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Trends in tropical forest loss and the social 
value of emission reductions

Thomas Knoke    1, Nick Hanley    2, Rosa Maria Roman-Cuesta3, Ben Groom    4, 
Frank Venmans    5 & Carola Paul    6,7 

Reducing global forest losses is essential to mitigate climate change and 
its associated social costs. Multiple market and non-market factors can 
enhance or reduce forest loss. Here, to understand the role of non-market 
factors (for example, policies, climate anomalies or conflicts), we can 
compare observed trends to a reference (expected) scenario that excludes 
non-market factors. We define an expected scenario by simulating 
land-use decisions solely driven by market prices, productivities and 
presumably plausible decision-making. The land-use allocation model 
considers economic profits and uncertainties as incentives for forest 
conversion. We compare reference forest losses in Brazil, the Democratic 
Republic of Congo and Indonesia (2000–2019) with observed forest 
losses and assign differences from non-market factors. Our results 
suggest that non-market factors temporarily lead to lower-than-expected 
forest losses summing to 11.1 million hectares, but also to phases with 
higher-than-expected forest losses of 11.3 million hectares. Phases with 
lower-than-expected forest losses occurred earlier than those with 
higher-than-expected forest losses. The damages avoided by delaying 
emissions that would otherwise have occurred represent a social value 
of US$61.6 billion (as of the year 2000). This result shows the economic 
importance of forest conservation efforts in the tropics, even if reduced 
forest loss might be temporary and reverse over time.

There is broad scientific consensus that halting forest loss is required to 
tackle the dual global crises of climate change and biodiversity loss1,2. 
Notwithstanding their provision of multiple services, the contribu-
tion of forests in removing CO2 from the atmosphere and storing it in 
a long-term carbon sink carries a particularly high social (economic) 
value3, and scientific research has produced increasingly sophisticated 
methods to assess this value4. In the global effort to reach net zero by 
2050, combatting forest loss remains a feature of governmental and 

private decarbonization initiatives, for example, the Race to Zero Cam-
paign5,6 and the UNFCCC-REDD+ mechanism7,8 (Reducing Emissions 
from Deforestation and Forest Degradation and the Role of Conser-
vation, Sustainable Management of Forests and Enhancement of For-
est Carbon Stocks in Developing Countries). Analysing and assessing 
trends in forest losses is therefore of global social relevance, while 
identifying factors underlying these trends is a precondition to control 
the drivers of forest losses.
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titles for communities16 or pre-election promises17); factors associ-
ated with social conflicts and crises (for example, armed conflicts18 or  
COVID-1919); and climate anomalies, such as El Niño20.

To associate trends in forest losses with specific factors, counter-
factuals are needed to show what losses would have occurred under a 
reference scenario that excludes these factors21. Reference scenarios 
are critically important to identify and demonstrate the additionality 
of achieved emission reductions22. Avoiding forest losses represents 

The effectiveness of policies and private financial incentives to 
reduce forest losses (for example, the REDD+ initiatives9 or payments 
for ecosystem services10) remains highly debated11. Tracing back the 
impacts of domestic policies and other influential factors on forest loss 
is challenging12. Commonly cited country-scale factors associated with 
trends in forest loss include market-based factors, such as demand for 
agricultural commodities13 or minerals14; governance-related factors 
(for example, command-and-control policies15, the rollout of land 
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Fig. 1 | Model concept. Illustration of the market-oriented counterfactual modelling and assessment approach.
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a nature-based solution (as an initiative to achieve societal goals by 
working with nature23) to combat climate change. Additionality means 
that observed emission reductions would not have occurred under 
business-as-usual conditions24. In the absence of government inter-
vention, market forces can either exacerbate or mitigate trends in 
forest loss. Mitigation would happen when land managers become 
increasingly satisfied with the economic outcome of their current 
land-use allocation and stop clearing forest, or when decreasing com-
modity prices lead them to reduce agricultural expansion25. Both trends 
would cause non-additional emission reductions. So far, counterfactual 
studies have mostly been constructed from empirical forest loss data 
by applying quasi-experimental statistical models (Supplementary  
Table 1). However, these approaches usually focus on a specific policy 
instrument, the effects of which are difficult to isolate empirically.

In light of this, our study presents a new simulation approach 
to derive counterfactual forest loss trajectories that are generaliz-
able beyond the context of a specific policy instrument. We separate 
market-driven from non-market-driven forest losses: the former offer 
a counterfactual reference scenario, while the latter represent residual 
forest losses not driven by economic expectations. Our novel approach 
combines economic land-use allocation modelling, satisficing deci-
sion rules under the influence of future uncertainty and heterogene-
ous decision-makers borrowed from agent-based modelling26 (see  
Supplementary Table 1 for land-use modelling alternatives). Thus, 
our model assumes that (1) forest loss is largely driven by agricultural 
land transformation processes27, (2) land-use decision-makers prob-
ably seek satisficing (‘good-enough’) rather than maximal outcomes 
when accounting for uncertainty28 and (3) social processes underlying 
land-use allocation are driven by heterogeneous individual intentions29.

Our simulated counterfactual land-use allocation decisions build 
on market data and agricultural productivities from 1990–2019. We 
simulate a total of 9 million random profit scenarios of heterogeneous 
farmer groups (Fig. 1) to derive expected forest losses for three large 
contributors to global forest loss: Brazil, the Democratic Republic 
(DR) of Congo and Indonesia30 (Supplementary Fig. 3). This economic 

model accounts for the private incentives to convert forest to dif-
ferent land-use types (profits and uncertainties) and thus provides 
market-oriented counterfactuals (Fig. 1).

We address three main questions:
 1. When do observed forest losses diverge considerably from 

those simulated by our economic model for the three selected 
countries?

 2. What factors are likely to affect observed forest losses at the 
country scale and potentially explain reduced and excess forest 
losses compared with the market-based counterfactual forest 
loss?

 3. What is the social economic value of avoided climate damages 
from reduced forest emissions?
The difference between our market-driven counterfactual model 

and the empirical forest loss data allows us to identify periods when 
forest loss is attributable to market forces (good alignment between 
our counterfactual and the empirical forest loss data), as well as peri-
ods where the forest cover change is likely attributable to additional 
non-market forces. While our counterfactual model does not offer 
clear attribution of single drivers and is not intended to evaluate the 
effectiveness of specific conservation policies, it can offer insights 
into which broad country-scale factors shape changes in the lev-
els of forest losses based on temporal congruence17. These factors 
include armed conflicts, pre-election promises made by politicians, 
government changes, severe ENSO climate pressures (2015–2016) 
and command-and-control policies intended to reduce forest losses 
(Methods and Supplementary Methods 3).

One contribution of our innovative counterfactual approach 
is in estimating the social economic value associated with avoided 
deforestation, which is important for communicating the economic 
value of reducing forest losses. In climate economics, avoided climate 
damages through temporary cooling effects31—for example, by retain-
ing instead of clearing carbon-rich forest—generate social economic 
value4. A useful concept for assessing this value is the social cost of 
carbon (SCC) (Box 1). Up to now, a frequently disregarded aspect of 
such valuations is the potential non-permanence of the achieved emis-
sion reductions4,31, which we consider here. We use this approach to 
estimate the social value of emission reductions achieved by avoiding 
tropical forest losses.

Market-driven counterfactual forest losses
Our counterfactual land-use allocation model (Fig. 1) identifies the 
forest losses that would probably have resulted from market-driven 
decisions in Brazil, DR Congo and Indonesia—that is, without the influ-
ence of policies to reduce deforestation and without other non-market 
drivers of forest losses.

The highest counterfactual deforestation rates (forest loss relative 
to total forest area) are predicted for Indonesia and the lowest for DR 
Congo (Fig. 2a). The average (and median) deforestation rates differ 
more widely among the three countries in the period 1990–1994 than 
in 2015–2019. Additionally, the range of simulated deforestation rates 
tends to decrease over time for Brazil and Indonesia (Supplementary 
Methods 7). The distribution of these rates follows a power-law rela-
tionship (Fig. 2b), which can also be observed in empirical analyses (for 
example, for deforestation patch sizes in ref. 32).

To assess the quality of the predicted counterfactual forest cover 
losses, we conducted a series of statistical analyses and cross-study 
comparisons. Two independent counterfactual forest loss trajecto-
ries reveal similar results (Supplementary Fig. 1). The market-driven 
counterfactual forest losses show good agreement with observed for-
est losses. In a statistical comparison considering all three countries, 
market-driven forest losses predicted by our counterfactual model 
explain 59% of the variation of observed forest losses (Supplemen-
tary Fig. 2a). Controlling for periods coinciding with non-market fac-
tors (here, command-and-control policies, climate anomalies, armed 

Box 1

Definition and use of the social 
cost of carbon
Emission of CO2 has a warming effect that is approximately 
permanent and constant over time66. This emission is valued as 
the present value of all future marginal damages resulting from 
this permanent temperature increase starting with the year of the 
emission67. This value is known as the SCC46. Similarly, a permanent 
reduction of CO2 is valued at the SCC, that is, as the present value 
of an infinite stream of avoided marginal damages. A temporary 
emission reduction of CO2 by reducing forest losses is valued as the 
present value of a stream of avoided marginal damages over the 
duration of the avoided forest loss trend. The value of a temporary 
emission reduction is always positive because it temporarily avoids 
damages. This implies that immediate mitigation has high priority68. 
We consider the time-value of reduced or enhanced emissions 
resulting from changes in forest losses by using discount factors, 
which we apply to convert all benefits and costs to their present 
value (Methods equation (5)). The discount factors reflect issues 
such as income inequality aversion, positive growth in the  
economy and uncertainty about future growth. In principle, 
the discount factor could also reflect learning processes and 
technological change.
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conflicts and pre-election promises), statistical model predictions 
explain 75% of the variation in observed forest losses (Supplementary 
Table 2 and Fig. 2b). The time series of counterfactual forest losses 
(Supplementary Fig. 1) respond to periods with declining crop prices 
by predicting smaller forest losses, for example, when soybean prices 
decreased in Brazil from 2005 onwards (Fig. 3a) and palm oil prices fell 
in Indonesia from 2010 onwards (Fig. 3c).

Non-market-driven forest losses
A general comparison suggests lower-than-expected forest losses  
(arising from non-market factors) of 11.1 million hectares overall  

(6.7 million hectares in Brazil, zero hectares in DR Congo and 4.4 million  
hectares in Indonesia) in two phases of deforestation reduction  
coinciding with command-and-control policies. This amounts to 11% of 
the reference forest losses between 2000–2019 in the three countries 
(Table 1). In contrast, in periods of higher-than-expected forest losses 
(coinciding with pre-election promises, armed conflicts or climate 
phenomena), forest losses exceed the counterfactual levels by a total of 
11.3 million hectares (Table 1), fully offsetting the aggregate forest loss 
reduction periods across the three countries. The estimated emissions 
from the observed forest cover losses are 0.20 gigatonnes CO2 higher 
than the expected emissions (equivalent to a 0.4% increase relative to 
the emissions from expected forest losses).

Reduced and excess forest loss
For Brazil, deviations of the observed from counterfactual forest losses 
indicate one reduction period (coinciding with command-and-control 
policies) and one excess period of forest loss (coinciding with climate 
anomalies) (Fig. 3a). Mainly lower-than-expected forest cover losses 
are identified from 2004 to 2012 in a reduction phase of forest loss 
(Fig. 4a). From 2012 onwards, the modelled forest losses mimic the 
dynamics of observed forest losses well, suggesting a period of mainly 
market-oriented land-use decisions. The year 2016 marks a defor-
estation spike and a pronounced excess phase of deforestation with 
additional forest losses (Fig. 4a). In sum, a net saving of forest area of  
3.4 million hectares remains (or 7.3 million hectares ignoring the exten-
sive wildfire forest losses in 2016 and 2017), when subtracting excess 
forest losses from achieved reductions of forest losses (6%, or 12% with-
out wildfire losses, of the 2000–2019 reference level of forest losses).

For DR Congo, we obtain an overestimation of forest losses 
from 2001 to 2005 compared with observed forest losses, but a 
good alignment with FAO-reported forest losses used for calibration  
(in the absence of remotely sensed information from 1990–1999)  
(Fig. 3b). However, our model does not mirror the observed forest 
losses from 2012 onwards. The identified deviations mark an excess 
phase of deforestation (Fig. 4b), suggesting higher-than-expected 
forest losses (Table 1) (coinciding with armed conflicts). The excess 
forest loss reaches 3.8 million hectares, some 29% of the reference level 
of forest losses (2000–2019).

In Indonesia, we identify both reduction (coinciding with 
command-and-control policies) and excess periods of forest losses 
(coinciding with pre-election promises). In the reduction period, 
observed forest losses sharply decrease in the period 2000–2005  
(Fig. 4c). From 2006 to 2010, we again obtain a good agreement between 
observed and reference forest losses, pointing to a market-oriented 
period. Observed forest losses tend to exceed modelled forest losses 
from 2011 onwards, leading to an excess phase of forest loss (Fig. 4c). 
The net effect of reduction and excess phases is a less-than-expected 
forest loss of 0.12 million hectares, which is 0.5% of the reference level 
of forest losses (2000–2019). Excluding the wildfire forest losses in 
Indonesia in 2016 leads to a net reduction of forest losses by 0.86 mil-
lion hectares (3% of the reference level of forest losses).

The social value of avoided emissions
The trend changes in forest losses for Brazil (2004–2012) and Indonesia 
(2000–2005) (Fig. 4d,f) have probably caused climate cooling effects, 
achieved by a reduction of CO2 emissions (see ref. 4,31 for confirming 
such effects) coinciding with command-and-control policies. Such cool-
ing effects are partly offset by later climate warming effects through 
increased emissions in Indonesia, coinciding with pre-election prom-
ises. The estimated cumulative avoided or increased CO2 emissions 
from 2000–2019, which we used for our social valuation approach 
(Methods equation (5) and Supplementary Methods 4), range between 
+2.757 avoided (Brazil, enhanced carbon storage) and −1.573 addi-
tional gigatonnes CO2 (DR Congo, reduced carbon storage) (Fig. 4 and 
Table 2). For our social value calculation, we use conservative SCC33,34 
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growing from US$30.1 (2000) to US$44.1 per tonne CO2 emission (2019) 
(2015 US$; see Supplementary Table 9). We exclude the emissions 
from natural wildfires occurring in association with climate anoma-
lies in Brazil and Indonesia (2016–2017), which are probably mainly  
natural phenomena.

Benefits (reductions of emissions) and costs (increases of emis-
sions) impact the social value of the trends of forest losses in the three 
countries. The social value of changes to forest losses from non-market 
forces considers the benefits of emission reductions and the costs of 
emissions measured from the perspective of 2000 (Fig. 4d–f). Yet the 
timing of these benefits and costs matters because their associated 
damages are discounted as in the case of the SCC4. We use a constant dis-
count rate to convert all costs and benefits to their present value in 2019 
(Methods, equations (3) and (5)). Our method penalizes temporary 

warming (increased damages) and values temporary cooling31 (avoided 
damages). For example, CO2 not emitted into the atmosphere by reduc-
ing forest losses in 2000 avoids social costs of damages over 20 yr, even 
when released into the atmosphere in 2019.

This social value of the non-market emission effects (Methods 
equation (5)) is then +US$133.8 and +US$36.7 billion in Brazil and 
Indonesia, respectively (see Table 2), but emission trends in DR Congo 
contribute negatively to the social value with −US$71.3 billion, if we 
consider the CO2 emission changes as permanent from 2020 onwards.

Accounting for possible non-permanence of emission changes 
after 2019 by assuming a 1% likelihood per year that the climate ben-
eficial (Brazil and Indonesia) or adverse effect (DR Congo) reverses 
(see Methods, equation (5)) alters the value of the emission reduction, 
depending on how much CO2 emissions are cumulatively avoided or 
added by the trend changes until 2019 (Table 2). The reduction of the 
social value is stronger in Brazil (−46%), where higher avoided CO2 
emissions have accumulated, than in Indonesia (−29%). However, the 
remaining climate benefits are still strongest in Brazil (social value of 
emission reduction accounting for non-permanence +US$72.1 billion).

Reducing forest losses comes with a cost for land managers who 
forgo land-use benefits otherwise obtained from expanding agri-
cultural land or timber plantations at the cost of tropical forest. We  
calculate the accumulated value of the forgone profits to land managers 
as present values in 2019 (Methods, equation (8)), which we also use as 
reference year for the social value calculation. These costs are moderate 
and much lower than the social value of the emission reductions achieved 
in Brazil (estimated land-opportunity costs of −US$20.7 billion).  
Land-opportunity costs are higher in Indonesia than in Brazil, but still 
lower than the social value of the emissions reduced there (Table 2).

Discussion
Our study presents a new counterfactual land-use allocation 
model driven by assumptions of satisficing behaviour, heteroge-
neous farmer expectations and stochastic uncertainty, which can 
simulate market-oriented decision-making. It provides a suitable 
business-as-usual baseline to assess the social value of reducing for-
est losses, where forest conservation generates social value by avoid-
ing emissions. We argue that modelling market-driven forest losses 
and separating them from non-market-driven losses provides a way 
to understand the net effect of broad policy interventions and other 
non-market factors that simultaneously influence forest cover. This 
approach complements quasi-experimental statistical approaches, 
which are agnostic to the factors determining the baseline sce-
nario. Additionally, our counterfactuals enable the application of a 
cutting-edge method4 for quantifying the social (economic) value of 
changes to emissions from forest losses.

The counterfactual model reflects how landowners will likely 
respond to changing market forces, capturing very different con-
ditions and deforestation rates ranging from an average of 0.50%  
(DR Congo, with cassava as the most profitable crop) to 0.58% (Brazil, 
with soybeans as the most profitable crop) to 1.61% per year (Indonesia, 
with palm oil as the most profitable crop). Thus, we expect that our 
approach can be extended to support studies in countries beyond the 
three considered here.

The assumption of satisficing behaviour supports realistic model 
outcomes: alternative assumptions would yield different counter-
factual predictions. For example, giving more weight to maximizing 
decision rules would increase simulated reference levels of forest 
loss to higher than observed forest losses35, whereas our model is 
able to capture empirically observed variations in forest cover losses 
across time with relatively little (and exclusively publicly available) 
input data. Further research could extend our model to include other 
drivers beyond heterogeneous expected future market prices and 
agricultural productivities. Finally, it is important to stress that our 
approach does not provide causal impact estimates and exact figures 
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for specific forest loss reduction policies, instead providing net devia-
tions from a market-only reference scenario. In other studies, highly 
advanced integrated assessment models are used in prospective 
studies36 or sophisticated quasi-experimental models for ex-post 
analyses37. Instead, we present a counterfactual modelling and broad 
assessment approach as a parsimonious and less data-demanding 
complement to these techniques while still providing generalizable 
patterns of likely country-scale drivers of forest losses and a robust 
estimation of the order of magnitude of the social value of avoided 
forest losses.

In Brazil, the counterfactual forest cover trajectory identified 
reduced forest losses at a plausible order of magnitude for 2004–2009, 
a period that corresponds to the implementation of the ‘Action Plan 
for the Prevention and Control of Deforestation in the Legal Amazon’ 
(PPCDAm). For example, ref. 38 found a deforestation reduction of 
73,000 km2 (emission reduction of 2.7 gigatonnes CO2), which is similar 
to our estimated forest loss reduction for the same period (67,000 km2, 
emission reduction of 3.1 gigatonnes CO2).

Developments in DR Congo from 2012 onwards illustrate how 
disruptions in social cohesion and local governance structures (here 
represented by armed conflicts18) can trigger deviations from the 
expected market-only forest loss trajectory. Displaced populations and 
forced migrations indicate serious disturbances to local communities 
and governance, probably eroding land users’ confidence about their 
ability to exploit future benefits of avoided deforestation. Moving 
forward, the disturbance of social systems by global or national crises 
could become an even more important driver of forest loss.

Indonesia is a country characterized by high land-opportunity 
costs, which are the enemy of any forest conservation39. Trends in for-
est losses show a climate cooling effect (smaller than in Brazil) from 
forest loss reductions in 2000–2005, with some social value even after 
accounting for possible non-permanence of the reduction effect. Our 
retrospective analysis identifies pre-election promises as important 
drivers of excess forest losses17, with peaks in 2015–2016 associated 
with elevated wildfire frequency40. We suggest that several factors 
may have been underlying the excess deforestation in Indonesia from 
2010 onwards. For example, spillover effects were associated with the 
Indonesian palm oil moratorium leading to increased deforestation41. 
Additionally, this period was influenced by the REDD+ agreement 

and a moratorium concerning peatland and primary forests between 
Indonesia and Norway. While the moratorium was assessed as being 
cost-effective42, it has probably contributed only marginally to aggre-
gate reductions of CO2 emissions over the period 2011–2018. It will be 
important to analyse and assess future forest loss trends, for example, 
regarding the new ‘Omnibus law’ in Indonesia issued in 2020 to support 
more work opportunities and attract foreign and domestic investments 
by relaxing regulatory requirements for businesses43.

Our approach accounts for the non-permanence of the cumula-
tive emission reductions achieved by changing forest loss trends. It 
avoids overestimating the value of forest protection initiatives and 
offers a transparent and credible means of estimating the social value 
associated with avoiding forest loss4. Similarly, while past scholarship 
has been criticized for overstating reference trajectories9, our counter-
factual approach provides reference estimates that are independent 
from (often very high) historical forest losses. Overstating the value 
of nature-based solutions risks discrediting this crucial set of climate 
mitigation and adaptation strategies44, which often effectively bundle 
social and ecological co-benefits.

Here we calculate a social value of past trends of forest losses 
worth US$61.6 billion even when accounting for the non-permanence 
of achieved emission reductions. This value climbs to US$92.2 billion if 
conflict-linked deforestation spikes in DR Congo are ignored. The social 
value of these avoided emissions alone outweighs the forgone private 
agricultural net benefits imposed by forest conservation, and carbon 
storage is just one part of the total social value provided by tropical for-
est3. For Brazil, we calculate that the social value of avoided emissions 
(US$72.2 billion) is 3.5 times the private agricultural land-opportunity 
costs. This result supports the findings of a recent global study45 that 
found benefit–cost ratios of general global climate policies ranging 
between 1.5 and 3.9. Our result is even more remarkable, as we used 
SCC to assess past trends of forest losses at the lower end of recently 
published SCC46.

The economic valuation of the benefits and costs associated 
with the services of nature comes with criticism47. However, our study 
highlights that reducing forest losses, even when faced with the risk 
of non-permanence31, may generate real economic benefits, which 
humans cannot afford to ignore. Provided that credible methods to 
assess their potential are used, one can value how such solutions may 

Table 1 | Periods of change in trends of forest losses according to literature and differences from our market-driven 
counterfactual simulations

Factor # Documented periods with domestic policies or other impacts on the  
level of forest loss

Forest cover losses (in million hectares) and emissions  
(gigatonnes CO2) (in brackets)

Source and reason Country Period (yr) Type of forest 
loss phase

(1) Observed forest 
losses

(2) Market-driven 
(counterfactual) forest 
losses

(1)−(2) Residual: 
non-market-driven 
forest losses

1 Ref. 51 - Command-and- 
control: agreements with 
meat companies and soy 
moratorium

Brazil 2004–2012 Reduction 24.630 (9.31) 31.285 (11.83) −6.655 (−2.52)

2 Ref. 20 - Climate 
phenomenon El Niño

Brazil 2015–2017 Excess 12.120 (4.58) 8.909 (3.37) +3.211 (+1.21)

3 Ref. 18 - Armed conflicts DR Congo 2012–2019 Excess 9.260 (3.84) 5.467 (2.27) +3.793 (+1.57)

4 Ref. 64 - 
Command-and-control: 
consistent permitting rules 
and export taxes

Indonesia 2000–2005 Reduction 5.314 (2.93) 9.724 (5.35) −4.410 (−2.43)

5 Ref. 17 - Public spending 
(additional harvesting 
allowances) before 
elections

Indonesia 2010–2019 Excess 15.980 (8.80) 11.697 (6.44) +4.283 (+2.36)

Sum 67.304 (29.46) 67.082 (29.26) +0.222 (+0.20)

Counterfactual simulations are shown in Fig. 4. We excluded the model calibration phase (1990–1999) from this table (see Supplementary Methods 1).
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effectively complement efforts to reduce human greenhouse gas emis-
sions elsewhere31. We argue that valuing avoided emissions from forest 
losses is important because the magnitude of their social value vastly 
outweighs imperfections in assessment methods. Doing so may help 
to identify leverage points for sustainable development, for example 
reducing perverse incentive structures that redirect capital to projects 
that generate net social and environmental harm48,49.

Among the limitations of our counterfactuals is a lack of spatial 
detail in modelled forest losses; no local inference is possible with this 
first version of our model. Other limitations include the problem that 
several influences may overlap. For example, another study has shown 
that mining has been responsible for 9% of the forest losses in the Bra-
zilian Amazon from 2005–201514. However, possible mining-related 
excess forest losses were probably compensated by simultaneous 
command-and-control policies at the country scale. We limited the 
factors included in our counterfactual model to market price signals, 
productivities and the associated profit expectations of farmers, but 
other factors can also be influential (for example, the effects of chang-
ing discount rates50 or movements of exchange rates51). We suggest that 
such effects have partially been encapsulated by market price signals52. 

Additionally, non-monetary factors, such as access to labour53, as well 
as cultural values54 can influence the level of forest loss. Our counter-
factual model can be advanced to integrate such factors by including 
multiple objectives to be satisfied35.

We conclude that generating suitable reference scenarios is pivotal 
for analysing forest loss trends, as one cannot intersubjectively assess 
what one cannot measure21. Our approach enables the identification 
not only of trends but also of possible drivers. Illustrating trends and 
estimating their social value can be an important communication strat-
egy. Our estimates of the social value of inducing changes to expected 
forest loss rates are moderate but encouraging, particularly for Brazil’s 
case, providing a proof-of-concept that past deforestation reduc-
tions were of substantial social value, even if they were short-lived. 
This underlines both the feasibility and the urgency of integrating 
the economic dimensions of forest losses into decision-making55 and 
welfare-accounting systems56 to harness the momentum of the Glasgow 
Leaders’ Declaration on Forests and Land Use.

Achieving larger and more enduring reductions in forest losses 
is among society’s greatest challenges. Here we show that efforts to 
protect forests can also be economically rewarding. Future initiatives 
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Fig. 4 | Differences in observed and couterfactual forest losses and 
related changes in CO2 emissions. a–c, Differences between observed and 
counterfactual forest losses in documented reduction and excess periods 
of forest loss for Brazil (a), DR Congo (b) and Indonesia (c) (Table 1). d–f, The 

corresponding estimated changes in CO2 emissions together with the associated 
impact on their social value in a given year. The thin bars in 2015 and 2016 for 
Indonesia and Brazil, respectively, include emissions by wildfire, which we 
however excluded from the calculation of the social value of emission reductions.
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could address the causes rather than the symptoms57 of forest loss, 
including the demand side for agricultural commodities13, and influ-
ence the social identity58 of land managers rather than considering 
their actual behaviour as a mistake to be corrected.

Methods
Counterfactual deforestation model
The common maximization paradigm in land-use models implies 
that land managers would always seek, for example, the maximum 
productivity, service provisioning, net present value, utility or profit. 
Such analyses commonly assume just one future condition or aver-
age alternative scenario outcomes (sometimes using probabilities as 
weights). However, the uncertain real world does not allow application 
of the maximization assumption for many land managers because the 
one land-use allocation that achieves a maximum outcome across all 
possible future scenarios would not be available. Moreover, maximizing 
the average of all possible scenarios might be acceptable for rich land 
managers but not for those needing acceptable land-use income each 
year. We thus started with the premise that satisficing behaviour is a 
more reasonable and consistent assumption for land-use decisions28, 
given that multiple futures are possible and that decision-makers 
have imperfect information on the likelihood of occurrence of these 
futures. Uncertainty includes market price and productivity fluctua-
tions, as well as potential crop losses by natural hazards and sudden 
political changes. Land managers consider multiple possible profits for 
the future in our model. In our approach, satisficing means that land 
managers gradually improve their current land-use profits by seeking 
a compromise land-use allocation that promises ‘sufficient’ outcome 
levels for all states of the world they assume are possible. To achieve 
this, individual land managers would consider two types of informa-
tion: (1) profits they expect under current land-use allocation and (2) 
the best achievable profits they expect under a changed land allocation 
(for multiple possible future profit scenarios). Our suggested model 
(see Fig. 1 for workflow) captures the potential for improvement by the 
difference between (2) and (1), which shows the degree of land manager 
dissatisfaction with current profits. Groups of farmers then reallocated 
land between land-use/land-cover (LULC) types, seeking to reduce the 
maximum difference between (2) and (1) across multiple (randomly 
simulated) future profits they expect. However, in contrast to a previ-
ous model35, we used a large range of stochastic profit scenarios to 
acknowledge that individual expectations are heterogeneous59. This 
implies that not all farmers would contribute equally to LULC changes, 
but mainly those who see the largest potential for improving their 
profits (that is, those who experience the largest dissatisfaction with 

current profits). While we clustered individual land managers into 
groups (to represent potential regional heterogeneity), we assumed 
that such groups would arrange their land-use allocation in a way that 
minimizes their maximum dissatisfaction across multiple future profit 
expectations over time, taking their heterogeneous profit expectations 
into account. The simulated market-driven counterfactual forest loss 
predicts the expected annual reduction of the area cover of the LULC 
type ‘natural forest’ (Supplementary Methods 1, equation (1)). For a 
mathematical description of our counterfactual deforestation model, 
see Supplementary Methods 1.

Observed forest losses
Observed forest losses were taken from Global Forest Watch60, defined 
as ‘… the complete removal of tree cover canopy at the Landsat pixel 
scale’. Data from FAO Statistics61 refer to annual area reductions of the 
LULC class ‘naturally regenerating forest’ (Supplementary Methods 1). 
Forest losses included both deforestation (permanent loss of forest) 
and temporary forest losses (for example, due to natural forest fires) 
partly followed by forest regrowth. We excluded extensive forest losses 
due to natural fires in Brazil and Indonesia (2016 and 2017), which 
are probably temporary, from the assessment of the social value of 
the forest loss trends. Solid remote sensing data underlie Global For-
est Watch forest losses, which rely on a method developed in ref. 62. 
We compared observed and counterfactual forest losses to identify 
deviations from reference trajectories of forest losses, these deviations 
being manifested as periods of reduction or excess of deforestation. 
The FAO-reported data show that Brazil, DR Congo and Indonesia 
account for 43% of the average global net forest losses over the period 
2009–2019 (Supplementary Fig. 3, based on ref. 61).

Model assessment
The influence of the reduction and excess periods of forest losses 
affected by non-market factors on the level of forest loss (Lobs) was 
statistically analysed using a generalized linear mixed model to evalu-
ate the quality of the counterfactual model. Countries were defined as 
subjects and the year of the observation as the repeated measure vari-
able. We evaluated the portion of the variation of the observed forest 
losses (Lobs) that can be explained by the estimates ̂Lobs, using the coun-
terfactual forest losses Lref, and the reduction and excess phases as 
predictors (Supplementary Fig. 2).

̂Lobs = a + b × RBra1 + c × RBra2 + d × RInd + e × EXBra

+f × EXCon + g × EXInd + h × Lref
(1)

Bra1 is Brazil reduction period 1, Bra2 is Brazil reduction period 2, 
Ind is Indonesia, Bra is Brazil, Con is DR Congo and ref is counterfactual 
forest loss. Reduction (R) and excess periods (EX) were contrasted 
against a reference level of 0 (≈phase of market-oriented forest loss).

Equation (1) considers market-oriented counterfactual forest 
losses by variable Lref, but also controls for the impact of periods influ-
enced by non-market factors. One would expect that, given unbiased 
counterfactual (reference) forest losses, the coefficient h of the variable 
Lref would obtain a value close to one. In fact, we obtained h = +0.969 
(see Supplementary Table 1).

Country-level influences on the level of forest loss
We used ref. 63, which structured the drivers of forest loss into proxi-
mate causes and underlying driving forces, as an orientation to identify 
potential country-scale factors driving forest loss. The underlying 
forces mentioned in ref. 63 included economic factors (which our coun-
terfactuals covered using production values computed as prices × pro-
ductivities), institutional and policy influences, remote factors, but also 
behavioural factors (which our counterfactuals considered by assum-
ing satisficing decision-making). Examples of the proximate causes 

Table 2 | Social value of emission trends under various 
assumptions and land-opportunity costs for land managers

Country Cumulatively 
avoided (+) or 
additional (−) 
emissions  
2000–2019 
(gigatonnes CO2) 
(in brackets when 
considering 
emissions from 
wildfires)

Social value of the CO2 
emission trend changes 

(billion US$)

Private 
opportunity 
costs of 
avoided 
forest losses 
(billion US$) 
(Methods)

Assuming 
permanence 
of emission 
changes 
after 2019

Assuming 
a likelihood 
of 1% per 
year (after 
2019) that 
the saving/
loss effect 
is reversed 
(Methods)

Brazil +2.757 (+1.310) +133.8 +72.1 −20.7

DR Congo −1.573 −71.3 −36.6 n.a.

Indonesia +0.471 (+0.070) +36.7 +26.1 −24.4

Land-opportunity costs for land managers refer to economic net benefits land managers 
forgo with forest conservation. For DR Congo, land-opportunity costs do not apply, as forest 
losses have not been reduced there. n.a., not applicable.
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included agricultural expansion, wood extraction and infrastructure 
extension. Social events (such as revolution) and biophysical drivers 
(for example, climate events) were classified as between the underlying 
and proximate levels.

While our counterfactual model included already important 
underlying drivers (agricultural productivities, market prices and 
consistent satisficing decision behaviour), we also searched for 
country-scale factors as possible causes for deviations of observed 
from counterfactual forest losses. These factors represented institu-
tional and policy factors (for example, command-and-control policies 
and pre-election promises), social events (for example, conflicts) and 
extreme climate events (for example, biophysical drivers). On the basis 
of literature searches, we qualitatively tested whether such factors, 
for which reliable evidence had been published, temporarily coin-
cided with deviations from the counterfactuals. Concerning factors 
supporting a reduction in forest losses, these selection criteria were 
met for command-and-control policies associated with the PPCDAm, 
launched in 2004 by Brazil’s government. These policies included 
land planning, establishing and expanding protected areas, remote 
sensing-based monitoring and control, environmental licences, fines 
for illegal deforestation and on-the-ground enforcement of the law15. 
Domestic political interventions to reduce forest losses, such as agree-
ments with meat companies and a soy moratorium, were also estab-
lished51. The moratorium banned trading, financing or purchasing of 
soybeans produced on land parcels previously covered by rainforest. 
As an approximate end of the period under command-and-control 
policies, the Brazilian Forest Code was established in 201215, which 
weakened the initially ambitious deforestation reduction aims. In the 
case of Indonesia, command-and-control policies were associated 
with Forestry Act No. 41 in 1999 (which we considered for 2000–2005 
following ref. 64), according to which everybody had to protect the 
environment and forests65. This legal act also supported more strin-
gent forest clearing permission rules enforced by the government and 
consistently applied fiscal measures, such as export taxes (limiting 
the attractiveness of exporting palm oil), implemented after a change 
in the government64. On factors potentially leading to excess forest 
losses, we suggest social disturbances by armed conflicts in DR Congo 
as a possible cause of higher-than-expected deforestation from 2012 
onwards. A strong increase in conflicts has been documented from 
2009 onwards in DR Congo (from below 1,000 to almost 3,500 cases per 
year)18. Main conflict types were battles, violence against civilians and 
riots or protests. For Indonesia, we suggest perverse political incentives 
(pre-election promotion of agricultural development and additional 
harvesting concessions) as regional-level factors driving excess forest 
losses from 2010 onwards. The number of direct elections was shown 
to be significantly positively correlated with the level of forest loss17. 
Finally, we traced back extreme peaks of forest losses (mainly in Brazil, 
but also in Indonesia) to the extreme climate events of 2016. Local and 
other factors potentially influencing the level of forest loss but not 
included in our approach are discussed in Supplementary Methods 3.

Social value and opportunity costs
Our counterfactual forest loss trajectories facilitated quantifying the 
social value of avoiding CO2 emissions, here based on our real-world 
example of reducing forest losses. Our assessment method was guided 
by a newly developed method4 to value nature-based emission reduc-
tions starting with the social costs of carbon (SCCt), which aggregate 
the costs of damages caused by one additional unit of CO2 emitted 
today from a societal perspective over an unlimited period.

SCCt =
∞
∑
t
(1 + r)−t × Dt (2)

Dt is the temperature-dependent marginal damage (in US$) caused 
by the emission of one unit CO2 emitted in one specific year, which 
increases at a constant rate per year in our study, and r is the constant 

discount rate (r = 0.03 in our case33). SCCt data were taken from ref. 33 
and Dt grew at 0.0202 per annum (derived from data in ref. 34).

The basic equation derived in ref. 4 to assess the social value V of 
avoided CO2 emissions under the premise of permanence of the emis-
sion reduction and climate effects after T (T is when our consideration 
ends) is as follows:

V =
T=19
∑
t=0

(1 + r)−t × Et × SCCt =
∞
∑
t=0

(1 + r)−t×St × Dt (3)

Et is either an annual reduction of CO2 emissions relative to the 
counterfactual, contributing positively to the social value of the trend 
of forest loss, or an increase, contributing negatively to the social 
value (Supplementary Methods 4.1). St is the stock of the accumulated 
avoided (positive St) or additional emissions (negative St), which we 
assumed to become constant from T onwards.

St =
t
∑
0
Et (4)

To account for the possibility of a reversion of the carbon stocks 
to their initial values (=non-permanence), we assumed a likelihood 
of reversion of 1% per annum from T onwards. This assumption was 
implemented by using an adjusted social value V* to account for pos-
sible non-permanence. V* uses the year 2019 as reference year for the 
present value.

V∗ =
T=19
∑
t=0

(1 + r)19−t×St×Dt +
∞
∑
t=20

(1 + r)−(t−19)×(1 + ρ)−(t−19) × St×Dt (5)

ρ is the probability of reversion to the pre-assessment state per 
annum (ρ = 0.01 in our case). For the SCCt and Dt, see Supplementary 
Table 9 and Supplementary Methods 4.2.

Our estimation of the land-opportunity costs (economic net ben-
efits land managers forgo when refraining from forest clearing) caused 
by tropical forest conservation followed the same logic as our estima-
tion of the social value of emission reductions. The land-opportunity 
costs represent the foregone net benefits for land managers when 
they decide to retain tropical forest instead of converting them to 
alternative LULC types. These costs were calculated by considering 
the expected relative contributions of different LULC types to the 
simulated forest losses (Supplementary Table 10). Due to changing 
market prices and productivities, we obtained specific opportunity 
costs for each period. The aggregated costs result from:

C =
∞
∑
t=0

(1 + r)−t × SΔLt ×Ot (6)

SΔLt  is the accumulated area of the avoided forest losses (enhancing 
SΔLt ) or of the additional forest losses (reducing SΔLt ), which we assumed 
to become constant from T onwards. Ot is the land-opportunity cost 
per hectare per year, growing at 0.007 per annum in Brazil and at 0.004 
per annum in Indonesia after T (Supplementary Table 10).

SΔLt =
t
∑
0
ΔLt (7)

∆Lt is the difference between observed and expected area of forest 
losses. To account for the possibility of a reversion, we also assumed a 
likelihood of reversion of 1% per annum here, from T onwards.

C∗ =
T=19
∑
t=0

(1 + r)19−t × SΔLt ×Ot

+
∞
∑
t=20

(1 + r)−(t−19)× (1 + ρ)−(t−19) × SΔLt ×Ot

(8)
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C* are the land-opportunities accounting for non-permanence. 
As the discount rate to estimate opportunity costs, we used the same 
r = 0.03 used for assessing climate benefits.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Datasets used are published and cited scientific work. We used informa-
tion on agricultural productivity and prices available from FAOSTAT 
at https://www.fao.org/faostat/en/. Data on observed forest loss 
were obtained from Global Forest Watch: Forest Monitoring, Land 
Use and Deforestation Trends available at https://www.globalforest-
watch.org/ and GDP data from https://data.worldbank.org/indicator/
NY.GDP.MKTP.KD?locations=BR. Compiled data are documented 
in Zenodo at https://doi.org/10.5281/zenodo.8016364. Data used to 
create figures are available via figshare at https://doi.org/10.6084/
m9.figshare.23366501.

Code availability
Spreadsheet versions of the optimization are available in Zenodo at 
https://doi.org/10.5281/zenodo.8016364.

References
1. IPCC: Summary for Policymakers. In Climate Change and Land:  

an IPCC Special Report on Climate Change, Desertification,  
Land Degradation, Sustainable Land Management, Food  
Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems  
(eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2019).

2. Balvanera, P. et al. in Methodological Assessment Report on the 
Diverse Values and Valuation of Nature of the Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem Services 
(eds Pascual, U. et al.) Ch. 1 (IPBES, 2022).

3. Franklin, S. L. & Pindyck, R. S. Tropical forests, tipping points, and 
the social cost of deforestation. Ecol. Econ. 153, 161–171 (2018).

4. Groom, B. & Venmans, F. The Social Value of Offsets. Preprint 
at Research Square https://doi.org/10.21203/rs.3.rs-1515075/v1 
(2023).

5. Sevil, A., Muñoz, G. & Godoy-Faúndez, A. Aligning global efforts 
for a carbon neutral world: the race to zero campaign. J. Appl. 
Behav. Sci. 58, 779–783 (2022).

6. Race to zero campaign. UNFCCC https://unfccc.int/climate- 
action/race-to-zero-campaign (2023).

7. REDD+. UNFCCC https://unfccc.int/topics/land-use/workstreams/
reddplus (2023).

8. Asiyanbi, A. & Lund, J. Policy persistence: REDD+ between 
stabilization and contestation. J. Polit. Ecol. 27, 378–400 (2020).

9. West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Overstated 
carbon emission reductions from voluntary REDD+ projects  
in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117,  
24188–24194 (2020).

10. Wunder, S. et al. From principles to practice in paying for nature’s 
services. Nat. Sustain 1, 145–150 (2018).

11. Taheripour, F., Hertel, T. W. & Ramankutty, N. Market-mediated 
responses confound policies to limit deforestation from oil palm 
expansion in Malaysia and Indonesia. Proc. Natl Acad. Sci. USA 
116, 19193–19199 (2019).

12. Simmons, B. A. et al. Effectiveness of regulatory policy in curbing 
deforestation in a biodiversity hotspot. Environ. Res. Lett. 13, 
124003 (2018).

13. Henders, S., Ostwald, M., Verendel, V. & Ibisch, P. Do national 
strategies under the UN biodiversity and climate conventions 
address agricultural commodity consumption as deforestation 
driver. Land Use Policy 70, 580–590 (2018).

14. Sonter, L. J. et al. Mining drives extensive deforestation in the 
Brazilian Amazon. Nat. Commun. 8, 1013 (2017).

15. West, T. A. & Fearnside, P. M. Brazil’s conservation reform and the 
reduction of deforestation in Amazonia. Land Use Policy 100, 
105072 (2021).

16. Kraus, S., Liu, J., Koch, N. & Fuss, S. No aggregate deforestation 
reductions from rollout of community land titles in Indonesia yet. 
Proc. Natl Acad. Sci. USA 118, e2100741118 (2021).

17. Cisneros, E., Kis-Katos, K. & Nuryartono, N. Palm oil and the 
politics of deforestation in Indonesia. J. Environ. Econ. Manage. 
108, 102453 (2021).

18. Shapiro, A. C. et al. Proximate causes of forest degradation in  
the Democratic Republic of the Congo vary in space and time. 
Front. Conserv. Sci. 2, 28 (2021).

19. Brancalion, P. H. S. et al. Emerging threats linking tropical 
deforestation and the COVID-19 pandemic. Perspect. Ecol. 
Conserv. 18, 243–246 (2020).

20. Wigneron, J.-P. et al. Tropical forests did not recover from the 
strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603 (2020).

21. Gifford, L. ‘You can’t value what you can’t measure’: a critical look 
at forest carbon accounting. Clim. Change 161, 291–306 (2020).

22. Randazzo, N. A., Gordon, D. R., & Hamburg, S. P. Improved 
assessment of baseline and additionality for forest carbon 
crediting. Ecol. Appl. 33, e2817 (2023).

23. Seddon, N. et al. Getting the message right on nature- 
based solutions to climate change. Glob. Change Biol. 27, 
1518–1546 (2021).

24. Schwartzman, S. et al. Environmental integrity of emissions 
reductions depends on scale and systemic changes, not sector of 
origin. Environ. Res. Lett. 16, 91001 (2021).

25. Gaveau, D. L. A. et al. Slowing deforestation in Indonesia follows 
declining oil palm expansion and lower oil prices. PLoS ONE 17, 
e0266178 (2022).

26. Jaillet, P., Jena, S. D., Ng, T. S. & Sim, M. Satisficing models under 
uncertainty. INFORMS J. Optim 4, 347–372 (2022).

27. Pendrill, F. et al. Disentangling the numbers behind agriculture- 
driven tropical deforestation. Science 377, eabm9267 (2022).

28. Findlater, K. M., Satterfield, T. & Kandlikar, M. Farmers’ risk-based 
decision making under pervasive uncertainty: cognitive 
thresholds and hazy hedging. Risk Anal. 39, 1755–1770 (2019).

29. Brown, C., Brown, K. & Rounsevell, M. A philosophical case for 
process-based modelling of land use change. Model. Earth Syst. 
Environ. 2, 50 (2016).

30. Seymour, F. & Harris, N. L. Reducing tropical deforestation. 
Science 365, 756–757 (2019).

31. Matthews, H. D. et al. Temporary nature-based carbon removal 
can lower peak warming in a well-below 2°C scenario. Commun. 
Earth Environ. 3, 65 (2022).

32. Taubert, F. et al. Global patterns of tropical forest fragmentation. 
Nature 554, 519–522 (2018).

33. Technical Support Document: Technical Update of the Social Cost of 
Carbon for Regulatory Impact Analysis Under Executive Order 12866 
(United States Government, 2016); https://www.epa.gov/sites/
default/files/2016-12/documents/sc_co2_tsd_august_2016.pdf

34. Technical Support Document: Social Cost of Carbon, Methane, 
and Nitrous Oxide Interim Estimates Under Executive Order 13990 
(United States Government, 2021); https://www.whitehouse.
gov/wp-content/uploads/2021/02/TechnicalSupportDocument_
SocialCostofCarbonMethaneNitrousOxide.pdf

35. Knoke, T. et al. Accounting for multiple ecosystem services 
in a simulation of land-use decisions: does it reduce tropical 
deforestation? Glob. Change. Biol. 26, 2403–2420 (2020).

36. Fuss, S., Golub, A. & Lubowski, R. The economic value of tropical 
forests in meeting global climate stabilization goals. Glob. 
Sustain. 4, e1 (2021).

http://www.nature.com/natsustain
https://www.fao.org/faostat/en/
https://www.globalforestwatch.org/
https://www.globalforestwatch.org/
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD?locations=BR
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD?locations=BR
https://doi.org/10.5281/zenodo.8016364
https://doi.org/10.6084/m9.figshare.23366501
https://doi.org/10.6084/m9.figshare.23366501
https://doi.org/10.5281/zenodo.8016364
https://doi.org/10.21203/rs.3.rs-1515075/v1
https://unfccc.int/climate-action/race-to-zero-campaign
https://unfccc.int/climate-action/race-to-zero-campaign
https://unfccc.int/topics/land-use/workstreams/reddplus
https://unfccc.int/topics/land-use/workstreams/reddplus
https://www.epa.gov/sites/default/files/2016-12/documents/sc_co2_tsd_august_2016.pdf
https://www.epa.gov/sites/default/files/2016-12/documents/sc_co2_tsd_august_2016.pdf
https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf
https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf
https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf


Nature Sustainability | Volume 6 | November 2023 | 1373–1384 1383

Article https://doi.org/10.1038/s41893-023-01175-9

37. Assunção, J., McMillan, R., Murphy, J. & Souza-Rodrigues, E. 
Optimal environmental targeting in the Amazon rainforest. Rev. 
Econ. Stud. https://doi.org/10.1093/restud/rdac064 (2022).

38. Assunção, J., Gandour, C. & Rocha, R. Deforestation slowdown in 
the Brazilian Amazon: prices or policies. Environ. Dev. Econ. 20, 
697–722 (2015).

39. Phelps, J., Carrasco, L. R., Webb, E. L., Koh, L. P. & Pascual, U. 
Agricultural intensification escalates future conservation costs. 
Proc. Natl Acad. Sci. USA 110, 7601–7606 (2013).

40. Field, R. D. et al. Indonesian fire activity and smoke pollution in 
2015 show persistent nonlinear sensitivity to El Niño-induced 
drought. Proc. Natl Acad. Sci. USA 113, 9204–9209 (2016).

41. Leijten, F., Sim, S., King, H. & Verburg, P. H. Local deforestation 
spillovers induced by forest moratoria: evidence from Indonesia. 
Land Use Policy 109, 105690 (2021).

42. Groom, B., Palmer, C. & Sileci, L. Carbon emissions reductions 
from Indonesia’s moratorium on forest concessions are 
cost-effective yet contribute little to Paris pledges. Proc. Natl 
Acad. Sci. USA 119, e2102613119 (2022).

43. Ramadhan, R., Daulay, M. H. & Disyacitta, F. Reviewing the 
prospects of forest decentralization in Indonesia after the 
Omnibus Law. Int. For. Rev. 24, 59–71 (2022).

44. Badgley, G. et al. Systematic over-crediting in California’s  
forest carbon offsets program. Glob. Change. Biol. 28,  
1433–1445 (2022).

45. van der Wijst, K.-I. et al. New damage curves and multimodel 
analysis suggest lower optimal temperature. Nat. Clim. Change 
13, 434–441 (2023).

46. Rennert, K. et al. Comprehensive evidence implies a higher social 
cost of CO2. Nature 610, 687–692 (2022).

47. Spash, C. L. Bulldozing biodiversity: the economics of offsets and 
trading-in Nature. Biol. Conserv. 192, 541–551 (2015).

48. Groom, B. & Turk, Z. Reflections on the Dasgupta Review on the 
Economics of Biodiversity. Environ. Resour. Econ. 79, 1–23 (2021).

49. Dasgupta, P. (ed.) The Economics of Biodiversity: the Dasgupta 
Review (HM Treasury, 2021).

50. Farzin, Y. H. The effect of the discount rate on depletion of 
exhaustible resources. J. Polit. Econ. 92, 841–851 (1984).

51. Carvalho, W. D. et al. Deforestation control in the Brazilian 
Amazon: a conservation struggle being lost as agreements and 
regulations are subverted and bypassed. Perspect. Ecol. Conserv. 
17, 122–130 (2019).

52. Barrett, C. The effects of real exchange rate depreciation  
on stochastic producer prices in low-income agriculture.  
Agric. Econ. 20, 215–230 (1999).

53. Vasco, C. et al. Off-farm employment, forest clearing and 
natural resource use: evidence from the Ecuadorian Amazon. 
Sustainability 12, 4515 (2020).

54. Knoke, T. et al. Afforestation or intense pasturing improve the 
ecological and economic value of abandoned tropical farmlands. 
Nat. Commun. 5, 5612 (2014).

55. Marcos-Martinez, R. et al. Projected social costs of CO2 emissions 
from forest losses far exceed the sequestration benefits of forest 
gains under global change. Ecosyst. Serv. 37, 100935 (2019).

56. Ouyang, Z. et al. Using gross ecosystem product (GEP) to  
value nature in decision making. Proc. Natl Acad. Sci. USA 117, 
14593–14601 (2020).

57. Daily, G. C. & Ruckelshaus, M. 25 years of valuing ecosystems in 
decision-making. Nature 606, 465–466 (2022).

58. Mols, F., Haslam, S. A., Jetten, J. & Steffens, N. K. Why a nudge is 
not enough: a social identity critique of governance by stealth. 
Eur. J. Polit. Res. 54, 81–98 (2015).

59. Grêt-Regamey, A., Huber, S. H. & Huber, R. Actors’ diversity and 
the resilience of social–ecological systems to global change.  
Nat. Sustain 2, 290–297 (2019).

60. Forest Monitoring Designed for Action (Global Forest Watch, 
2022); https://www.globalforestwatch.org/

61. FAOSTAT (FAO, 2022); https://www.fao.org/faostat/en/#home
62. Hansen, M. C. et al. High-resolution global maps of 21st-century 

forest cover change. Science 342, 850–853 (2013).
63. Geist, H. J. & Lambin, E. F. Proximate causes and underlying 

driving forces of tropical deforestation. BioScience 52,  
143–150 (2002).

64. Hansen, M. C. et al. Quantifying changes in the rates of forest 
clearing in Indonesia from 1990 to 2005 using remotely sensed 
data sets. Environ. Res. Lett. 4, 34001 (2009).

65. Herawati, H. & Santoso, H. Tropical forest susceptibility to and risk 
of fire under changing climate: a review of fire nature, policy and 
institutions in Indonesia. Policy Econ. 13, 227–233 (2011).

66. Fearnside, P. M. Time preference in global warming calculations: a 
proposal for a unified index. Ecol. Econ. 41, 21–31 (2002).

67. Moore, F. C., Baldos, U., Hertel, T. & Diaz, D. New science of 
climate change impacts on agriculture implies higher social cost 
of carbon. Nat. Commun. 8, 1607 (2017).

68. Parisa, Z., Marland, E., Sohngen, B., Marland, G. & Jenkins, J. The 
time value of carbon storage. Policy Econ. 144, 102840 (2022).

Acknowledgements
T.K. acknowledges support from Deutsche Forschungsgemeinschaft 
project KN586/19-1 (as part of the Research Unit 2730, RESPECT: 
‘Environmental changes in biodiversity hotspot ecosystems of South 
Ecuador: RESPonse and feedback effECTs’). C.P. acknowledges 
support from Deutsche Forschungsgemeinschaft projects PA3162/1 
and CRC990, project number 192626868. F.V. acknowledges 
financial support from the Grantham Research Institute on Climate 
Change and the Environment, at the London School of Economics 
and the ESRC Centre for Climate Change Economics and Policy 
(CCCEP) (ref. ES/R009708/1). F.V. and B.G. acknowledge financial 
support from the BIOADD NERC grant (ref. NE/X002292/1). We thank 
L. Bingham and P. Hahn for language editing of the paper and  
K. Bödeker for help with Fig. 2.

Author contributions
T.K. and C.P. developed the counterfactual model, carried out the 
simulations, drafted the first paper version and revised previous 
paper versions. N.H., B.G., F.V. and R.M.R.C. developed, discussed 
and revised the concept and text of the paper. B.G. and F.V. provided 
the methodological approach to estimate the social value of the 
identified trends of forest losses. All authors compiled, analysed and 
summarized relevant literature from their fields.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41893-023-01175-9.

Correspondence and requests for materials should be addressed to 
Carola Paul.

Peer review information Nature Sustainability thanks Cauê Carrilho, 
Adam Daigneault and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://www.nature.com/natsustain
https://doi.org/10.1093/restud/rdac064
https://www.globalforestwatch.org/
https://www.fao.org/faostat/en/#home
https://doi.org/10.1038/s41893-023-01175-9
http://www.nature.com/reprints


Nature Sustainability | Volume 6 | November 2023 | 1373–1384 1384

Article https://doi.org/10.1038/s41893-023-01175-9

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or  
format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons  
license, and indicate if changes were made. The images or other  
third party material in this article are included in the article’s  
Creative Commons license, unless indicated otherwise in a credit 

line to the material. If material is not included in the article’s  
Creative Commons license and your intended use is not permitted  
by statutory regulation or exceeds the permitted use, you will  
need to obtain permission directly from the copyright holder.  
To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natsustain
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/







	Trends in tropical forest loss and the social value of emission reductions
	Definition and use of the social cost of carbon
	Market-driven counterfactual forest losses
	Non-market-driven forest losses
	Reduced and excess forest loss
	The social value of avoided emissions
	Discussion
	Methods
	Counterfactual deforestation model
	Observed forest losses
	Model assessment
	Country-level influences on the level of forest loss
	Social value and opportunity costs
	Reporting summary

	Acknowledgements
	Fig. 1 Model concept.
	Fig. 2 Counterfactual deforestation rates.
	Fig. 3 Observed and reference forest cover losses for the three selected countries.
	Fig. 4 Differences in observed and couterfactual forest losses and related changes in CO2 emissions.
	Table 1 Periods of change in trends of forest losses according to literature and differences from our market-driven counterfactual simulations.
	Table 2 Social value of emission trends under various assumptions and land-opportunity costs for land managers.




