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ABSTRACT
Documents come in all shapes and sizes and are created by many

different means, including now-a-days, generative language mod-

els. We demonstrate that a simple genetic algorithm can improve

generative information retrieval by using a document’s text as a

genetic representation, a relevance model as a fitness function, and a

large language model as a genetic operator that introduces diversity
through random changes to the text to produce new documents. By

“mutating” highly-relevant documents and “crossing over” content

between documents, we produce new documents of greater rele-

vance to a user’s information need — validated in terms of estimated

relevance scores from various models and via a preliminary human

evaluation. We also identify challenges that demand further study.
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1 INTRODUCTION
Documents come in all shapes and sizes and are created by many

different means, including now-a-days, generative language models.

Identifying relevant documents and ranking them by relevance to

the query is the aim of Information Retrieval (IR). Here, relevance

attributes to timeliness and suitability of the results with reference

to the query. Typically, IR uses lexical and dense approaches. Lexi-

cal approaches utilize query term occurrences [19]. On the other

hand, dense approaches work in the semantic vector space where
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1. Lorem ipsum dolor sit amet, consecteturadipiscingelit. Nam

2. nislmaximus, ultricestortorfinibus, gravida ex. Nam fermentum

3. vehiculaest. Sed consecteturestaccumsan, tempus urna, 

4. condimentumenim. Sed vulputatemollisex, et dignissimodio

5. et. Nam in interdumjusto. Curabiturultricesin eratat

6. placerat. Maecenas et pulvinar felis, facilisisluctusquam. 

7. feugiatlibero sit ametsapienplacerat, viverraiaculisodio

…

➁ LLM 🧬
Variations

As a1 dolor sit ametaaa asdfadipiscingelit. Nam

nislmaximus, ultricestortorLorem ipsum dolor sit amet

condimentumenim. Sed vulputate

As a1 dolor sit ametaaa ultricestortorasdfadipiscing

vehiculaest. SedSed consecteturestaccumsan, tempus

dolor sit ameta

ex, et asasdfasdfdignissimodiocondimentumenim. Sed mollis

…

➂ Score & Repeat (until Converged or Budget Consumed)

Query

➀ Retrieve & Score

Figure 1: Overview of our Gen2IR system.

interaction between words in the queries are modelled or a single

vector representation of the query is learned [21]. Although systems

vary considerably in their implementations — ranging from purely

lexical or dense, to hybrid or multi-stage re-ranking systems [28]

— most systems these days aim to produce an “organic” result list

consisting of retrieved and ranked documents directly. In contrast,

Generative IR aims to provide direct answers to user queries rather

than identifying sources potentially supplemented with snippets.

In Generative IR, Generative Document Retrieval, ranks relevant

documents using encoder-decoder architecture while Grounded

Answer Generation generates query-specific answers with a sup-

porting document. We focus on Grounded Answer Generation

where we re-frame this problem as a genetic algorithm: Genetic

Generative Information Retrieval (Gen
2
IR). Rather than making

a single pass over the results, Gen
2
IR iteratively makes use of a

LLM as a random genetic operator that attempts to re-write the

top results to better fit the query. The controlled mutations and

cross-overs across the top candidates help in generating the new

candidates. The fitness of each candidate is determined using a

relevance scoring model — an approach that has worked well in

other recent works [9]. As the population (i.e., ranked list of results)

evolves, the most relevant mutated versions of the documents float

to the top and used for future generations of documents. Finally,

the process terminates when no new document is scored within the

top 𝑑 documents after a given iteration. Figure 1 gives an overview

of Gen
2
IR system.

We conducted experiments with multiple approaches for muta-

tion and cross-over with varying parameters namely: number of

mutations per iteration, sampling depth for mutations, and termi-

nation depth. A preliminary set of experiments on this technique

using both automatic and human evaluators on several datasets

suggest that Gen
2
IR outperforms re-ranking based and pure gen-

erative models (generate and filter). However, we identify a few
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challenges that remain, including the tendency for the language

models to hallucinate details not present in the source documents

and a misalignment of our fitness function and human preferences

when dealing with similar documents (a problem that has been

identified previously with respect to system evaluation [2]).

Thus the major contributions of this paper are:

• Modeling Generative IR as a genetic algorithm

• Showing effectiveness of Gen
2
IR through exhaustive evalua-

tion on multiple datasets

2 RELATEDWORK
IR methods are broadly classified into lexical, or word-based meth-

ods and dense, or semantic methods. The lexical and dense methods

graduated to hybrid models striking the balance between flexibility

and accuracy. Recently, generative IR models, which use LLMs,

have spawned considerable community interest.

Lexical andDense IR. Lexical methods focus on exact wordmatch-

ing delivering efficiency while dense methods go beyond the words

in the semantic space to decode meaning and strive for accuracy.

Traditional approaches for retrieval use query terms and fre-

quency of their occurrence in target documents based on exact

term matching yielding efficient models like BM25 [26]. Further,

query likelihood [29] and query expansion based techniques were

introduced to improve retrieval accuracy, by attempting to over-

come the exact term matching bottleneck.

Neural networks took retrieval beyond hand-crafted text features.

In using neural models, relevance is obtained by calculating simi-

larity between embedding space vectors of query and document,

capturing latent semantic characteristics. Pre-trained transformer

architectures further improved retrieval systems [10, 17].

Two primary neural retrieval models exist: interaction-based

where interactions between the query terms are modelled and

representation-based where a model learns a single vector rep-

resentation of the query [21]. There also exist hybrid models [1]

where dense models are used on top of initial efficient lexical fil-

tering models like BM25 [16]. Additionally, proximity graph based

methods are also used to execute efficient dense retrieval using

nearest-neighbor search algorithms [14, 18].

Discriminative and Generative IR. IR models can also be classi-

fied as discriminative and generative models.

Discriminative models determine relevance between the query

and document, learning a decision boundary separating relevant

documents. Thus, Rank-SVM [30] and neural and transformer based

ranking architectures like TAS-B [10] and TCT-ColBERT-HNP [17]

fall under such models. While discriminative models focus on a

target value, generative models overcome space boundaries and

perceived bottlenecks by interacting in parametric space [13, 15].

In Generative Document Retrieval, a generate-then-read ap-

proach was shown to outperform state of the art retrieve-then-read

pipeline [31]. Attempts to encode document identifiers into the

model instead of using sparse/dense index based index-retrieval-

rerank pipeline were made, but scaling to massive data is still a

challenge [32]. Obviously, another limitation is retrieving informa-

tion not available during training. To overcome these limitations

different variants of generative models like contextualized IR [15]

were proposed. As widely known, when LLMs generate answers to

Algorithm 1 Gen
2
IR

Input: 𝑞 query, 𝑡 document sampling depth,𝑚 mutations per iter-

ation, 𝑑 termination depth

Output: 𝑟 query specific high relevance answer

𝑅0 ← Re-rankingPipline(𝑞, 𝑡) ⊲ base population

𝑅 ← GeneticOperators(𝑅0,𝑚) ⊲ generate population

𝑅 ← FitnessFunction(𝑅, 𝑡) ⊲ worthy population

𝑅𝑑0 ← Filter(𝑅0, 𝑑) ⊲ old top set

𝑅𝑑1 ← Filter(𝑅,𝑑) ⊲ new top set

while |𝑅𝑑1 \ 𝑅𝑑0 | ≠ 0 do ⊲ until no new doc beats top 𝑑

𝑅 ← GeneticOperators(𝑅,𝑚) ⊲ generate population

𝑅 ← FitnessFunction(𝑅, 𝑡) ⊲ worthy population

𝑅𝑑0 ← 𝑅𝑑1 ⊲ old top set

𝑅𝑑1 ← Filter(𝑅,𝑑) ⊲ new top set

end while

queries, hallucination is the key concern. Attempts were made to

use augmentation to make LLMs generate responses grounded in

external knowledge [23], but the problem persists.

Genetic and Filtering Methods in IR. Genetic algorithms are

evolutionary algorithms inspired from natural evolution where

new generations evolve by taking selective traits from parents.

There are past attempts that applied genetic algorithms to IR [7, 8,

22, 27]. However, our work differs from these prior efforts in that

they focused on clustering, ranking, and query rewriting, whereas

we explore genetic algorithms in the process of generating direct

responses to queries from generated results.

Recent works have employed using a relevance model as a fitness

function to filter the outputs of text generation models. Specifically,

Jeronymo et al. [11] use a relevance function to filter out bad gen-

erated training data, and Gospodinov et al. [9] use a relevance

function to filter bad generated queries for document expansion.

Our work is inspired from these efforts, but differs in that we apply

the fitness function as part of a larger genetic generation process.

3 GEN2IR
Traditional retrieval systems based exclusively on retrieving ex-

isting documents are limited by how content was presented by

the document’s original authors. This may not always be the best

format for presenting results for a specific user query. Meanwhile,

systems based exclusively on generation from a language model

lack information provenance. Grounded Answer Generation sys-

tems aim to overcome both limitations by generating direct answers

from retrieval results. We propose a Grounded Answer Generation

system that uses a genetic algorithm to iteratively refine the quality

of the answer for the user’s query. Gen
2
IR brings advantages of

discriminative, generative and genetic approaches together. We pro-

pose cross-over and mutation operators in the context of Gen
2
IR.

In Algorithm 1, we illustrate the evolutionary process of Gen
2
IR

tailored by three parameters in producing query-specific, highly-

relevant answers.

Genetic Operators are used to generate new fitter documents.

They work on top of results to introduce diversity. Here, the top

results are determined by using a re-ranking pipeline with BM25

as a first stage retriever and Electra model [25] for re-ranking.

Gen
2
IR has three genetic operators:
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• Randomized document mutation (summarize the document)

• Query specific document mutation (re-write the document

to better answer the query)

• Multi-point document crossover (re-write the two docu-

ments to better answer the query)

We use GPT-3 [4] text-davinci-edit-001 with default parame-

ters to perform the above mutations and crossovers. The number of

mutations performed in a single iteration is determined by parame-

ter ‘no. of mutations𝑚’. While mutation brings diversity by either

query specific or randomized selective change, crossover brings

diversity by selective combination of multiple documents.

Population of documents is initially generated using a re-ranking

pipeline. The above genetic operators generate offsprings for the

next level by generating new population each iteration. The worthy

population that clears the fitness criteria, participates in the evolu-

tion process. The evolution process continues until the termination

criteria is reached. The termination criteria in Gen
2
IR is determined

by the parameter ‘termination depth 𝑑’. When the top 𝑑 documents

saturate, the evolutionary process terminates.

Fitness function is used to determine the worthy population

for the next iteration. We use Electra model as our fitness function.

The parameter, ‘document sampling depth 𝑡 ’ is used to determine

the number of worthy documents that can participate in the next

iteration. A genetic operator for an iteration is randomly decided.

In each of the𝑚 mutations, we randomly sample one or two docu-

ments from the worthy population (top 𝑡 documents) based on the

genetic operator.

4 EXPERIMENTAL SETUP
Via experimentation, we answer the following research questions:

RQ1 Can genetic generation improve the relevance of retrieved

passages?

RQ2 Does genetic generation’s iterative nature improve the

relevance over a simple generate-and-filter approach of the

same cost?

RQ3 Does optimizing the ‘termination depth’, ‘document sam-

pling depth’ and ‘mutations per iteration’ parameters lead

to improved performance?

RQ4 What is the prevalence of hallucinated content in Gen
2
IR

output?

4.1 Datasets
To evaluate Gen

2
IR, we used the following datasets:

• Dev (sample). First 100 queries from the Dev (small) subset

used as validation data [3].

• TREC 2019 Deep Learning (Passage Subtask). Dataset
containing 43 queries along with manual judgements used

in TREC 2019 [5].

• TREC 2020 Deep Learning (Passage Subtask). Dataset
containing 54 queries along with manual judgements used

in TREC 2020 [6].

4.2 Models and Baselines
We use BM25 for first stage retrieval in the re-ranking pipeline. We

then use the Electra model [25] for re-ranking the first stage results.

In every iteration, to determine worthy population, we use the

Table 1: Relevance as per ELECTRA, MonoT5 and Human
‘+’ denotes cases where Gen2IR output is preferred; ‘-’ denotes
cases where Re-ranking output is preferred; ‘=’ denotes cases
where both outputs are equivalent

Dev (sample) DL’19 DL’20

Evaluator + = − + = − + = −
ELECTRA* 91 9 0 39 4 0 50 4 0

MonoT5 78 9 13 34 4 5 43 4 7

tuned Gen
2
IR

ELECTRA* 98 2 0 42 1 0 54 0 0

MonoT5 87 2 11 37 1 5 50 0 4

Human 67 4 29 34 1 8 29 1 24

Table 2: Relevance with DuoT5

Evaluator Dev (sample) DL’19 DL’20

DuoT5 0.7290 0.7838 0.7174

DuoT5 (tuned) 0.7629 0.8067 0.7769

Electra model to rank candidates. To evaluate, we use both model-

based evaluation and a human evaluation. For models, we measure

the preference between the original retrieved top document and

Gen
2
IR output using the MonoT5 model [20] and the DuoT5 model

[24]. For the human evaluation, we asked an external assessor to

select between the original top result or the top Gen
2
IR result.

1

Further, the authors also annotated the results to evaluate inter-

annotator agreement. We have released the code to reproduce the

results of our experiments on GitHub.
2

5 RESULTS AND ANALYSIS
RQ1: Relevance. In Table 1, we show that in both Electra and

MonoT5 evaluations, in both the default and tuned parameters, the

output of Gen
2
IR is preferred. These results are further supported

by human evaluation. Additionally, in Table 2 we show DuoT5

scores averaged over the queries. Here, values significantly greater

than 0.5 show that DuoT5 finds the Gen
2
IR output better than

the re-ranking pipeline output. This is observed across parameters

and datasets addressing RQ1. We also observe that the Gen
2
IR

model with tuned parameters results in more relevant answers.

Equivalency is observed when the precise answer is present in the

corpus and the re-ranking pipeline ranks it as the best. As a side

note, the average inter-annotator agreement on a 10% randomly

sampled set of Dev (sample) dataset among 5 annotators is 63%.

Here, the additional assessors also used shuffled outputs similar

to the external assessor to prevent bias. Even though, assessor

agreement is a challenge for evaluating these types of models going

forward, we note that individual annotators favor the Gen
2
IR output

over traditional re-ranking pipeline output.

RQ2: Effectiveness of Iterations. In Table 3, we list the number

of queries where the output of Gen
2
IR is prefered as compared

with a popular generate and filter approach. Here we remove the

termination criteria and use a common budget of 7 iterations (upper

1
The assessor is provided shuffled outputs for unbiased assessment

2
https://github.com/Georgetown-IR-Lab/gen2ir
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Table 3: Effectiveness of Iterations

Dev (sample) — Prefers...

Evaluator Gen
2
IR Same Generative

ELECTRA* 99 1 0

MonoT5 70 1 29

Human 37 3 60

Table 4: Parameters

Sampling Depth Mutn./Iter Term. Depth

2 5 10 15 4 8 12 1 2 3

E
l
e
c
t
r
a
* + 97 95 91 87 75 91 94 78 91 93

= 3 5 9 13 25 9 6 22 9 7

− 0 0 0 0 0 0 0 0 0 0

M
o
n
o
T
5 + 86 81 78 69 58 78 81 66 78 78

= 3 5 9 13 25 9 6 22 9 7

− 11 14 13 18 17 13 13 12 13 15

quartile for RQ1) with 8 mutations per iteration. We note that even

though the models prefer the Gen
2
IR output, thus highlighting the

importance of iterative nature, human evaluation slightly prefers

the generate and filter output. We conclude that the fitness function

here is not in alignment with our human evaluator’s preferences

Additionally, when evaluating the same setup of Gen
2
IR against

Generative with DuoT5, we obtain a score of 0.5809 which shows

that DuoT5 finds Gen
2
IR outputmore relevant as comparedwith the

popular generate and filter approach. The obtained improvement in

relevance comes at the cost of increased latency due to the inherent

iterative nature of genetic approach.

RQ3: Parameters. We vary the three parameters namely: docu-

ment sampling depth 𝑡 , mutations per iteration 𝑚, and termina-

tion depth 𝑑 to draw inference about the change in performance of

Gen
2
IR as evident in Table 4.We observe decreasing preferencewith

increasing sampling depth and better performance with increasing

number of mutations but at the cost of latency. The performance

saturates at termination depth of 2. In Table 1, we show that the

tuned model, based on the above analysis, significantly outperforms

the default parameter setup. Further, the tuned model, when tuned

using MonoT5, also shows improved performance when evaluated

using DuoT5 as evident in Table 2 addressing RQ3.

RQ4: Hallucination. Hallucination is a common phenomenon in

deep learning based generative models [12]. Here, the generated

text is unintended and fails to meet user expectations. We present a

study of presence of hallucination in Gen
2
IR output for 20 randomly

sampled queries across three datasets. In 13 out of 20 cases at least

some new information was found. Even though correct, presence of

hallucinated contents in generated answers is one of the limitations.

Further, based on the contingency tables considering hallucination

and relevance, we observe that the distribution of hallucination in

‘Gen
2
IR relevant’ column is approximately the same as that in the

complete set. From this we infer that the relevance can be attributed

to Gen
2
IR and not to the tendency of generative models to pro-

duce unintended text addressing RQ4. Both human evaluation and

MonoT5 based relevance judgements were considered for creating

contingency tables for the study.

6 CONCLUSION
We proposed a new way to approach generative retrieval by lever-

aging a genetic perspective. The proposed genetic operators create

new population and select top candidates to participate in evolu-

tion process based on fitness function. We present a preliminary

study into the effectiveness of the approach, which suggests that

the approach has the potential to improve upon existing methods.

It can find application in domains demanding holistic relevance

ahead of time criticality.

We acknowledge the limitations in the approach, however. First,

our study is limited to a relatively small number of queries. This

was, in part, due to the human cost of annotation, which does not

always align with our automatic evaluation measures. Future work

is needed to better align these fine-grained preferences in relevance

models. Further, despite being explicitly instructed to simply edit

the existing documents, the models are still prone to hallucination,

which also needs to be addressed. Finally, the iterative nature of

the genetic process is costly, which we need to overcome to make

the approach economical to use in practice.
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