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Abstract—Vision-based gait analysis and human identification
systems have been widely proposed in the literature. However,
these systems cannot be readily applied in many real-time
applications due to involved challenges such as video quality,
occlusion, and serious privacy concerns. To overcome such issues,
we propose the LoGait system that leverages ubiqutous LoRa
signals recognise gait in different indoor environments. Our work
is based on the intuition that the walking pattern of different
users can be distinguished by distinct stride size and frequency.
The wireless LoRa signal which is interfered by human walking
will capture the gait information of subjects. In combination with
the long-distance transmission ability of LoRa signal, the system
enables a larger sensing range of gait recognition compared to
the WiFi-based gait recognition system. The proposed LoGait
system utilizes the phase difference between two LoRa receive
channels, along with a set of filtering techniques, to extract
distinctive features and generate a human gait profile. This
profile is then matched against a database using a dynamic time
wraping (DTW) based recognition algorithm, enabling accurate
identification based on unique gait patterns. It has been validated
in three different scenarios for gait recognition namely line of
sight (LOS), non-line of sight (NLOS), and long-distance, with
accuracy of 85.13%, 79.14%, and 84.14%, respectively.

Index Terms—LoRa sensing, gait recognition, machine learn-
ing, dynamic time wrapping

I. INTRODUCTION

In recent years, joint sensing and communication (JSAC)
using wireless signals have been widely studied for different
future smart home systems and other sensing applications [1]–
[4]. Sensing with such RF signals is not in itself a new concept
in research. The phenomena depend upon the analysis using
the radio signal transmission and reception parameters, using
the same principles developed to detect the presence of objects
in aircraft radar and sonar systems. In wireless transmission
systems, the transmission signal’s attenuation is inevitable due
to path loss, shadowing, and multi-path fading [5]. On the
other hand, these attenuations on the wireless channel can be
used to map the physical environment where the RF signals are
propagating, providing the theoretical underpinning principle
for contactless sensing. Using a communication wireless signal
is the most cost-efficient way to perform RF sensing since it
is easily accessible in most indoor spaces.

The growing interest in JSAC-based sensing systems is due
to their practical deployments in indoor settings, as well as
their ability to gain responses from monitored persons. Using
ambient wireless signals like LoRa and WiFi rather than a

camera provides three advantages. First, it preserves the users’
privacy—without requiring them to record videos of daily
life activities. Secondly, it resolves the limitations of video-
based analysis by allowing sensing through-wall and dark
spaces. Last but not the least, the utilisation of ambient signals
like LoRa and WiFi reduces the cost. Although it requires
computation resources to support the sensing algorithm like
edge computing, the system’s transceiver units are provided
by current communication facilities.

A. Related Works

This section gives a overview of previous researches in
JSAC and gait recognition respectively with the listed works
shown in Table. I. Gait recognition is one of the human
recognition methods as gait provide features that are highly
related to specific person [6]. The gait recognition method
nowadays is vision based mostly. However, recording video or
picture can cause privacy issues. In addition, vision based gait
recognition is limited with the working scenery. To address
these problems, gait recognition based on different sensors is
proposed [7].

JSAC is a concept that involves combining sensing and
communication functions in a single device or system. This
approach can lead to increased efficiency of communication
and cost savings, as well as improved performance of sens-
ing. This concept is becoming increasingly important as the
Internet of Things (IoT) and other connected devices continue
to grow in popularity. Recently, the main sensing techniques
in this area are about WiFi, Radio Frequency Identification
(RFID) and Ultra-Wide-bandwidth (UWB). Typically, WiFi
is one of popular topic in this field due to the high cost-
effectiveness compared to other sensors. In [8], [9], two WiFi
based human activity recognition system are proposed. Both
systems achieved over 95% accuracy in recognizing human
activities. WiFi is also used in gait recognition [10], [11],
the WiDIGR proposed in [10] achieved 78.28% accuracy in 6
subjects gait recognition. UWB based systems are also com-
monly used in different situation, including gesture recognition
[17], gait recognition [12], [13] and human activity recognition
[14]. In [15], RFID is also used in recognizing the fluid taking
gesture. However, all mentioned systems mentioned above are
limited with the sensing distance. LoRa based systems have
only a few works in sensing topic but has shown its availability



TABLE I: Review of RF sensing works

Reference Protocol Carrier Frequency Bandwidth Application Experimental Setup
Range / Subjects Performance

CARM [8] WiFi 5 GHz 20 MHz*
30 subcarriers

human activity
recognition

7.7*6.5M/
25 subjects

8 activities recognition with
over 96.5% accuracy in average

HARNN [9] WiFi 5 GHz 20 MHz*
30 subcarriers

human activity
recognition

indoor 5*6m,
8*6m/10 subjects

6 activities recognition with
over 95% accuracy in average.

WiDIGR [10] WiFi 5.825 GHz 20MHz*
30 subcarriers gait recognition 5*5m /

60 subjects 78.28% accuracy for 6 subjects recognition

CAUTION [11] WiFi 5 GHz 40MHz*
114 subcarriers gait recognition

5.8*6.3 m
7.2*5.2 m/
20 subjects

88% accuracy in 15 subjects identification

[12] UWB 4.3 GHz 2 GHz gait recognition 3m in chamber /
Not mentioned

normal and spastic gait
recognition with 94.9% accuracy

[13] FMCW and
UWB radar

25 GHz FMCW/
7.5 GHz UWB

2GHz FMCW/
1.5GHz UWB gait recognition 2.7*1.8m /

14 subjects
Gait recognition in 14 subjects with
84% accuracy in average

[14] UWB 5.2 GHz 8.7 GHz human activity
recognition

2.5m /
13 subjects

12 non-in-situ motions recognition
with an average of 88.9% accuracy,
in-situ motions 89.7% average accuracy.

[15] UHF RFID 865 MHz 3 MHz gestures recognition 2.5m /
15 subjects

87% accuracy for recognition of drinking episodes
for young volunteers and 79% for older volunteers

[16] LoRa 915 MHz 125 kHz respiration sensing/
human tracking

25m(respiration)/
35m(tracking)

Achieve long-range through-wall respiration sensing
with 0.25bpm mean absolute error, human tracking
with 4.27cm average absolute error.

LoGait
(Ours) LoRa 868.1 MHz 125 kHz gait recognition

5m, 20m (LOS) &
6m(NLOS)
/13 subjects

Adopt LoRa signals to extend the
gait recognition in various environment
including 20m corridor, with 82.8% accuracy.

in long-range detection [16], [18]. As Table. I shows, the
maximum sensing range of WiFi, UWB and RFID system is
limited in 8m, 3m and 2.5m respectively. In comparison, LoRa
system proposed in [16] extend the sensing range to 35m for
human tracking and 25m for respiration monitor. Another work
presents the similar result but tested through-wall respiration
detection [18]. And our proposed LoGait system also push
the gait recognition to the range of 20m compared to the
previous WiFi scheme of WiDIGR [10] of 5m and CAUTION
[11] of 7m. Furthermore, the LoRa signal utilized in our
system demonstrates enhanced penetration capabilities through
obstacles, making it particularly suitable for indoor through-
wall sensing, which can be challenging to achieve with WiFi
signals. For UWB technique, the work of [12] proposes a
detailed analysis of gait training with depth camera. However,
the detected space is also limited to a 3m size chamber, which
is challenging to demonstrate the applicability of this system
to general scenarios. [19] presents a gait recognition system
based on RFID technology, utilizing 8 RFID antennas and
6 tags for short-range human gait detection within distances
ranging from 0.9m to 2.2m. While their RFID sensing system
has demonstrated effectiveness in various scenarios, its de-
ployment method incurs higher costs compared to our LoGait
system, which utilizes a single transmitter and two receiver an-
tennas to cover a range of 20m in long-distance environments.
Meanwhile, the bandwidth of our LoRa methods only take up
125kHz, which is significantly lower the UWB of 500MHz
in minimum and WiFi of 300MHz in common 802.11n
protocol that CSI-tool [20] adopted. Conserving bandwidth
resources allows for reliable connectivity and a better network
experience for large-scale deployments of IoT applications.

B. Contributions

The problem of recognising humans from their walking
patterns is known as gait recognition. It has many potential
applications in surveillance, healthcare, and human-computer
interaction. In the literature, WiFi-based sensing has provided
various solutions for gait recognition [21], [22]. However, the
nature of the WiFi signal restricts the sensing range [16],
[23]. Therefore, WiFi-based systems cannot be adopted in
long-range spaces, e.g., corridors. Inspired by the previous
LoRa-based sensing work [24]–[27], we attempt to analyse
the feasibility of adopting LoRa sensing in long and narrow
environments. We propose LoGait system to push the range
of gait recognition to multiple indoor scenarios including
a corridor of 20m length. The proposed LoGait system is
shown in Fig. 1. In summary, the following are the major
contributions of this paper.

1) To the best of our knowledge, this study is the first
attempt toward using LoRa signals for gait recognition
in a 20 meters range.

2) We propose a pipeline for performing preprocessing of
LoRa signals for gait feature extraction and classifica-
tion.

3) We collect LoRa signals containing the gait patterns of
different subjects in various scenarios. Our experimental
results in different settings validate the effectiveness of
our proposed LoGait system in performing gait recog-
nition. Our work fills an absence in this field.

The rest parts of the paper are structured as follows: Section
II introduces the preliminary analysis of the LoRa signal. Then
it describes the detailed methods for LoRa gait feature extrac-
tion, and dynamic time warping (DTW)-based classification.
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Fig. 1: Overview of proposed LoGait system that consists of
three components: (1) LoRa Data Collection; (2) Preprocess-
ing; and (3) Classification using DTW and kNN.

Section III presents the evaluation of the proposed LoGait
system in different scenarios.

II. METHODOLOGY

A. Preliminaries

Unlike WiFi which applies OFDM to divide channel band-
width into different subcarriers, LoRa adopts full bandwidth
for Chirp Spread Spectrum technology, which encodes infor-
mation on radio waves using chirp pulses. The technology
operates in a fixed-bandwidth channel of 125 kHz for up-
link. The frequency of linear chirps increases from fc − B

2

to fc +
B
2 over the the sampling period of −Ts

2 < t ≤ Ts

2 ,
where the fc and Ts represent carrier frequency and sampling
time, respectively. The exponential representation of LoRa
transmitting signal is composed of two elements, chirp signal
and carrier frequency modulation:

Tx(t) = ejπfs(t)+j2πfct, with fs(t) = ±B

Ts
t (1)

where, fs(t) represents the chirp signal with sweep rate.
Existing literature on LoRa-based sensing suggests that the
channel response at the receiver end can be represented
without considering the chirp signal [16]:

H(t) =
Rx(t)

Tx(t)
= e−j2π∆t(Hs +Ha(t)) +N(t) (2)

where, e−j2π∆ft is due to the sampling frequency offset (SFO)
and carrier frequency offset (CFO); Hsand Ha(t) represents
the LoRa signals from the time-invariant static paths (including
the signals in line of sight (LOS) path and those reflected
off the stationary objects) and time-variant dynamic paths
(including signals reflected from the dynamic objects). N(t)
represents the free space transmission noise. LoRa signals in
active paths can be expressed as:

Ha(t) =

Nd∑
i=1

ai(t)e
−j2π

di(t)

λ (3)

where, Nd is the index of path that signal passes through,
ai(t) represents the complex attenuation factor of the ith

path; e−j2π
di(t)

λ represents the phase change of ith path, with
the changing distance of di(t) in ith path. λ represents the
wavelength of the LoRa signal.

However, the channel response cannot be calculated directly
with reference data. In this case, we replicate the setup
from previous work with two receiver antennas to get the
conjugate multiplication (CM) signal [16], [28]. There are
various parameters that correlate with signal ratio. However,
to find the dominant dynamic path for estimation, we select
two directional antennas which perform better in the reduction
of the multipath effect (Nd = 1). So we assume in the ideal
situation, that there is a single path with relatively less noise
(di(t) = d(t)).

RCM (t) = Rx1(t)Rx2(t) = Tx(t)Tx(t)H1(t)H2(t)

= Tx(t)Tx(t)(e−j2π∆t(Hs1 +Ha1(t)))

(ej2π∆t(Hs2 +Ha2(t)))

= ∥Tx∥2 (Hs1 +Ha1(t))(Hs2 +Ha2(t))

=

(1)︷ ︸︸ ︷
∥Tx∥2(

(2)︷ ︸︸ ︷
Hs1Hs2 +

(3)︷ ︸︸ ︷
Hs1Ha2(t)+

(4)︷ ︸︸ ︷
Hs2Ha1(t)

+

(5)︷ ︸︸ ︷
Ha1(t)Ha2(t))

(4)

From the representation, the components of chirp signal,
CFO and SFO are removed. On the other hand, the equation
are divided into five parts for analysis: the transmission part of
(1) and product of static components of (2) can be regarded
as constant value, and the product of active components of
(5) is small that can be ignored. Meanwhile, we consider the
extended changing path, ∆S, which is caused from the differ-
ent physical locations of two receiver antennas. Meanwhile,
for a short time duration the path anttenuation factor can be
regarded as static value. This value is assumed as the constant
value due to the setup receiver antennas are close to each other.
Next we can rewrite the superposition of rest components in
Eq. 5.

(3) + (4) = Hs1Ha2(t) +Hs2Ha1(t)

= Hs1(a2e
j2π

d(t)+∆S
λ ) +Hs2(a1e

−j2π
d(t)
λ )

= (Hs1a2e
j2π∆S

λ )ej2π
d(t)
λ +Hs2a1e

−j2π
d(t)
λ

(5)

The exponential form can be converted to trigonometric form
using Euler’s formula and then they can be added together. To
summary all, the approximate CM result can be represented
as Eq. 6. Meanwhile we replace the representation of A =



Hs1a2e
j2π∆S

λ , and B = Hs2a1.

RCM (t) ≈ ∥Tx∥2 (Aej2π
d(t)
λ +Be−j2π

d(t)
λ )

≈ ∥Tx∥2 (A+B)cos(2π
d(t)

λ
)

+ j ∥Tx∥2 (A−B)sin(2π
d(t)

λ
)

(6)

In this case, we can conclude that both amplitude the phase
variation of CM result can be influenced by components from
the dynamic path of d(t). which is available to be adopted
for gait feature extraction. Experimental validation in Section
II-D proves the above conclusion.

B. Preprocessing stages

The inference provided in Section II-A shows that human
motion can be indicated by the phase variance of CM results.
However, to extract any relevant data related to the motion,
it is necessary to go through a series of preprocessing steps
before using the Dynamic Time Warping (DTW) recognition.
This section outlines all of the steps that we proposed which
need to be taken prior to the DTW recognition. All experiment
implementation is detailed introduced in Section III.A.(1).

a) Conjugated multiplication of two antennas signal:
The Fig. 2 shows the different amplitude of raw LoRa signals
with/without dynamic physical interference. Although the en-
velope shape of LoRa amplitude is explicit, it is required to
transform these perturbations into measurable values. Com-
pared to visible variation from amplitude information, phase
information shown in Fig. 3c provides random information
that cannot be intuitively observed.

In the next step, we observed a considerable number of
blank interpolations inside the recieved envelope, which rep-
resents the receiver end collected noise during packet duration.
Removal of this blank information is important to extract accu-
rate gait features. Firstly, we calculated the CM result from raw
LoRa signals of dual antennas, which is shown in Equation.
4. Demonstrated by the Equation, the gain of ∥Tx∥2 can
determinately increase the amplitude of the received signal,
which differentiates the meaningful LoRa signal from noise.
From this point of view, the noise duration can be removed by
setting the low amplitude threshold of CM result. In Fig. 3a,
the red dashed line represents signal components from noise
and the green one from the LoRa chirp signal. Meanwhile, we
assume the transmitted power of LoRa signals and free space
attenuation is stable. In this case, the threshold was set to the
mean value of the first second’s receiving signals.

b) Threshold filter for phase information and down-
sampling: Meanwhile, there are two downsample operations
executed before and after threshold filtering. For amplitude
threshold, it is a waste of computational resources for search-
ing and comparing all 800k samples per second. On the other
hand, the Doppler shift frequency range that human activity
can generate is limited to 60Hz [29], 800kHz sampling rate
is highly redundant. Therefore, we set the first downsample
of 1k sample rate ahead of threshold operation. In practical
scenario, there must be a silent duration while transmitting

chirp signals to reduce the power consumption and avoid
interference among different packages by multipath effect,
which is called Inter-Symbol Spacing (ISS). However, the
receiver side is not able to differentiate if received samples
belongs to ISS. In this case, we adopt an adaptive thresholding
calculation method to filter the ISS information out of gait
profile. At first we statically sorted the non-zero value of
CM results and pick the smaller components of whole CM
sequence based on the percentage that ISS occupies. The
priority assumption is that under silent conditions, the receiver
can only get a noisy signal with a stable amplitude and a
spurious phase, which are shown in Fig. 3a and Fig. 3b. By
calculating the mean and standardized variation of estimated
ISS information, we can determine the value of threshold.
To make it more generalised, the value is set to the mean
plus double standardised value. After performing thresholds
filtering, we discovered that the length of the LoRa chirp
signal is not constant. Then, we resample the filtered data
to 1kHz for unifying constant sampling frequency among
different profiles. Fig. 3c shows the LoRa signal after threshold
filtering with twice downsampling.

c) Phase unwrapping and outlier removal: In this stage,
we acquire meaningful phase information that can reflect the
channel environment. However, the outliers and mismatched
phase data appear. We adopt the Hampel filter and unwrap
operation to denoise the signals, with the shown comparison
figures shown in Fig. 4. The signal components that are framed
out by a red box represent the recovered parts by the methods.

C. Gait analysis

Considering the ISS, we only adopt the phase of CM
sequence for gait analysis. According to the Eq. 6, the phase
is given as follows:

∆ϕRCM
= ∥Tx∥2 (A−B)sin(2π

d(∆t)

λ
) (7)

where ∥Tx∥2 (A−B) can be treated as constant. Then we take
the derivative of this equation, the period of the phase change
is related to the dynamic path d(t). In this case, the system can
be considered as a monocular radar system, which represents
the path length of moving target should be considered twice
of varying distance: d(∆t) ≈ 2∆d. In this case we can
get the ∆ϕRCM

∝ sin(4π∆d
λ ). By leveraging the periodic

nature of the sinusoidal signal, we can deduce the distance
the monitored object has traversed by inverting the observed
phase period. We name the periodicity of ϕRCM

as T , and
get T = 2∆d

λ . Meanwhile, the wavelength of LoRa signal is
fixed to λ = c/f = 3×108

868.1×106 = 0.346m. From the equation
we can get the moving distance of target is related to the
periodicity of phase variation, which is ∆d = 0.173T . Then,
to verify the above derived equation formula, we collected
moving data from a humanoid robot and a human volunteer
moving 2m in fixed area respectively, shown in Fig. 5. All
the peaks are labeled with dotted line. In the robot moving
profile, we observed 11 peaks and 10 periods of signals, which
represents the minimum of moving distance of robot reaches



(a) Amplitude of static scenario (b) Amplitude of single person walking in LOS
range

(c) Raw phase signal of LoRa signal

Fig. 2: Amplitude and phase plots of raw LoRa signals.

(a) Amplitude plot (b) Phase plot (c) Phase plot after threshold filter

Fig. 3: Plot of CM results under static environment with the red dashed line labelled for noise components and green one for
LoRa chirp signals in (a) and (b).

Fig. 4: Comparison plots with/without Hampel filter and phase
unwrapping, with circled outliers in red boxes. The first graph
shows original gait signals and the second shows Hampel
filtered and phase-unwrapped gait signals.

1.73m. Considering the start and end period are not properly
counted, the result is close to 2m. However, instead of robot
profile, the human profile illustrates 14 peaks, which represents
the distinct motion beyond 2m. Meanwhile, we discover that

there are some fluctuated peaks having less amplitude variation
than torso motion, which is labeled in red block. Excluding
the possibility of environmental influences, this part of the
correspondence could only be generated by the movement of
the limbs. Therefore, in the robot scenario, the phase change
only reflects by 2m displacement. In the human scenario, the
phase change is caused mainly by both displacement of body
torso motion and waving limbs.

Although the processed signal contains all gait information
of subject, these information is difficult to quantified and
modeled accurately due to the complex dynamical structure
of realistic human gait. However, there is a prerequisite
that different human’s gait schemes are different [30]. By
constructing a database of LoRa signals generated by the gait
of different volunteers, we can use statistical-based machine
learning methods to find differences in the gait of identity.

D. DTW-based Gait Recognition

After preprocessing of LoRa signals, we compared the
signals collected from different activities and gait signals,
shown in Fig. 6. The gait experiment setup is the same as
LOS experiment that mentions in Section. III-A.

From the intuitive view, we observed the collected activity
signals under three different scenarios that match our normal
experiences: the human presence scene only contains chest
motion of respiration, and stepping signals contains multiple
signal peaks from human skeleton motion. From the gait



Fig. 5: Gait profiles of humanoid robot motion (first graph)
and human volunteer (second graph).
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Fig. 6: Comparison of LoRa signals under different scenarios
of no-person, a person standing still, a person stepping shown
in the first figure; and gait profiles of three users in the second
figure.

profiles of three users, we found that the human behaviour
patterns of different identities are highly overlapping compared
to human activity recognition. Besides, there are two main
challenges that were observed in the comparison:

1) Variation of motion speed can result in various lengths
of gait signals from a single subject.

2) Temporal gait signal can not be completely aligned
while the data collection, which causes the distortion
of information.

The general method of measuring the similarity of two-
time series signals is to calculate the Euclidean distance.
However, lock-step Euclidean distance measurement refers to
those distances that compare the ith point of one series to
the ith point of another, which is significantly influenced by
incomplete alignment [31]. To solve the alignment problem

and improve the recognition performance, DTW based method
was adopted.

DTW is a similarity measurement method, which exhausts
all the correspondences with restrictions and finds the one
with the smallest distance. Then the cumulative distance of
the selected path is used for their similarity judgement. The
Equation. 8 describes the algorithm of DTW distance.

Dmin(i, j) = M(i, j) +min


D(i− 1, j − 1)

D(i− 1, j)

D(i, j − 1)

i, j ≥ 1

(8)
To align the two sequences, a matrix with two dimensions

of sequences’ length is required. The matrix element M(i, j)
denote the Euclidean distance d(xi, yj) between the two points
xi and yj . The shortest distance of the current element
Dmin(i, j) is necessarily the length of the shortest path of
the previous element plus the value of the current element.
There are three possible directions for the previous element,
so we take the minimum value of three possibilities into DTW
distance.

For initial validation of DTW, we calculated the DTW
distance of gait profiles of different identities and the same
identity respectively to verify the algorithm’s availability. The
comparison graph is shown in Fig. 7 which illustrated the
distance between the same user and different users. The larger
DTW distance verified our assumption that the gait profiles
of different identities have mismatched information and the
data from a single identity has similar features. Therefore, we
adopted a K-nearest neighbour (KNN) cluster-based algorithm
to classify different identities of gait signals.

Fig. 7: Comparison of DTW distance matrix of (a) gait profiles
from the first user and second user; (b) gait profiles from the
first user.

III. EVALUATION

A. Experiment Setup

1) Devices: Our implementation considers one pair of
devices to imitate the general LoRa link. We select one USRP
b205mini and one USRP x310 as transmitter and receiver,
respectively. On the transmitting side, we have opted for a
directional linear polarized antenna of Aaronia Ag. This type



(a) Line of Sight (LOS) (b) Non Line of Sight (NLOS) (c) Long Distance (LD)

Fig. 8: Experimental setup of 3 scenarios.

(a) LOS (b) NLOS (c) LD

Fig. 9: Confusion matrix of gait recognition in 3 scenarios

of antenna emits signals in a specific direction, allowing us
to focus the transmission towards the target area, namely the
long corridor under observation. The directional nature of this
antenna ensures that the transmitted signals are concentrated
along a desired path, enhancing the accuracy of gait informa-
tion collection. On the receiving side, we have implemented
two antennas of SlimLine A5010 Circular Polarized Antenna
with 8.5 dBi gain. Circular polarized antennas are known
for their ability to capture signals from various polarization
angles, making them suitable for scenarios where the in-
coming signals may have different polarization orientations.
By utilizing a circular polarized antenna, we can effectively
receive the transmitted signals, regardless of their polarization
alignment. Moreover, our choice of directional and circular
polarized antennas offers an advantage in mitigating the impact
of multipath propagation. With an omni-directional antenna,
signals can bounce off obstacles and create interference due
to multipath reflections. However, by utilizing directional an-
tennas, we can minimize the reception of reflected signals and
primarily capture signals from the intended pointing direction.

This helps to reduce the effects of multipath interference,
improving the reliability and accuracy of the gait information
obtained. The LoRa signal is generated by an open-source
project of LoRa communication in the physical layer [32].
On the receiver side, we configured Labview based system to
collect LoRa signal. The experimental setup can be viewed
in Fig. 10. The sampling rate and packet duration are set to
800kHz and 20ms, respectively.

2) Application scenarios: The experiments were conducted
in 3 different scenarios: line of sight (LOS), non-line of sight
(NLOS) and long distance (LD) range, with the top-view
structure graph shown in Fig. 8. In the LOS scenario, the
room area occupied for the activity experiment is 6m in length
and 5m in width. One line has marked a 5m distance on
which people walk to and from the front of the transmitter
and receiver. In NLOS scenario, all apparatus containing the
transmitter and receiver are in one room, and activity is being
monitored outside of the room, shown as walking trajectories.
The space between devices and humans is separated by a
brick wall. In the LD scenario, the implementation is setup in



a corridor of 20m length. Volunteers were arranged to walk
along the trajectory at the end of the corridor, shown in Fig.
10.

20m

Transmitter antenna Receiver antennas

Fig. 10: Experimental setup in Long distance scenario

3) Gait profiles: The basic human gait in our experiment
contains three phases: rotating, walking and standing. In this
study, our focus was primarily on the identification of gait
patterns in single-person walking scenarios. Meanwhile we
discuss the challenges posed by multiple walking scenarios in
Section III-B6 of the paper. During one data collection, one
person was asked to turn back, and walk along the trajectory
and stand still for 8 seconds. Then, it took another 8 seconds
for subjects to walk back to the starting point. The gait signal
in each profile lasts for 16 seconds in total. Besides, we
downsample the signals to 200Hz for speeding up the machine
learning algorithm.

We recruited 13 volunteers for data collection of human
gait including 4 females and 9 males. This human involved
research has got the ethic approval from College of science
and engineering from University of Glasgow, approval no:
300210309. In each scenario, we ask 6 subjects to conduct
the experiments and data was collected for 20 rounds for each
person that provides 16s gait data. In total, we have collected
5744 seconds of gait signals for experimental validation.

B. Overall performance and Discussion

The recognition performance of 3 scenarios with confusion
matrices is shown in Fig. 9. We perform a 5-fold cross-
validation on collected data with an overall accuracy of
85.13% in LOS range, 79.13% in NLOS and 84.14% in LD
respectively. The average accuracy of 82.8% validates the
effectiveness of our system. To study the performance of the
LoGait system affected by different factors, we design the
comparison tests and analyse the influence of Sample rate,
Classification distance algorithm. Meanwhile, we explain the
difference in Data collection methods of gait signal between
LOS/NLOS and LD scenarios.

1) Sample Rate: The sample rate of gait profiles is the
significant parameter that balance of recognition performance
and processing speed. We resample the gait profiles from
10Hz sample rate to 500Hz to test the performance of the
LoGait system. The recognition performance is illustrated in
Fig. 11, which validates that a higher sample rate preserves
more gait information.

Fig. 11: Recognition accuracy via sample rate in 3 scenarios

2) Vector distance algorithm: To approve the assumption in
Section. II-D, we compared the classification results using the
other three distance algorithms with DTW distance, shown in
Fig. 12. It illustrated that the DTW-based classification method
acquires the best performance among the traditional distance
estimation algorithms.

3) Walking directions: In our experiment, we divided the
data collection of one profile into two phases, moving forward
and back, as shown in Fig. 8 (depicted by blue and red
dashes). To effectively evaluate the performance of our system,
we separated the profile into three parts: forward, back, and
integration.

4) Data collection methods: In both LOS and NLOS sce-
narios, we asked volunteers to do free walking in a restricted
space. In this case, the users are easy to control their speed
without following usual habits. To study the robustness of the
gait recognising system, in the LD scenario, the volunteers
were asked to walk freely in a given time slot instead of
limiting the moving area. From the results, the accuracy under
the LD environment approves the popularization potential of
the LoGait system.

5) Strength influence: In this section we complement the
LoGait identification performance on different signal strength
condition by analysing human and moving robot gait profiles
under the same environment. From the Eq. 6, we know the
CM result is significantly influenced by transmission gain
of communication system. In the absence of environmental
changes, the noise in the received signal will remain stable, but
resulting in varying gain of human related moving signals due
to changes in transmission gain. Intuitively, we assume that
lower signal strength will diminish the stylized components
of the gait, leading to increasingly noise which damages



Fig. 12: Recognition accuracy of distance algorithms in 3
scenarios

the similarity between gait signals. In this case, we set the
fixed trajectory of single person, and recollect LoRa signals
in different transmitter gain. By manipulating the transmitted
signal strength, we compute the euclidean distance after DTW
operation between the two motion profiles of human subject
himself/herself. As we decrease the signal strength, we expect
to observe a increase of the DTW distance, indicating the
noise interferes with the gait signals between gait patterns
from same person. Larger DTW distance represents the system
prefers to split two profiles of the same category into two
different parts, which can be predicted to reduce the accuracy
of the system for identification. The result of mentioned
experiments from three volunteers is shown in Fig. 13. At
gains higher than 40dB, we observed random variations in the
DTW distance of the three subjects, which can be attributed
to the natural variation in their respective gaits. However,
beyond the 40dB gain threshold, all three trends exhibited
an upward trend, indicating that the noise components were
increasingly dominating the gait profiles and diminishing the
relevance of individual gait patterns. This outcome aligns with
our assumption that lower signal strength significantly hampers
the identification recognition capabilities of our system.

Consequently, distinguishing between different individuals
becomes more challenging under the scenario of lower trans-
mission gain for the models employed in this study.

6) Multiple scenarios: Recently, we only utilise single
transmitter and phase difference of a pair of LoRa channels.
The prerequisite for identification in a multi-person environ-
ment is to obtain the complete gait signal of each person. Typi-
cally, both the extraction of beamforming signals in a specific
azimuth direction and independent component analysis have
the potential to perform blind source separation of gait signals.
However, due to the limitations of the experimental apparatus,
the only signals we obtained were a set of phase differences
computed from the two channels. Therefore, the received
signals can not provide independent signals for multiple gait

Fig. 13: DTW distance between two profiles from single
subject via Transmitter Gain

Fig. 14: Recognition accuracy of LD scenario with different
amount of walking subjects

identification recognition. Separating and analysing distinct
gait signals will be our next stage target.

Although the recent LoGait system is not able to complete
identification recognition in multiple targets scenario, it has
the ability to distinguish the number of targets walking in
sensing area. We collected data from five different classes,
involving the empty environment and individuals walking. The
number of participants ranged from 1 to 4. Considering the
size of walking area, we selected LD scenario for experiments.
And collect 10 minutes for all participants’ random walking
which is the same as the single LD experiment setup. To
implement as the realtime setup, we totally collect 472 profiles
for by extracting the profile of 50 minutes data. By using
proposed classification scheme, the average accuracy that
detect scenarios arrives at 86.9%, shown in Fig. 14. The result
proves that the system has limited ability to capture response
from multiple human walking pattern. In the next step, we will
work on solving the multiple gait separation and recognition
with multiple-channel device.



IV. CONCLUSION

This paper presents the LoGait system, a novel approach
for human gait recognition in various indoor scenarios, includ-
ing living rooms, through-wall scenarios, and corridors. The
system analyzes the feasibility of LoRa sensing and employs
conjugated multiplication, along with multiple preprocessing
methods, to extract LoRa gait profiles. These methods focus
on filtering communication symbols and extracting physical
variation information from human gait. User identity recogni-
tion is achieved using a DTW-based machine learning algo-
rithm. Experimental evaluations in three scenarios demonstrate
promising results, with an identification accuracy of 85.13% in
living rooms, 79.13% in through-wall scenarios, and 84.14% in
20m corridors. By addressing complex indoor environments,
including through-wall scenarios and long-distance corridors,
the LoGait system represents a significant advancement in gait
recognition prototypes with great potential.
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