condi-
tions on Γ and periodic conditions on �Ωp∕Γ . For the solu-
tion of Eqs. (29) and (30) to be unique, we also require that

For the sake of brevity and clarity of presentation, we con-
densed the crucial derivation steps in a few pages. A more 
thorough traction of these aspects is available to the inter-
ested reader in Penta and Merodio (2017). In the follow-
ing section we will present the numerical solutions of the 
aforementioned cell problems, as well as the solution of 
the macroscale problem in Eqs. (2)–(4) for a simple set-
ting. The numerical solutions are obtained by coding the 
PDEs in the commercial software COMSOL  Multiphysics® 
(2021). We implemented the microscale cell problems in the 
solid mechanics module using quadratic serendipity finite 
elements. For the macroscale problem, we coupled the solid 
mechanics module to two ’Coefficient form PDE’ modules. 
Equations were discretized using quadratic Lagrange finite 
elements. Time discretization was carried out via an implicit 
backward differentiation formula. In both the microscale cell 
problems and macroscale problems the discretized equa-
tions were solved as a fully coupled system, making use of 
a standard Newton solver.

2.1.5  Comparison with existing modelling frameworks

The system of PDEs in (2)–(4) can be seen as a generaliza-
tion of previous multiscale models that were derived in the 
context of porous media. On the one hand, when the porous 
solid matrix is assumed to be rigid, the leading-order con-
tribution to the solid displacement u(0) can be set to zero. 
In this latter case, the model can be written in terms of the 
two leading-order vascular and interstitial fluid pressures 
only, i.e. p(0)v  and p(0)p  , respectively. As the geometric Biot’s 
modulus Mvp tends to infinity for a rigid matrix, the simpli-
fied macroscale model reads:

(28)� = ∇ya,

(29)∇y ⋅ (ℂ̃∇ya) = 0 in Ωp,

(30)(ℂ̃∇ya + �)n = 0 on Γ.

(31)⟨a⟩p = 0.

(32)∇x ⋅

(
�̃∇xp

(0)
v

)
=

|Γ|L̄p
|Ω|

(
p(0)
v

− p(0)
p

)
,

where the effective conductivities are rescaled to account for 
the intrinsic average operator. Therefore, simplified model 
(32–33) coincides, up to a slightly different notation, with 
the double Darcy macroscale problem derived in Shipley 
and Chapman (2010) and Penta et al. (2015) which describes 
mass exchange in vascularised rigid tumours.

On the other hand, the model in (2)–(4) can also be 
regarded as a generalization of the standard Biot’s equa-
tions for poroelasticity with coefficients derived from the 
microstructure, see Burridge and Keller (1981). Assum-
ing that there is no mass exchange between compartments 
and no interstitial fluid within the matrix, it is possible to 
rewrite the equations in terms of the fluid pressure p(0)v  and 
the solid displacement u(0) only. This is because in this case 
pp = p(0)

p
= 𝜙p = L̄p = 0 , and since �p = 0 also implies that 

�p = � , the system of the equations reduces to

where the average vessels’ velocity ⟨w(0)
v
⟩ is driven by the 

vascular pressure gradient according to Darcy’s law (6), 
while the constitutive relationship for �vp simplifies to

The auxiliary tensors � and � which appear in the defini-
tion of the coefficients [cf. Eq. (12)] are then to be solved 
by computing problems analogous to those illustrated in 
Dehghani et al. (2018). In this case, the system of PDEs 
(34–35) formally reads as a standard poroelastic model 
where the vascular compartment plays the role of the inter-
stitial fluid compartment percolating through an otherwise 
solid elastic matrix.

3  Results

This section is divided in two parts. First, we present the 
results of the model in terms of effective tensors, which are 
calculated from the cell problems in the Sect. 2. We remark 
that the effective tensors encode the contribution of the 
microscale structure—interstitial space and blood vessels—
to the poromechanical response of the tissue. As such, they 
convey a profound biological significance in the modelling 
framework. Then, we report on the solution of the macro-
scale equations in Eqs. (2)–(4) for a simple macroscale prob-
lem of stress relaxation. We show how a tissue specimen 

(33)∇x ⋅

(
�̃∇xp

(0)
p

)
=

|Γ|L̄p
|Ω|

(
p(0)
p

− p(0)
v

)
,

(34)∇x ⋅ �vp = 0,

(35)
ṗ
(0)
v

Mvp

= −∇x ⋅ ⟨w(0)
v
⟩v − �v ∶ ∇xu̇

(0),

(36)�vp = ℂ̃ ∶ ∇xu
(0) − �vp

(0)
v
.
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relaxes subjected to a boundary load under a change of 
microstructural properties and independent biological 
parameters. The analysis is performed in non-dimensional 
form, and the dimensional counterpart of each parameter can 
be calculated as per the non-dimensionalisation discussed 
in the Sect. 2.

Further considerations concerning the rationale behind 
our analysis follow below. Given the multiscale nature of 
the modelling approach, the vascular permeability ( Lp , or 
L̄p in non-dimensional form) is the most relevant parameter 
which plays a crucial role on the tumour mechanics and, at 
the same time, is not to be computed based on a microme-
chanical approach in the present formulation. The remaining 
effective macroscale parameters (stiffnesses, Biot’s moduli, 
hydraulic conductivities, surface-to-volume ratios) are to 
be computed based on the microstructure (i.e. its geom-
etry, matrix and vessels volume fractions, and microscale 
properties such as stiffness and hydraulic conductivities), 
cf. system of PDEs (2–4), as supplemented by Eqs. (5), (6) 
and (7), as well as relationship (12) which illustrates the 
fact that all (but Lp ) parameters are obtained by means of 
analytical formulae which require microscale computations 
of suitable auxiliary variable. As far as this particular work 
is concerned, at the microscale, we have therefore focussed 
on the compressibility of the matrix � (and also on its stiff-
ness, although our analysis with respect to the microscale 
Young modulus is aligned with previous results and varia-
tions of this latter produce fairly intuitive consequences, so 
that we relegated such results in Online Appendix A), and 
the vascular volume fraction �v and discussed their impli-
cations on the macroscale results. These latter parameters 
are indeed being varied according to suitable physiological 
ranges. Furthermore, at the macroscopic scale we have then 
also focussed on the vascular permeability. The importance 
of the letter parameter on the tissue biomechanics is clearly 
evident from previous investigations, and there is also a large 
experimental literature concerning the influence of vascular 
permeability in the context of drug delivery, as this serves as 
a validation benchmark for model results, see, e.g. Mascher-
oni and Penta (2017), Penta and Ambrosi (2015), Jain et al. 
(2007) and references therein.

3.1  Solution of the cell problems

Equations (13)–(16), (17)–(18), (21)–(23), (29)–(30) for the 
cell problems are solved in their corresponding subsets of 
the cubic unit cell Ω , i.e. the vascular domain Ωv and the 
poroelastic domain Ωp . We explore the parameter space that 
is generated by varying the drained Young modulus E, Pois-
son ratio � and vascular volume fraction �v within a feasible 
physiological range (Islam et al. 2020; Penta and Ambrosi 
2015). In particular, we focus on the impact of microscale 
compressibility and vascular volume fraction on the tissue 

mechanical properties and poroelastic moduli. Therefore, we 
will present the results for a fixed value of the Young modu-
lus E, leaving the thorough analysis in the Supplementary 
(see Fig. S1 and S2). In the following discussion, E is set to 
27.5, corresponding to a dimensional value of 55kPa—in 
the physiological range of soft tissues (Islam et al. 2020). A 
reference interstitial pressure of 2 kPa is taken into account 
for the non-dimensionalisation (Jain and Baxter 1988). Con-
cerning the vascular volume ratio, the parametric analysis 
is performed by varying the radius of three interconnected 
cylinders (see Fig. 1) to obtain �v in the range [0.01, 0.1] 
(see, e.g. Gullino and Grantham 1964; Meyer et al. 1993). 
With respect to the drained Poisson ratio � , we consider the 
range � ∈[0.2, 0.4], exploring a wide physiological range 
(Islam et al. 2020).

3.1.1  Mechanical parameters

The calculation of the hydraulic conductivity tensors � and 
� of Eq. (12) is performed as thoroughly described in Penta 
and Ambrosi (2015) and Dehghani et al. (2018). These 
effective tensors are independent from the drained Poisson 
ratio of the unit cell, but show a strong dependency on the 
vascular volume ratio (see Fig. S3). In particular, there is a 
nonlinear drop of the conductivity in the vascular space � 
for decreasing values of �v , whereas the conductivity in the 
poroelastic compartment � increases linearly for increasing 
values of the vascular volume ratio. The model is predicting 
that larger vascular fractions lead to an increased contribu-
tion to fluid transport from the vascular compartment and 
a decreased contribution from the interstitial space. As the 
two trends occur following different functional forms (see 
Fig. S3), non-trivial transport behaviour might emerge.

Figure 2 shows the variation of effective Young modulus 
( Eef ), Poisson ratio ( �ef ) and shear modulus ( �ef ) against vas-
cular volume ratio and drained Poisson ratio. These effective 
quantities are defined in Eqs. (24)–(26) and depend both on 
the mechanical and geometric properties of the poroelastic 
compartment. Both Young and Poisson moduli decrease for 
increasing vascular volume rations (see Fig. 2a, b) as the 
homogenized material becomes more and more compliant 
towards higher vascularisations. Indeed, both Eef and �ef rep-
resent drained quantities in a poroelastic mindset, i.e. they 
quantify the compliance of the homogenised material when 
its pores are thought as empty. The effective Young modulus 
displays a less dramatic dependence on the drained Poisson 
modulus (y axis in Fig. 2a), differently from the effective 
Poisson ratio shown in Fig. 2b. Finally, the effective shear 
modulus in Fig. 2c varies both along the �v and � coordi-
nates. Homogenised materials with high vascular ratio and 
low compressibility display the lower values of �ef , i.e. resist 
less to shear deformations.
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3.1.2  Poroelastic moduli

The vascular and poroelastic effective Biot’s coefficients 
( Av , Ap , respectively) and the geometric Biot’s modulus 
Mvp are displayed in Fig. 3 for different values of vascular 
volume ratio and drained Poisson modulus. These effective 
quantities, defined in Eq. (12), modulate the homogenised 
material response in terms of poromechanical effects. In par-
ticular, Av and Ap weight the contribution of vascular and 
pore pressure, respectively, to the homogenised total stress, 
see Eq. (5). They are the counterpart of the Biot’s coefficient 
in standard poroelasticity (Biot 1955, 1956a, 1962) and are 
related to the compressibility of the material constituents. 
As such, Av reaches higher values for high vascularisations, 
when the (incompressible) fluid content fraction is higher 
(see Fig. 3a). The vascular Biot coefficient also increases for 
increasing values of the drained Poisson ratio, with slower 
variations at low �v and faster rates for higher vascular vol-
ume ratios.

From the definitions of A� and Ap in Eq. (12) and the 
saturation constraint (i.e. �v + �p = 1 ), we have that 
Ap = 1 − Av , explaining the profile in Fig. 3b. In particu-
lar, for low values of �v we recover the behaviour in the 
’pure’ poroelastic domain, i.e. A� ∼ 1 . As the vascular ratio 
increases, the fluid component weights more in the homog-
enised response, and the proportion of total stress that is 
carried by the interstitial and vascular pressures changes.

Finally, Fig. 3c shows the variation of the geometric 
Biot’s modulus Mvp against vascular volume fraction and 

drained Poisson ratio. Through Eqs. (3) and (4), this quan-
tity relates the variation in fluid content in the homogenised 
material to the variation in pressure difference between the 
two compartments (Penta and Merodio 2017). From its defi-
nition in Eq. (12), it is related to the poroelastic elasticity 
tensor and the geometry of the microstructural problem. As 
the vascular volume decreases, Mvp tends to higher values, 
with the limit Mvp → ∞ for a material entirely constituted 
by the poroelastic compartment, in which we set the Biot 
modulus to infinity. There is a strong dependence of Mvp 
on �v , with the geometric Biot modulus decreasing rapidly 
at increasing values of �v . On the other hand, Mvp depends 
only weakly on the value of the drained Poisson ratio for the 
explored parameter range. Note that, in view of the results 
reported in Dehghani et al. (2018), we expect a non-trivial 
dependence of Mvp on �v at vascular volumes larger than 0.1, 
with the presence of a minimum before the geometric Biot 
modulus increases again to infinity for �v → 1 (where the 
poroelastic compartment is not present anymore).

3.2  Macroscale problem

In this section we discuss the solution of Eqs. (2)–(4) for a 
reference macroscale problem. In particular, we focus on 
a stress relaxation experiment, schematised in Fig. 4a. We 
simulate the compression of a cylindrical tissue specimen, 
which is squeezed between two parallel plates. The sym-
metries of the problem allow to simulate only one quarter 
of the specimen, as highlighted in the figure. The material 

a b c

Fig. 2  Effective Young modulus (a), Poisson ratio (b), and shear 
modulus (c) calculated from the cell problems at the microscale. In 
each plot, the quantity of interest is evaluated for different values 

of vascular fraction ( �v ) and compressibility ( � ). For each case, we 
selected an intermediate value of the microscale Young modulus 
(i.e. E = 27.5)

Fig. 3  Effective vascular (a) and 
poroelastic (b) Biot coefficients, 
and geometric Biot modulus 
(c). In each plot, the quantity of 
interest is evaluated for different 
values of vascular fraction ( �v ) 
and compressibility ( � ). For 
each case, we selected an inter-
mediate value of the microscale 
Young modulus (i.e. E = 27.5)

a b c



1909The impact of vascular volume fraction and compressibility of the interstitial matrix on…

1 3

is at rest at time zero, with both vascular ( p(0)v  ) and pore 
pressures ( p(0)p  ) set to zero, as for the solid displacements 
( u(0) ). Regarding boundary conditions, we use symme-
try conditions on the internal and bottom surfaces of the 
quarter of cylinder. The curved face at the exterior of the 
cylinder is traction-free, and we set both p(0)v  and p(0)p  to 

zero. We also set to zero the pressures at the top surface, 
and we impose there a vertical compressive strain which 
depends on time as depicted in Fig. 4b. We impose a nega-
tive strain that reaches its minimum value �0 at t = Tramp . 
This strain is then kept over time, while the homogenised 
material reaches an equilibrium as in standard stress relax-
ation experiments (see e.g. Fung 2013). We analyse three 
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Fig. 4  Schematic of the three-dimensional problem solved in the 
macroscale simulations (a). We impose a compressive strain on the 
top surface of the material, together with imposing zero fluid pressure 
for both the vascular and poroelastic compartments. On the symme-
try faces we prescribe no normal displacements and no flux condi-
tions. The lateral surface can deform freely, and we also set the fluid 
pressure to zero in both compartments. The time dependency of the 
imposed strain is shown in the inset in b. We highlight three time 

points, namely Tramp , Tmid and Tsim , which represent the end of the 
loading ramp, an intermediate time position and the end of the simu-
lation, respectively. c Schematics of the combinations of the micro-
scale parameters (�v, �) that have been investigated in the macroscale 
computations. The red dot (p3) refers to the quantities that are plot-
ted in d. In particular, we show the temporal evolution of the vertical 
component of the solid stress (�z) , pressure (p(0)

f
) , and fluid velocity 

(w
(0)

f
) in the vascular compartment
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temporal snapshots of the macroscale solution at Tramp , Tmid 
and Tsim , providing a series of snapshots over the dynamics 
of the stress relaxation process. In addition, we consider 
different positions in the parameter space of the microscale 
parameters �v and � , i.e. the vascular volume ratio and 
drained Poisson ratio (see Table 1 and Fig. 4c). This allows 
to appreciate the poroelastic effects that characterise the 
relaxation process depending on variation of physiologi-
cally relevant parameters.

Figure 4d shows the macroscale results for intermediate 
values of �v and � (red point in Fig. 4c) over time. The first 
row in Fig. 4d shows the vertical component of the homoge-
nised solid stress in the material (i.e. 𝜎z = (ℂ̃ ∶ ∇u(0))zz ) over 
the macroscale domain. As time increases, the tensional state 
evolves towards a homogeneous condition, with �z increas-
ing in the centre of the cylinder as the fluid escapes from the 
specimen. Basically, the early part of the load is carried by 
the fluid in the vessels and interstitial pores. As time pro-
gresses, the solid component of the tissue takes increasing 
portions of the load. Note that the adoption of a cubic cell 
microstructural geometry in the cell problems in the Sect. 2 
produces a cubic anisotropy in the homogenised stiffness 
tensor ℂ̃ , which affects the symmetry of the solution (see 
Penta and Gerisch 2015; Dehghani et al. 2020 for a detailed 
discussion of this effect). In the second row of Fig. 4d we 
show the evolution of the vascular pressure at the three time 
points that have been analysed. This quantity behaves in a 
specular way compared to the solid stress, reaching the high-
est value at the centre of the specimen rightly after the end of 
the loading phase. After that, it relaxes and equilibrates with 
the pressure outside of the material. Finally, the last row of 
Fig. 4d displays the temporal variation of fluid velocity in 
the vascular compartment, w(0)

v  . The colour map shows the 
modulus of w(0)

v  , whereas the red arrows denote the veloc-
ity vectors. The fluid velocity is obtained from the vascular 
pressure by Eq. (6), following a Darcy-like relation. Higher 
values of fluid velocity are obtained in the regions of faster 
variation of the vascular pressure, reaching again relaxation 
over longer times. The behaviour of the pore pressure p(0)p  
and fluid velocity w(0)

p  follows a qualitatively similar trend. 
For the full macroscale problem parametrisation the reader 
is referred to Tab. S1. To summarize, when the specimen is 
subject to a mechanical load, it relaxes the latter by redirect-
ing mechanical stresses to the fluid and solid components of 

the tissue. The subdivision of load proportions to the vascu-
lar and interstitial compartments, together with its dynamics, 
is regulated by effective tensors that encode the microstruc-
tural properties of the unit cell.

In the remainder of the work we report on the influence of 
vascular density and tissue compressibility on the mechani-
cal response of a tissue specimen. We consider the points in 
the parameter space of vascular volume ratio �v and drained 
Poisson ratio � depicted in Fig. 4c and evaluate the verti-
cal component of the homogenised solid stress �z at the top 
point shown in Fig. 4a. We also show results concerning the 
spatio-temporal evolution of the pore pressure p(0)p  and pres-
sure difference Δp = p

(0)
p − p

(0)
v  along the centreline depicted 

in Fig. 4a. We perform these analyses by investigating the 
impact of an additional physiological parameter, the vascular 
hydraulic permeability of the vessel walls Lp , on the tissue 
specimen mechanical response. We consider three values 
of Lp : (1) a low value corresponding to a healthy tissue; 
(2) a mid-range value that corresponds to a tissue that has 
been subject to normalisation treatments (Jain 2005; 3) a 
high value, for tissues with tumour-like characteristics (see 
Table 2).

Figure 5 shows the temporal evolution of �z , i.e. the por-
tion of total stress carried by the solid component in a poroe-
lastic setting, for the three conditions on the vessel hydraulic 
conductivity that are prescribed in Table 2. Each panel of the 
figure represents a position in the ( �v, � ) space, as specified 
in panel Fig. 5a. In general, the positions associated with 
higher vascular volume ratios are characterised by faster 
relaxation timescales (see Fig. 5c, f). On the other hand, 
low values of �v are associated with slower transients, with 
tissues that are not yet relaxed at the end of the simulation 
(as in Fig. 5b). For all the analysed conditions, higher values 
of Lp correlate with faster relaxation dynamics. However, the 
difference in relaxation between a healthy and normalised 
value for Lp is stronger than the difference between a normal-
ised and tumour value. This might indicate a possible satura-
tion of the dynamics at increasing values of this parameter. 
Finally, note that the values of �z reached at the end of the 
simulations depend more on the value of vascular fraction 
�v , rather than on the value of compressibility � (compare 
Fig. 5b, e with Fig. 5c, f). This is once again related with 
the poromechanical nature of the model, and the underlying 

Table 1  Microscale Poisson 
ratio and vascular volume 
ratio used in the macroscale 
simulations

Case � �v

p1 0.22 0.018
p2 0.22 0.092
p3 0.31 0.051
p4 0.37 0.018
p5 0.37 0.092

Table 2  Values considered 
for the vascular hydraulic 
permeability of the vessel walls

The values are expressed in 
units of m∕(Pa ⋅ s) and are taken 
from Jain et al. (2007)

State Value

Healthy 2.7 × 10−12

Normalised 1.78 × 10−11

Tumour 1.35 × 10−10
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biology, in which the tight coupling between solid and fluid 
components in the tissue becomes evident in the partition 
of stresses.

Then, we show in Fig. 6 the evolution of the pore pressure 
p
(0)
p  for different values of vascular ratio and tissue com-

pressibility. The pore pressure is a key regulator of fluid and 
solid transport in the tissue interstitial space (Jain 1994), and 
its role in the delivery of chemotherapies has been widely 
investigated (see for example Mascheroni and Schrefler 2018 
and references therein). Pressure plateaux correlate to hin-
dered delivery of therapeutic agents, whereas steep gradients 
are involved in fast clearance of the drug from the interstitial 
space. For the analysis, we considered only the extreme val-
ues of vascular hydraulic conductivity for the sake of easi-
ness of visualisation. Again, the faster equilibration dynam-
ics are obtained for the cases corresponding to the higher 
values of vascularisation, i.e. higher values of �v . In both 
Fig. 6c, f the profile of p(0)p  at t = Tsim , the final simulation 
time, is fully relaxed to zero for the tumour Lp case. This 
indicates fast fluid flow, with a tissue that exhibits a reduced 
capacity of retaining possible therapeutic molecules. The 
case of low compressibility and low vascularisation (p1 in 
Fig. 6b), on the other hand, is still in the equilibration phase 
at the later stages of the simulation, even for the higher value 
of vessel hydraulic conductivity. In all conditions, increasing 

Lp leads to less steep pressure gradients at the analysed time 
points. This results, through Eqs. (6) and (7), to smaller fluid 
velocities—an indication that most of the fluid is already 
escaped from the specimen.

Finally, Fig. 7 shows the pressure difference Δp between 
the poroelastic and vascular compartments at different coor-
dinates in the vascularisation-compressibility plane. This 
pressure jump is related to the degree of hydraulic con-
nectivity of the two compartments, a key regulator in drug 
delivery to tissues (Mascheroni and Penta 2017; Stylianop-
oulos et al. 2018). Indeed, low-pressure differences between 
the interstitial (poroelastic) and vascular compartments are 
associated with hindered drug transport by fluid advec-
tion, resulting in poor drug perfusion of solid tumours (Jain 
1994). The simulations from the model show that, even if 
they reach high values of Δp at early times, the cases cor-
responding to high vascularisation display the lowest pres-
sure jumps at the end of the simulations. This is part of the 
transport paradox occurring in tumours: even though tumour 
tissues exhibit increased vascularisations and permeabilities, 
therapeutic molecules suffer from poor advective flows into 
the interstitial space. This happens because transvascular 
gradients are annihilated by the same factors that disregulate 
fluid flow across the vessel walls (Jain 1990). Decreasing 
compressibility (by considering higher values of � ) is also 
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Fig. 5  Summary of the combinations (�v, �) that have been explored 
in the macroscale simulations (a). Each plot in b–f shows the tempo-
ral evolution of the vertical solid stress (�z) evaluated at the top point 
highlighted in Fig. 4a. Solid, dashed, and dotted lines refer to the case 

in which a low, mid, or high value for the vascular hydraulic perme-
ability Lp has been considered, corresponding to the healthy, normal-
ized, and tumour case, respectively
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associated with lower-pressure differences on the long term. 
Note that these outcomes are exacerbated by increasing Lp 
to tumour-like values (dotted lines). These results have pro-
found implications for the pharmacological treatment of 
solid tumours. Indeed, the model suggests that by modulat-
ing the vascular density (through normalization treatments) 
and the tumour compressibility (e.g. by employing suitable 
matrix remodelling agents), it would be possible to modify 
the dynamics of transport in the interstitial space, thus ben-
efiting the outcome of anti-cancer therapies.

Such mechanically inspired treatments are currently the 
object of a vivid research in both the biological and clini-
cal community. For example, in Tolaney et al. (2015) the 
authors report the results of a phase II clinical trial in which 
the benefits of an antiangiogenic therapy (a vessel normali-
zation treatment) are evaluated for breast cancer patients. 
They conclude that the functionality of the vascular network 
in tumours displaying high vascular densities might benefit 
from “the pruning of certain vessels and increased func-
tion of the remaining, normalized vessels” (Tolaney et al. 
2015). This would be qualitatively supported by the results 
of Fig. 7, where a reduction of vascular density correlates to 
higher-pressure differences between compartments.

In Chauhan et al. (2013) and Provenzano et al. (2012), 
the authors study the influence of extracellular matrix 

composition on tumour response to therapies. They find 
that tumour matrices are characterized by abnormal con-
centrations of matrix proteins, such as collagen and hya-
luronan. These biopolymers contribute to the hindered 
transport of therapeutics in the tumour by decreasing the 
open interstitial space and by contributing to mechanical 
stresses acting to compress blood vessels (Stylianopoulos 
et al. 2013, 2018). The experimental work presented in 
Chauhan et al. (2013) and Provenzano et al. (2012) shows 
that by carefully delivering enzymatic agents or other 
therapies that normalize the abnormal tumour stroma it 
is possible to improve tissue perfusion and consequently 
to increase the action of standard chemotherapies. These 
findings are in qualitative agreement with the results 
from our mathematical model that are displayed in Fig. 7. 
Here, a decrease in tumour incompressibility (i.e. lower 
values of � ) leads to higher-pressure jumps across the 
interstitial and vascular compartments. Nonetheless, the 
experimental investigators describe better perfusion as a 
consequence of reduced mechanical stresses compressing 
the vessels. In our results, increased intercompartmental 
pressure differences are due to a different distribution of 
the external loading across the matrix and fluid space of 
the porous material. Even if pointing to the same effect, 
the two explanations for improved perfusion do not thus 
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Fig. 6  Summary of the combinations (�v, �) that have been explored 
in the macroscale simulations (a). Each plot in b–f shows the spatial 
dependency of the fluid pressure in the poroelastic compartment (p(0)p ) 
evaluated along the cut line highlighted in Fig. 4a. Solid and dotted 

lines refer to the case in which a low or high value for the vascular 
hydraulic permeability Lp has been considered, corresponding to the 
healthy and tumour case, respectively. Different colours are used to 
denote the value of the variables at different times
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match—even though the two explanations are not conflict-
ing and could therefore possibly coexist. We believe the 
repartition of mechanical stresses in biological tissues to 
be an underestimated effect (appreciable only in descrip-
tions that make use of porous media mechanics), and we 
advocate experiments that could shed light on this interest-
ing phenomenon.

Finally, we refer the interested reader to the work in 
Stylianopoulos et al. (2018), which reviews other applica-
tions of vascular and mechanical normalization treatments 
to tumours. The reported experimental findings support 
the role of such normalization therapies in improving tis-
sue perfusion, an insight that it is possible to draw (at 
least for the vascular part) also from our mathematical 
model. This is encouraging, as it suggests the soundness 
of the assumptions underlying model derivation. Nonethe-
less, we conclude this section by remarking that all com-
parisons with experiments from the biomedical literature 
should be treated with care and only on a qualitative level. 
Careful designed experiments should be carried out to test 
specific parts of the model under controlled conditions, 
in which model parameters could be suitably calibrated 

and experimental and theoretical results are compared 
quantitatively.

4  Conclusions

In this work we carried out a quantitative analysis on the role 
of interstitial compressibility and vascular volume fraction 
in vascularized tissues. We performed numerical simulations 
of the biomechanical model presented in Penta and Mero-
dio (2017), which describes biological tissues as porous 
material with double porosities (i.e. the vascular space and 
the interstitial space). The mathematical model is derived 
following asymptotic homogenization, a technique that 
encodes microstructural effects on the macroscopic tissue 
scale through the definition of effective tensorial quantities. 
These mathematical terms are first calculated by solving dif-
ferential problems on the microscale unit cell and are then 
plugged into the macroscale fluid transport and mechanical 
balance equations.

The solution for the cell problems at the micro-
scale showed that both vascular density and interstitial 
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Fig. 7  Summary of the combinations (�v, �) that have been explored 
in the macroscale simulations (a). Each plot in b–f shows the spatial 
dependency of the difference in fluid pressure between the poroelas-
tic and fluid compartments (Δp = p

(0)
p − p

(0)
v ) evaluated along the cut 

line highlighted in Fig. 4a. Solid and dotted lines refer to the case in 

which a low or high value for the vascular hydraulic permeability Lp 
has been considered, corresponding to the healthy and tumour case, 
respectively. Different colours are used to denote the value of the var-
iables at different times
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compressibility have a profound effect on the effective stiff-
ness of the tissue, with lower compressible—lower vascular-
ized microstructures resulting in higher effective stiffness. 
The microscale Young modulus, instead, shows only a mul-
tiplicative effect—as already discussed in Dehghani et al. 
(2018). We then simulated an experiment of stress relaxa-
tion at the tissue macroscale, in which a tissue specimen is 
subject to a compressive strain and the mechanical stresses 
and fluid pressures are recorded over time. The different 
fluid transport properties between the vascular and intersti-
tial compartments indirectly allowed to prescribe a pressure 
jump between the vascular and poroelastic compartment, 
reproducing (just for a transient of time) the homeostatic 
conditions that allow convective transport of solutes in 
healthy tissues. We investigated the induced fluid dynamics 
for a variety of physiological parameters, involving vascular 
density, compressibility of the interstitial part and hydraulic 
conductivity of the vascular walls.

A fundamental microstructural parameter of the model 
is the vascular volume fraction �v , quantifying the portion 
of unit cell that is occupied by blood vessels. We showed in 
the Results section that this variable has a strong influence 
on the mechanical response of the homogenised continuum, 
even though vascular density is not a direct mechanical vari-
able by itself (compared to stiffness or shear moduli, for 
example). As the degree of vascularisation in a tissue might 
be impacted by pathophysiological conditions, especially 
in tumours (Carmeliet and Jain 2000), the model allows to 
track the influence of this variable on the final mechanical 
properties of the tissue, something that might be overlooked 
by traditional modelling approaches.

Our simulations suggest that by modulating vascular 
density and interstitial space compressibility it would be 
possible to fundamentally alter fluid transport dynamics in 
tissue. These modifications could be imparted on the tissue 
by judicious delivery of normalizing therapies and matrix 
remodelling agents. In particular, tissues with higher com-
pressibilities and lower vascular densities show the highest 
transvascular gradients at later times (i.e. higher-pressure 
jumps) between the vascular and interstitial compartments. 
The presence of such pressure difference would allow for 
improved advection of drugs across the vessel walls, a condi-
tion that is known to support effective delivery of therapies 
to tumours (Jain 1994, 2005; Jain et al. 2007).

We recognize that the model (Penta and Merodio 
2017) and its implementation herein presented rely on 
several simplifying assumptions and is open to improve-
ments. One crucial limitation of the current framework is 
the assumption of a periodic unit cell at the microscale. 
This choice leads to a straightforward calculation of the 
effective tensors, which need to be computed only once 
in the whole analysis. This strong simplification could 
formally be relaxed by prescribing continua that are not 

macroscopically uniform. With this kind of assumption, 
only local periodicity is required and periodic unit cells 
are prescribed to vary parametrically with respect to the 
macroscale coordinate. As a result, the effective tensorial 
quantities become a function of the macroscale coordinate 
(Penta et al. 2015) and should be computed for each point 
of the macroscale grid.

Secondly, the model (Penta and Merodio 2017) relies 
on adopting a characteristic parabolic profile for the fluid 
vessels’ network, as previously done in Penta et al. (2014, 
2015). Such an assumption leads to effective porous media 
governing equations at the macroscale of either Darcy’s or 
Biot’s type depending on whether solid deformations are 
considered, respectively, see, e.g. Penta and Gerisch (2017) 
and Penta et al. (2020), respectively. However, we are aware 
of other choices that had been documented in the literature, 
which can for instance lead to a macroscale viscoelastic 
behaviour, as also remarked by the authors in Burridge and 
Keller (1981).

Another limitation is related to the simplification that 
was made in including tumour vascular geometry in the 
model—see Fig. 1. Tumour vessels are generally abnormal 
(Carmeliet and Jain 2000; Baluk et al. 2005), displaying high 
tortuosities and poor hierarchical structure. For the sake of 
simplicity, we considered a simple, highly ordered geometri-
cal configuration for the vessels in the unit cell. This issue 
should be addressed for a more faithful representation of the 
tumour tissue in the future, in order to address the interplay 
between the tumour poromechanics and the geometry of the 
vessels. In fact, vessels’ tortuosity can affect blood, drug 
and heat transport in solid tumours, as shown for instance 
in Penta and Ambrosi (2015), Mascheroni and Penta (2017), 
Al Sariri and Penta (2022) and Al Sariri et al. (2023). The 
results obtained this way could then be compared with recent 
permeability multiscale models such as those developed for 
bone tissues (Abdalrahman et al. 2015; Teo and Teoh 2012) 
in order to shed light onto the influence of complex fluid 
flow in the microvessels on the poromechanical behaviour 
of multiscale physical systems.

In an attempt to reduce the complexity of the traction, 
we embraced directly (Penta and Merodio 2017) as a start-
ing point, so mechanical isotropy is assumed at the micro-
scale. This constitutes a strong assumption when dealing 
with biological materials, especially in the case of well-
organized systems as the bone or the brain (Feng et al. 
2013; Scheiner et al. 2016). Mechanical anisotropy plays 
also an important role in multiscale models, and it can also 
arise based on purely geometric considerations (Penta and 
Gerisch 2015). However, our computational platform could 
be readily adapted to more complex constitutive behaviours 
arising for example from generalisations of Penta and Mero-
dio (2017), as well as microscale architectures (Penta and 
Ambrosi 2015).
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Finally, we derived the model equations in the context of 
the linear theory: we described the mechanical response of 
the matrix in terms of infinitesimal strains and adopted linear 
elasticity as the constitutive choice. This assumption is valid 
only for small perturbations imparted to the tissue speci-
mens and is not able to capture more complex biological 
scenarios [e.g. growth and remodelling (Mascheroni et al. 
2018)]. Nonetheless, there are developments in the recent 
literature (e.g. Morin et al. 2018; Miller and Penta 2021b) 
that address this issue in the context of multiscale models. 
We plan to extend the current framework to account for such 
large strains effects and render a more accurate description 
of biological phenomena.

The current analysis focuses mainly on poromechanical 
effects. It is known that these constitute only half of the 
picture, when describing phenomena that occur in biologi-
cal tissues. Indeed, a part of equal importance is played 
by solute transport in the tissue, which is coupled (in both 
ways, due to osmotic effects) to poromechanical responses. 
A straightforward approach would be to integrate the model-
ling framework for solute transport presented in Penta et al. 
(2015) and Mascheroni and Penta (2017) into the current 
mathematical model. This would lead to better descrip-
tions of biological tissues and could potentially be used to 
support the investigation of drug transport in pathological 
conditions.

Finally, it is well recognised that tissue components 
are mechanosensitive (De Belly et al. 2022), and mecha-
nosensation has been identified as a modulator of pharma-
cological treatments (Rizzuti et al. 2020). Biological cells 
sense the level of mechanical stress in the environment and 
adapt to it by changes in their function or differentiation. 
At the moment, the literature of asymptotic homogenisation 
applied to biological tissues only describes a one-way feed-
back between cells and their environment: We model a unit 
cell (in the sense of asymptotic homogenisation) with some 
microstructural properties, which follow by the activities of 
biological cells. The microstructural properties dictate the 
shape of effective tensors, which regulate the macroscopic 
response. We propose as a natural step forward in the mod-
elling process to “close the loop”, i.e. to take into account 
the influence of macroscopic stresses on the unit cell. From 
the biological point of view, macroscopic stresses act on 
biological cells, and the latter modify the tissue microscopic 
landscape (Mammoto et al. 2012; Bershadsky et al. 2003). 
This interaction could be captured phenomenologically, 
by modelling changes in the unit cell at the microscopic 
scale modulated by the stress levels at the tissue macro-
scale. The importance of this coupling between micro- and 
macroscale depends on the relative dynamics between cell 
mechanosensation and tissue functionality. In some patho-
logical conditions, especially in the case of chronic inflam-
mation or repeated injuries, this coupling between scales is 

of uttermost importance and its understanding could greatly 
benefit from mathematical models.
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