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Cognitive neuroscience has emerged as a science that 
aims to explain how cognition is implemented by the 
brain. There is a sense across much of the literature 
that this project involves more than just accurately pre-
dicting brain responses or the behavior they produce. 
Although prediction may aid in developing an explana-
tion or testing the validity of an explanation, and 
although it serves a plethora of clinical and pragmatic 
ends, explanation ultimately requires the specification 
of neural mechanisms.

Introduction

Although the specification of neural mechanisms is 
widely accepted as a principal goal in cognitive neuro-
science, what is understood by the term varies signifi-
cantly across the scientific literature. For one, the term 
mechanism is used to describe parts of the brain across 
levels of size, from neurotransmitters to anatomical brain 

regions. Second, the term is used when complex rules 
govern how these parts interact and when they simply 
activate in a fixed sequence. Third, the term is used 
when correlations between the brain and cognition have 
been found and when such relations are proved causal. 
Fourth, the term is used when parts of the brain have 
small effects on cognition and when they explain much 
of the variance. Which of these are neural mechanisms 
of cognition, which are not, and why does it matter?

The aim of this contribution is to start with a robust 
conception of mechanism and to analyze how it fares 
in cognitive neuroscience—with the intention of pro-
moting a mechanistic agenda that applies broadly.  
To do so, I will first introduce prominent research 
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programs, contextualizing them in Marr’s three-level 
framework (Marr, 1982). Then, I will review two exam-
ples of explained information-processing systems out-
side of neuroscience, where the mechanisms have been 
extensively described. From this vantage point, I will 
distinguish two stages of research in cognitive neurosci-
ence: the stage at which context is given to mechanism, 
and the stage at which mechanism itself is explained. 
I argue that research in the former stage is often inac-
curately considered to specify mechanism itself, that 
this hampers theoretical unification, and that character-
izing mechanism itself should be given more focus. I 
will also discuss an example of a modeled neural mech-
anism of cognition, highlighting what sets it apart from 
nonmechanistic models. Finally, I show criteria that 
mechanism does not necessarily need to meet, and why, 
beyond establishing mechanism itself, it is important to 
estimate the explanatory scope of a proposed mecha-
nism using effect sizes collected across data.

How We Look for Mechanisms in 
Neuroscience

Historically, Marr’s three-level framework (Marr, 1982) 
has proven an invaluable beacon in the search for neu-
ral mechanisms of cognition. Its central tenet is that the 
brain—like any information-processing system—
requires an account of three levels. At the top, the 
computational level describes what is being computed 
and why—requiring at minimum a specification of the 

input–output function that is being computed.1 This 
level details what it is that needs mechanistic explana-
tion. Mechanism itself is spelled out by the remaining 
levels (Craver, 2007). Specifically, the algorithmic level 
describes the representations of the system and the 
transformations that are performed over it, and the 
hardware-implementation level lays out the physical 
parts that implement these algorithms, such as mole-
cules, cells, synapses, or networks. A successful expla-
nation in neuroscience is one that marries these levels,  
such that the physical parts realize algorithms, which 
in turn realize computation (Marr, 1982).

Although there is widespread—but not universal 
(Buzsáki, 2019; Churchland, 1986)—agreement on the 
value of Marr’s framework, there is ample disagreement 
as to how research programs should be designed to meet 
its demands (Fig. 1). Subfields have proclivities toward 
different levels of analysis, each championing its own 
flavor of scientific explanation. The field of artificial neu-
ral network modeling—also called neuroconnectionism 
(Doerig et al., 2023)—abstracts away from neurobiologi-
cal detail to figure out how the brain essentially com-
putes, which as a result also elucidates the algorithms 
that underpin neural processing (Lindsay, 2021). The 
field of neurobiology instead concentrates on hardware 
implementation, with a stronger emphasis on the physi-
ological details of biological entities and the role they 
play in the brain.

Then there are programs that expressly aim for inte-
gration across levels, with different programs varying 
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Fig. 1. Programmatic approaches to explaining cognition in the brain. In cognitive neuroscience, the explanandum—that which is 
to be explained—is the computation of cognition. The explanans—that which does the explaining—is spelled out by mechanism 
itself, which demands description at the level of algorithm and implementation. The fields of artificial neural network modeling and 
neurobiology reveal details about algorithm and implementation, respectively. And top-down, bottom-up, and middle-out approaches 
programmatically set out to integrate Marr’s levels, each pursuing a different order of priority in light of metatheoretical considerations.
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in their preferred order of priority of Marr’s levels. In 
a bottom-up approach, biology constrains algorithm, 
which in turn constrains computation. This approach 
maintains that we should understand the brain by first 
mapping out its parts before we can get a handle on 
the algorithms those parts realize to perform the com-
putations of our cognitive repertoire (Braun, 1990). 
Advocates of this approach argue that starting with neu-
ral data minimizes reliance on a cognitive ontology—by 
letting the brain speak for itself, we sidestep entrenched 
and potentially wrong assumptions about the mind 
(Buzsáki, 2019). In a top-down approach, the order of 
constraint is reversed. Here, emphasis is placed on 
abstractions of cognitive function, with our computa-
tional repertoire adjudicating between different archi-
tectures before turning to where in the brain these 
architectures might reside (Marr, 1982; van Rooij &  
Baggio, 2021). Some have argued for this approach on 
the basis that pursuing an explanation before specifying 
a target capacity is like searching for answers before 
posing a question; in other words, to adequately study 
how the mind is physically implemented, we must first 
characterize it (Poeppel & Adolfi, 2020). Finally, a middle- 
out approach is gaining traction, with the algorithmic 
level constraining both of its neighbors. Here, neural 
mechanisms are obtained by validating competing algo-
rithmic accounts of cognition on neuroimaging data 
while separately branching out to the computational 
level (Love, 2015). This approach has the advantage of 
aiming from the outset to factor in constraints set by 
different levels. Together, these approaches make up 
the prominent strategies for acquiring mechanistic 
understanding of cognition in the brain.

But what does mechanistic understanding itself con-
sist of?

Mechanism Is a High Bar to Clear

A mechanism for any phenomenon is defined by enti-
ties whose activities and interactions are organized  
in such a way that they produce that phenomenon 
(Glennan, 1996). This definition, which is similar to other 
accounts (Craver, 2001, 2007; Wimsatt, 1997), ties into 
Marr’s framework in the following way. The phenom-
enon produced by the mechanism is described by the 
computational level, making up the explanandum. The 
explanans is given by the mechanism itself, which can 
be described both in algorithmic terms (i.e., by rules 
that operate upon input representations to enable com-
putation) and in physical terms (e.g., by the neurons 
and synapses that realize the algorithms).2

Marr’s framework and mechanistic philosophy 
remind us that, contrary to what is sometimes believed 
in neuroscience, mechanism is not just described by 

the set of physical parts that underlie a cognitive  
function—the implementational level. The brain also 
has design principles that govern how physical parts 
interact to compute—and this is provided by the algo-
rithmic level (Bechtel & Shagrir, 2015). These design 
principles are abstract: They detach conceptually from 
the specific parts out in the world that happen to real-
ize them (Levy & Bechtel, 2013). Crucially, then, to 
describe a neural mechanism of cognition, a formula-
tion of either the implementational or algorithmic level 
alone does not suffice. An inventory of neurons and 
their synapses does not describe a mechanism in neu-
roscience, and neither does a computational model that 
floats free from neural detail. For a neural mechanism 
of cognition to be described, both levels must be 
supplied.

Moreover, even when both levels are supplied, the 
posited hardware candidate must be able to realize the 
algorithms, and must do so in the way the brain does, 
separating how-actually from how-possibly explanations 
(Craver, 2006; Guest & Martin, 2023). For example, a 
circuit of cells that implements behavior using algo-
rithms different from those of the brain is not a neural 
mechanism of cognition, and neither is a behavior-
approximating algorithm that can only be implemented 
using gears.

A description that adequately captures Marr’s levels—
a Marrian description—basks in conceptual clarity. Here, 
one can freely move between levels, defining algorithms 
in terms of physical parts and vice versa. An external 
observer of a Marr-described system could look at the 
system’s physical parts and use an instruction manual 
that lists the algorithms to approximate the system’s 
resulting computations. Trivially, there might be epistemic 
limitations standing in the way of such an analysis—such 
as the inability to observe system parts, to calculate a 
state transition, or to keep track of system states. But 
there is no conceptual vagueness as to how computation 
emerges from mechanism, and so there is no problem in 
principle, even if there may be one in practice.

Examples of Described Mechanisms

It may be instructive to call on two paradigmatic exam-
ples of Marr-described information-processing systems 
in which both the computations and the mechanisms 
that realize them have been richly described. These are 
random access memory, or RAM, and DNA, which are 
both examples of subsystems embedded in a larger 
system. Each of these subsystems implements the mini-
mal computation of memory: information storage for 
future retrieval.

RAM can be described on the algorithmic level as 
achieving computation by routing inputs to memory 
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addresses that have information stored in the form of 
binary symbols, which can be extracted (read) and 
changed (write) before the system moves to a new 
state, at which point the same logic repeats. On the 
implementational level, we can describe the parts that 
realize these abstract design principles: The symbols 
are physically realized by transistors on a silicon wafer, 
and their value can flip via electric signals that switch 
the transistor between “on” and “off” states.

DNA has an algorithmic account similar to that of 
RAM’s read component—here too are symbols stored, 
extracted, and manipulated according to rules. On the 
implementational level, the physical parts are made of 
carbon rather than silicon, with the symbols realized 
by nucleotide bases of DNA strands—adenine, cytosine, 
guanine, and thymine—which variously combine to 
code the proteins necessary for life.

For these two memory systems, we have a good 
sense of how computation arises because we have 
extensively mapped out the mechanisms in terms of 
their algorithms and the physical parts that realize 
them. As a result, we can wield our mechanistic under-
standing of these systems in powerful and creative 
ways, such as to predict disease and explain biological 
phenomena in the case of DNA, or to build computers 
and phones with ever-increasing storage capacity in 
the case of RAM.3 With that said, a complete explana-
tion requires more detail than this section can provide, 
such as how these subsystems are situated within the 
overall architecture and how they interact with other 
subsystems (a point that extends to mechanisms in  
the brain). Nevertheless, these two well-specified sys-
tems offer an intuitive way to think about mechanistic 
explanation.

Mechanistic Understanding

In assessing whether a mechanism has been under-
stood, we cannot rely on a subjective sense of insight 
because this experience is known to be highly fallible 
(Danek & Wiley, 2017). A more objective way to evalu-
ate understanding is to ask whether we have “what-if-
things-had-been-different” style answers (Craver, 2006; 
Woodward, 2003). Under this conception, to understand 
a system is to know what would happen to the 
explanandum (computation) if the factors in the explan-
ans (mechanistic processes) varied across a wide range 
of circumstances (Woodward, 2003, p. 11). How should 
we evaluate whether we have such knowledge?

The approach favored here is to leverage mechanistic 
descriptions to programmatically alter computation 
through interventions in the system. If it is true that we 
know how the physical parts interact to result in a 
certain computation or other, then we should be able 

to intervene on the system’s parts in such a way that 
output B obtains rather than output A. The upshot of 
this intervention-heavy approach to understanding is 
that it establishes whether the mechanisms we postulate 
are actually causing the computations of interest, 
thereby validating a necessary property of any mecha-
nism. With that said, in cases where perturbing a system 
is not feasible (for technical reasons) or undesirable 
(for ethical reasons), an alternative is to ask whether 
we can use the mechanistic descriptions to predict com-
putation without impinging on the system itself. Under 
this route, we look at the physical parts of the mecha-
nism, and, using our formulation of the rules by which 
they interact to implement algorithms, we ask if we are 
able to approximate how a certain input will result in 
a certain output. And at intermediary stages of compu-
tation, where input representations have already under-
gone various transformations, we should be able to 
look at physical parts of the mechanism and approxi-
mate how the system will continue on to transform the 
representations into a certain output.

Importantly, using prediction in this way is different 
from predictions based on brute-force statistical regu-
larities (Katz, 2012)—an approach that is more common 
in neuroscientific practice (more on this later). The 
difference is that in the approach defended here, pre-
diction is methodically confined to a mechanistic 
explanans itself rather than to any detectable correla-
tion in the system which may or may not be mechanisti-
cally relevant (Craver, 2006). Confining prediction in 
this way is important because it separates real and 
illusory understanding. For example, if we want to 
evaluate whether we understand how a car manages to 
drive at a certain speed, the critical question is whether 
we can make predictions based on parts that are actu-
ally relevant in getting the car to drive. By contrast, if 
we make predictions based on parts of the car that are 
not included in the mechanisms for driving, such as the 
pointer on a speedometer, then we may get highly 
accurate predictions, but that result is no indication that 
we understand the system.

If we contextualize these points within the long-
standing debate on whether prediction or explanation 
is most conducive to scientific insight (Yarkoni & Westfall, 
2017), then this proposal falls in the explanation 
camp—yet it rejects a rigid dichotomy by taking on 
board prediction as an evaluative tool. Together, what 
emerges is a picture in which understanding manifests 
as experimental control and predictive power over a 
system’s behavior based selectively on the mechanisms 
we put forth. In the upcoming sections, I will contrast 
this notion of mechanism and scientific understanding 
with how we think about these concepts in cognitive 
neuroscience.
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Usage of Mechanism in Neuroscience

In cognitive neuroscience, the term mechanism is often 
invoked when merely a relation between a phenome-
non in the brain and cognition has been observed. The 
phenomenon might involve specific parts of the brain—
such as neurotransmitters, neurons, circuits, networks, 
or anatomical regions (Bassett & Sporns, 2017)—or it 
might involve a class of brain dynamics, such as event-
related potentials (ERPs), traveling waves, or neural 
oscillations. Moreover, the brain-to-cognition relation 
might be found on the basis of correlational studies 
(Mehler & Kording, 2020) or through causal interven-
tion (Dijkstra & de Bruin, 2016).

But although brain-to-cognition relations can be use-
ful, mechanism itself is not described until there is a 
detailed account of how specific parts of the brain 
systematically interact to produce cognition (Barsalou, 
2017; Hommel, 2020; Krakauer et al., 2017). Even if a 
brain-to-cognition relation proves causal, by itself it 
does not describe a neural mechanism because there 
is no explanation as to how specific physical parts in 
the system interact to implement algorithms to perform 
the computations of cognition. To flesh out these 
points, let us review how cognitive neuroscience 
research usually transpires and what kinds of explana-
tions are provided by its various stages.

Stages of Cognitive Neuroscience 
Research

Cognitive neuroscience typically undergoes several 
stages of research. Usually, we start with the search for 
relations between neural phenomena on the one hand 
(such as brain regions, networks, oscillations, or ERPs) 
and the various subcomputations of cognition on  
the other (such as memory encoding, storage, and 
retrieval)—seeking brain-to-cognition relations. Then, 
we may test whether these relations are causal while 
at the same time supplying them with spatial and tem-
poral detail. On top of that, we may describe how dif-
ferent brain-to-cognition relations are linked together, 
detailing how cognitive processing unfolds in the brain.

These stages of research—which may not be under-
taken in the same order—provide premechanistic 
under standing (Fig. 2). They establish with increasing 
certainty where and when neural mechanisms of cog-
nition are to be found in the brain. In the neural cor-
relates stage, we specify what phenomenon it is in the 
brain that relates to cognition (Fig. 2a). In the causal 
boundary stage, we may use causal interventions to 
figure out the physical perimeters of cognition, estab-
lishing where in space and time mechanism likely4 
resides (Fig. 2b). In addition, by specifying the flow of 

computation across anatomical regions (or other neural 
phenomena), we obtain a causal pathway of cognition 
(Fig. 2c).

Critically, though, at none of these stages do we 
explain a neural mechanism of cognition. What is miss-
ing is a formulation of how parts in anatomical regions 
(or networks, ERPs, or oscillations) realize computation 
(Fig. 2d). What are the ways in which parts of the 
brain—such as a group of connected neurons—interact, 
and how does this lead to one computation or another? 
Can we look at the brain and apply a rulebook with 
algorithms to physical parts situated in the causal 
boundary to make any sort of prediction about the 
computation at hand? If the answer is no, then the stage 
of research is premechanistic.

Let us take models of language processing to make 
these points more concrete (see Friederici, 2011, for an 
overview)—though the argument holds for cognitive 
neuroscience research at large. At the neural correlates 
stage, a set of four anatomical regions might be found 
to correlate, in turn, with phonological, lexical, syntacti-
cal, and conceptual processing (these are examples of 
psycholinguistic computations). Next, when brain stim-
ulation is applied to each anatomical region, it may be 
found that each region’s computation is impaired with-
out affecting the other regions’ computation except by 
altering their input,5 sketching the causal boundaries 
of cognition. Then, by taking neuroimaging findings on 
the temporal dynamics of neural activity across these 
regions, and by further testing exactly when brain stim-
ulation interferes with different regions, the model can 
be enriched with the flow of computation, obtaining a 
causal pathway of cognition.

But a causal pathway of cognition is not a neural 
mechanism of cognition (Ross, 2021). Pathways detail 
how information flows through the brain, but they do 
not address by what parts and methodology informa-
tion is generated or transformed. Rather, for this model 
of language processing to address mechanism, there 
needs to be a formulation of how the physical parts of 
implicated regions systematically combine to perform 
one computation or another. How is it that the neurons 
and synapses in the brain regions stipulated to process 
the phonological, lexical, syntactical, and conceptual 
content—say, of the word “dog”—interact to do so  
(Gallistel & King, 2009; Poeppel, 2012)? What are 
roughly the rules of interaction by which one computa-
tion obtains rather than another (such as the linguistic 
content associated with “cat”)? Undoubtedly, a complete 
answer to these questions is difficult to achieve. But 
my point is that this is a separate class of inquiry that 
is about mechanism itself, rather than about where in 
the brain the mechanism resides, the time at which it 
does its job, its slot in a sequence of multiple 
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mechanisms, or any other context that can be given 
about it (Hommel, 2020).

A strict emphasis on the conjunction between “how” 
(algorithm) and “in which specific parts” (implementa-
tion) tends to diverge with the usage of the term “mech-
anism” in cognitive neuroscience, where a correlational 
or causal relation between regions, ERPs, or oscillations 
and cognition often suffices (for a few examples in 
language processing, see Dröge et al., 2016; McNealy 
et al., 2006; Rodd et al., 2005; Zimmerer et al., 2019). 
Perhaps it is more appropriate to call a series of  
correlational findings “neural correlates” rather than 
“neural mechanisms of cognition” and to refer to find-
ings in the causal realm as “causal boundaries,” or 

“causal pathways” if the flow of computation is 
specified.

Regardless of language use itself, the more pertinent 
point is that mechanistic explanation is distinct from 
collating a series of correlational or causal findings and 
supplying them with spatial and temporal detail. Mech-
anistic explanation consists in describing algorithms 
and the physical parts of the brain that realize them, 
making it possible to programmatically alter computa-
tion or to predict it across a variety of contexts (such 
as input stimuli). Seeing this as a distinct enterprise 
from premechanistic work is important to ensure that 
research programs can ultimately reconcile their find-
ings at the level of theory and scientific explanation. 
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Fig. 2. Stages of research in explaining cognition in the brain. Neural correlates stage (a), Cognitive functions can be decomposed 
into computations that correlate with phenomena in the brain—such as a set of anatomical regions, event-related potentials (ERPs), or 
frequency bands (or phases) of oscillations. At the causal boundary stage (b), causal studies can determine the boundaries of cognition 
in the brain, limiting where and when mechanism resides. This stage may confirm, falsify, or adjust the overall model from the neural 
correlates stage. By the causal pathway stage (c), a preliminary pathway of cognition may have been sketched by means of neuroimag-
ing and brain stimulation. In this stage, however, this sketch is scrutinized and adapted by means of, for example, time-resolved brain 
simulation, revealing the causal flow of computation. We address neural mechanism itself (d), only when we outline how specific 
computations emerge from organized interactions between specific parts of the brain. This stage fills the mold of our causal pathways 
with mechanistic detail, offering what-if-things-had-been-different answers on cognition in the brain. Note that the order presented here 
may vary within research programs (across work on different cognitive functions) and between programs, and stages may sometimes 
be skipped altogether or returned to later.
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In this sense, mechanism establishes a universal lan-
guage to a pluralistic cognitive neuroscience.

Mechanistic Models in Neuroscience

Up to this point, I have focused on examples of the 
premechanism stage in cognitive neuroscience, which 
is differentiated from the mechanism stage proper. For 
research to be situated in the mechanism stage, two 
minimal requirements must be met. First, there needs 
to be some account of the algorithms that govern how 
representations are transformed, where algorithms are 
defined as sequences of operations that manipulate one 
or more variables—analogous to instructions in the 
form of computer code. Such operations can be 
described in mathematical terms (like summation, inte-
gration, and thresholding), but they need not be. Rather, 
what is essentially required is a specification of the 
rules that work over system inputs, and both formal 
and natural language can achieve this. The second 
requirement is that any algorithmic specification must 
go together with empirical data that points to specific 
parts of the brain that implement the representational 
transformations, lifting the cognitive model into the 
neural realm. What do models of this sort look like?

To highlight one comparatively well-specified 
account, Mazurek et al. (2003) laid out a primate model 
of visual decision-making (Fig. 3). Here, just as in prem-
echanistic accounts, there is a sequence of brain regions 
with associated computations, covering each step from 
stimulus processing to a decision on motion direction. 
What elevates this account into the mechanism stage is 
that there is a formulation of the algorithms that achieve 
the system’s representational transformations, with spe-
cific parts empirically validated to implement these 
algorithms. First, the sequence of computations is 
explained through a series of operations such as sub-
traction, integration, relative offsetting, and the dynamic 
accumulation of evidence up to a threshold. Each of 
these operations acts upon representations—either 
those fed into the mechanism, or those derived along 
the way. Second, the specified algorithms are verified 
to be realized by neuronal groups in the middle tem-
poral area (MT) and in lateral intraparietal cortex 
(LIP)—specifically, their activity patterns unfold in con-
cordance with the mechanistic model.

The previously discussed metric for mechanistic 
understanding goes a long way here—it is through our 
understanding of how specific parts of the brain inter-
act that prediction on the resulting motion direction 
decision is made possible. An external observer (in 
practice, a model wielding our mechanistic hypotheses) 
could look at stimulus input patterns or neural activity 
midway and predict—using an explanans—which 

decision a primate will make on the question of motion 
direction. Indeed, the authors used their model to suc-
cessfully predict behavioral and neural measurements 
(Mazurek et al., 2003). Furthermore, because the algo-
rithms are tied to specific parts of the brain, specific 
hypotheses emerge on how to manipulate the brain to 
change the likelihood that one or another target choice 
obtains, as I will highlight in a fictional experiment later 
on. In a nutshell, this model exceeds premechanistic 
explanation because it allows us to predict and control 
computation by harnessing algorithms that operate in 
empirically linked parts.6

There are two points worth emphasizing at this inter-
section. First, in our evaluation of the model, prediction 
is considered only a means to an end—again, it serves 
as a tool to test and construct an explanans. Indeed, 
applying pattern classifiers or related statistical tech-
niques to the data will probably yield more accurate 
predictions about decision-making and neural activity 
than a model that confines itself to mechanistic parts. 
However, as with speedometer-based prediction, the 
claim that this makes such techniques superior to mech-
anistic models is conflating an instrument for explana-
tion with scientific explanation itself (van Rooij, 2022). 
Techniques geared to maximize predictions by indis-
criminately capitalizing on any pattern in the data are 
both common and of limited use in neuroscience—they 
can, for example, help narrow down where computa-
tion happens in the brain and thereby bootstrap the 
process of explanation-building. However, prediction 
should not be confused with mechanistic understanding 
(Cummins, 1995, 2000; Kaplan, 2011).

A second point is that the mechanistic model dis-
cussed is of a specific kind: It takes neurons and their 
synaptic connections to be the primary implementer of 
computation—that is, these physical aspects of the sys-
tem are granted the most explanatory importance. The 
field is undergoing a debate on whether this kind of 
view is right or whether neural computation is distrib-
uted to such an extent that a dynamical-systems per-
spective is required in which the primary implementer 
is taken to be the neural activity across a population 
of neurons considered en masse, which undergoes tra-
jectories in multidimensional state space as it realizes 
computation (Barack & Krakauer, 2021). It is important 
to delineate strong and weak views of this sort. Strong 
dynamical systems accounts consider trajectories in 
state space and the manifolds embedded within them 
as not just descriptions, but as full-fledged explanations 
that nullify or firmly relegate the need to identify the 
specific parts that realize the observed activity patterns, 
thus forwarding a form of nonmechanistic explanation 
that is incompatible with the perspective laid out here 
(Chemero & Silberstein, 2008; Cosmelli et al., 2007; see 
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also van Gelder, 1995). On the other hand, weak views 
do not take such mathematical descriptions to rise to 
the level of explanation. Instead, they cast them as 
instruments that elegantly capture large swathes of 
interacting parts with the potential to reveal details 
about a mechanism’s organizational features (Gardner 
et al., 2022; Langdon et al., 2023). Seen in this light, 
state space descriptions can guide a mechanistic neu-
roscience that ultimately seeks to identify parts of the 

brain that implement the algorithms of computation by 
offering a springboard for experimentation and com-
putational probing, or even by helping to uncover 
mechanistic parts directly (Valente et al., 2022). Such a 
perspective is compatible even with strong accounts in 
mechanistic philosophy (Kaplan & Craver, 2011).

Following this brief detour, I will next take my cri-
tique as it has been developed thus far and complement 
it with some prescriptions for the field.
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Fig. 3. A mechanistic model of visual decision-making in the brain. Fixating monkeys were presented with 
random motion at a specific strength (coherence percentage) and direction. The animals indicated their deci-
sion on motion direction using an eye movement. A model specified the putative neural mechanisms behind 
this process, containing rules that operate over incoming neural activity (algorithm), as well as ensembles of 
specific anatomical regions that realize them (implementation). The model accurately predicted decisions, reac-
tion time, and neural activity of empirical data using three steps (Mazurek et al., 2003). First, direction-selective 
neurons in extrastriate area MT code sensory evidence about motion direction. Second, the difference in activity 
between left- and right-selective MT cells is integrated and baseline-offset in the LIP. These operations cause 
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represents activity that surpassed the threshold. Redrawn from Mazurek et al. (2003).
MT = middle temporal area.
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Mechanism Is Not an Out-of-Reach 
Stage That Needs to Wait

As I have discussed, cognitive neuroscience tends to 
concentrate on characterizing brain-to-cognition rela-
tions, with descriptions of mechanism itself as a sepa-
rate stage that usually comes later or not at all. There 
are two normative claims I would like to offer: First, 
we should recognize this distinction in our work to 
facilitate unification across fields in the universal lan-
guage of mechanism, conceiving of the mechanism 
stage as a distinct end goal. Second, we should expend 
more resources on the mechanism stage itself. Cur-
rently, most efforts are dedicated to providing ever 
more background detail, as opposed to filling out the 
premechanistic molds we already have. But if mecha-
nistic explanation is a central goal of cognitive neuro-
science, this balance should shift. In Box 1, I outline 
some recommendations that serve to assist the project 
of mechanistic modeling.

A possible response to the claim that we should 
refocus our efforts is to argue that we first need to fully 
flesh out the context of mechanism before we can sen-
sibly turn to mechanism itself. Put differently, perhaps 
completing the premechanism stage is simply necessary 
before we can even start to think meaningfully about 
mechanism. This would, in turn, suggest that cognitive 
neuroscience is on the right track in its primary focus 
on detailing brain-to-cognition relations.

In reply to this, it may be helpful to first reiterate 
what premechanistic research gets us and what it does 
not. What findings in this stage offer is an upper bound 
of when and where mechanisms operate. But neural 
correlates, causal boundaries, and causal pathways do 
not address what algorithms are at play, nor do they 
describe the exact parts that do the job of implementing 
them. This is evidenced by the fact that a model that 
employs only these findings cannot explain across a 
wide range of circumstances (such as sensory inputs) 
why one or an other computation obtains (such as the 
linguistic content of “cat” vs. “dog,” a left vs. right target 
choice, or an oval vs. round face representation). 
Rather, the honeypot of what-if-things-had-been-differ-
ent understanding is offered by mechanistic models. 
Next, I argue that such models can be productively 
worked on even with only approximate spatial and 
temporal boundaries (see also Box 1).

A necessary condition for capturing neural mecha-
nisms of cognition is to explain what algorithms they 
implement. Through computational modeling efforts, 
we can explore what algorithms can achieve the com-
putation at hand, fulfilling a criterion that is neglected 
in the premechanistic stage (Guest & Martin, 2021). Such 
algorithmic models must make specific hardware com-
mitments, transforming them from free-floating models 

into mechanistic models. In practice, this project is a 
two-way street, involving the dynamic interplay between 
modeling and experimentation. From one direction, 
algorithmic models can generate hypotheses on what 
parts in the brain can plausibly implement the computa-
tions at hand. For example, if our algorithmic-level 
explanation involves updates to previous representa-
tions, this might point to recurrent connections in the 
brain. From the other direction, the parts we know to 
exist in our approximate causal boundary might have 
distinct features that naturally lend themselves to instan-
tiating specific algorithms, which we can explore in our 
modeling efforts (see Box 1 for some examples). 
Through this back-and-forth process, we can generate 
hypotheses on what algorithms and hardware are at 
work in mechanistic boundaries. These can be put to 
the test, allowing us to gradually discard possible mod-
els to derive explanations of cognition in the brain. 
Although deep problems remain—such as the fact that 
there will always be a large space of mechanistic models 
that can account for the same behavior (Marder, 2011)—
our metric of understanding tells us whether we are 
moving in the right direction. If our models allow us to 
programmatically alter computation by intervening on 
aspects of our explanans, or to predict what specific 
computation obtains across inputs, then this suggests 
we are reaching our explanatory aims.

In short, the premechanism stage supports mecha-
nistic modeling because it provides contextual informa-
tion that can be used to draw inspiration for algorithms 
and hardware specification while offering spatiotempo-
ral constraints on where to validate our explanans—but 
it does not need to be completed for mechanistic mod-
eling to proceed. By working on mechanistic models 
right now, we can supply our landscape of brain-to-
cognition relations with explanations as to why different 
computations obtain across different situations.

What Neural Mechanisms Do Not Need 
to Be

A neural mechanism of cognition is a series of physical 
parts in the brain that interact in systematic ways to 
implement algorithms that result in computation, and 
describing them requires an adequate account of Marr’s 
levels. To some, this perspective may appear restrictive,  
evoking a sense that little in the brain can meet these 
demands. To defend against this potential criticism, it 
may be helpful to highlight several properties that 
mechanisms do not necessarily need to have, hinting 
at the heterogeneity of mechanism.

Typically, when we think of a mechanism, we think of 
lawlike operations in which activation of one part neces-
sarily causes an interaction with another—such as when 
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a gear turns its neighbor to change the arms on a watch. 
This analogy works for relatively deterministic systems 
like RAM and DNA, but not for the highly stochastic brain. 
The brain does not work like clockwork—there is ran-
domness everywhere (Deco et al., 2009; Rolls & Deco, 
2010). To give one elementary example, the release of 
neurotransmitter vesicles from cells occurs over probabil-
ity distributions—and this principle likely holds for any 
mechanism to be found in the brain.

This adds a layer of difficulty in the search for neural 
mechanisms of cognition, and it partially explains why 

brain-based predictions of any kind are imperfect. Nev-
ertheless, the presence of randomness in any system 
does not dissolve mechanism (Craver, 2007; Craver & 
Tabery, 2015), nor does it mean that describing them 
becomes an insurmountable task. To see why this is so, 
imagine we inject RAM and DNA with ample random-
ness. This would have sweeping effects on computa-
tion, but it does not turn mechanism into nonmechanism 
because there are still design principles at work that 
govern the interaction between system parts. Similarly, 
if we take a machine that works on interacting gears, 

Box 1. A Road Map for Mechanistic Modeling

Proceeding from varying levels of insight on where and when mechanisms reside in the brain, researchers may 
wish to focus on mechanistic model development. In this box, I offer three considerations that enable this pursuit, 
taking the cognitive function of face processing as a running example.

Clarification of the explanandum
By clearing up what it is that we are trying to explain, we can narrow down what a mechanistic model that puts 
forth the explanation needs to look like. This can be done in different ways. Most formally, we can perform 
computational complexity analysis to find mathematical and logical constraints on the nature of cognitive 
computations themselves—thereby also constraining what algorithms could be at play in the explanans (van 
Rooij & Baggio, 2021). Less formally, we can clarify the explanandum by characterizing in explicit terms what 
computations we are trying to explain. Is our model attempting to address why in some cases a round face is 
perceived, and why in other cases an oval one is perceived? Or is the question rather why an invariant face 
representation obtains across visual angles regardless of facial shape?

Taking stock of premechanistic insights
Neural correlates, causal boundaries, and causal pathways offer useful information for the task of mechanistic 
modeling. For example, a long-standing result in neuroscience is that the Fusiform Face Area (FFA) correlates 
with face processing (Kanwisher et al., 1997), with strong evidence for its causal relevance (Parvizi et al., 2012). 
To develop a mechanistic model of face processing, we need to find specific parts that implement specific 
algorithms of face processing. The conclusion that the computation’s parts and algorithms are embedded in 
the FFA invites an exploration of what is unique about that piece of cortex, and it also tells us where to test 
algorithmic and implementational hypotheses that arise from our model.

Asking mechanistic questions
Building on the previous point, we can ask a cluster of questions to jump-start our modeling efforts. Such 
questions include:

 •  What algorithms are at play in face processing? Specifically, what are the relevant representations that it 
receives, and what sort of transformations are performed over it to derive different outputs?

 •  What physical parts in the FFA implement the algorithms? Is the work carried out by local circuits, 
distributed networks, specific types of cells, classes of neurotransmitters, molecular processes inside cells, or 
something else? What are the parts that would do the work in a mechanistic model?

 •  How do these parts systematically interact to result in face representations as opposed to some other 
computation, such as the computations of neighboring areas?

 •  Is there something about FFA’s design that naturally instantiates certain algorithms? For example, is there a 
special columnar architecture, projection scheme (e.g., recurrence), canonical circuit layout, tuning curve 
profile, or temporal or spatial coding scheme that helps explain why specifically face representations obtain?

 •  How does the FFA perform one computation (e.g., processing a round face) versus another (e.g., processing 
an oval face)? How do the activation or storage patterns differ in both cases, and why does each pattern 
result in the associated percept?
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and we shave the ridges to curve slightly—causing each 
gear to turn its neighbors only sometimes—this does 
not dismantle the core mechanistic architecture.7

Another common intuition about mechanisms is that 
they are about what happens at the level of small parts 
in the brain. This is exemplified by the cherished catch-
phrase underlying neural mechanisms, which, if con-
sistently used, points ever downward. But a special 
status of the microscale does not follow from either the 
philosophical conception of mechanism or from Marr’s 
levels (Krakauer et al., 2017). Certainly, any mechanism 
can be further decomposed into smaller mechanisms 
(Love, 2021). For example, a car realizes driving by the 
organized interaction of its engine, drivetrain, steering 
wheel, and brakes, but each part of this mechanism has 
its own mechanisms, which in turn have their own 
(Bechtel & Richardson, 1993). Nevertheless, a mac-
roscale neural mechanism is valid in its own right, even 
if there is a bottoming-out process to be pursued 
where—for example—the biophysical mechanisms 
underlying neuronal activation are specified as well 
(Machamer et  al., 2000). Indeed, the previously dis-
cussed model of visual decision-making operates at the 
scale of neurons and above but meets the high bar of 
mechanism. And to cite another example, Hasselmo et 
al. (2002) specify how subregions of the hippocampus 
systematically interact to promote either memory 
encoding or retrieval.

A final point concerns the spatial organization of 
mechanistic parts. At first blush, it might seem that a 
mechanistic view presupposes that computation is modu-
lar rather than distributed. Indeed, most covered models 
involve anatomical regions and local neuronal ensembles, 
in which the computational nuts and bolts are in each 
other’s vicinity. However, in cases in which highly dis-
tributed networks are the functional unit, nothing essen-
tially changes. Whether we are dealing with a confined 
circuit or a network that is sparsely laid out across the 
brain, variation in computation will have to do with a 
difference in the brain’s design principles operating 
throughout physical parts—and the point stands that an 
adequate mechanistic explanation must derive these.8

In the next segment of this contribution, I will dis-
cuss what needs to be considered once a neural mecha-
nism of cognition has been characterized. After that, I 
will enumerate some limitations and end with conclud-
ing remarks.

The Scope of Neural Mechanisms

In cognitive neuroscience, statistical reliability is taken as 
the arbiter of what makes or breaks a putative neural 
mechanism of cognition. When a hypothesis that tests a 
neural mechanism is consistently left unrejected, we gain 

confidence in the mechanism, and we allow it to figure 
in theories of the cognitive brain. But it is one thing to 
establish that a neural mechanism of cognition exists, and 
it is another to establish how big a role it plays in cogni-
tion. This raises the question of how the scope of a 
candidate mechanism is currently estimated by the field.

It seems that the scope of mechanism is mostly esti-
mated by conceptual analysis, through which we con-
sider how large a conceptual gap is filled by a putative 
mechanism. Does it explain large swathes of how a 
cognitive function (such as decision-making) is imple-
mented by the brain? Or does it offer more parochial 
answers, such as how reward is coded (which is only 
a subcomponent of decision-making)? In short, it seems 
a putative neural mechanism is taken to figure centrally 
or peripherally in explanations of cognition in the brain 
through a process of conceptual analysis (which, to be 
sure, is usually implicit).

In this section, I argue that effect size should be an 
additional consideration in our process of estimating 
explanatory scope (Funder & Ozer, 2019). Specifically, 
how much variance of the computation at hand—
indexed by cognitive tasks, overt behavior, or other 
dependent variables—is accounted for by experimental 
manipulations on mechanistic parts? This is different 
from effect size on the level of neural measurement, 
which (for example) concerns the fidelity of neuroim-
aging components, such as blood-oxygen levels or the 
amplitude of ERPs. Naturally, tracking explained vari-
ance in neural signals can inform us whether we are 
targeting our mechanisms as intended, but it does not 
get at the heart of things. Rather, the key question is 
this: To what extent do manipulations that target the 
contents of a mechanistic model (the explanans) have 
consequences for the computations of cognition (the 
explanandum)? Let me take the previous mechanistic 
model to illustrate why teasing out effect size in this 
way can  inform us of explanatory scope.

Imagine a hypothetical experiment that tests part of 
our putative neural mechanism of visual decision- 
making (Fig. 4). The model posits that one group of 
neurons in area MT code sensory evidence for leftward 
motion, while another group codes rightward motion 
(Fig. 4a). Now, we may build an experiment where, 
across conditions, we independently manipulate the 
activity for each group of neurons (using, e.g., micro-
stimulation), perhaps adding a condition in which we 
target a control group of neurons thought to code for 
neither direction (Fig. 4b). If our mechanistic model is 
correct, we expect visual decision-making—indexed here 
as the difference between left and right target choice—to 
change depending on which neurons we stimulate.9

For this individual study, the kinds of interpretations 
that are justified toward the mechanistic model from 



12 van Bree

which our hypothesis originated depend on obtained 
effect sizes—not just our conceptual analysis of the 
modeled mechanism (Fig. 4c). Namely, if we observe a 
statistically significant result but a small effect size, it 
would be unjustified to speculate that we are tapping 
into a central mechanism of visual decision-making—the 
data speak against this interpretation (Fig. 4c, left). Now 
contrast this with a scenario where we find that our 

model explains ample variance in target choice. In this 
case, we are empirically justified to raise more ambitious 
hypotheses for future studies to pursue.

With that said, effect sizes derived from single stud-
ies offer only uncertain estimates of the explanatory 
scope of a mechanism. After all, there are numerous 
reasons why a neural mechanism could fail to leave 
marked footprints on the cognitive-behavioral level in 
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(b), we may use intracortical microstimulation to independently activate the two neuron groups. We may 
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grounds to support part of our mechanistic model. Crucially, effect size—which is usually neglected in cogni-
tive neuroscience—provides information about explanatory scope. All else equal, small effect sizes (left) do 
not justify the interpretation that a central or fundamental mechanism is being tapped into. On the other hand, 
large effect sizes (right) justify hypotheses that situate the mechanism more ambitiously. It is important to note 
that effect-size estimation on the single-study level is uncertain, serving as a stepping stone for multistudy 
approaches (see main text). Note that this fictional experiment serves to illustrate a point on effect size and is 
not intended to represent an optimized design to comprehensively test the mechanistic model.
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a single experiment. It could be overshadowed by more 
powerful processes, its effects could accumulate over 
a duration beyond what is measured, the mechanism 
could work differently across participants, or the exper-
imental manipulation could fail to target enough mech-
anistic parts and operations—basically, all the same 
reasons why a neural mechanism’s effects may fail to 
be reliably detected in the first place.

Nevertheless, the basic point—that effect size is an 
important consideration in cognitive neuroscience—
persists. Theoretical neuroscience involves taking neu-
ral mechanisms collected across research programs and 
figuring out how and where each of them fits in holistic 
and systematic explanations of the cognitive brain. And 
if mechanism A consistently accounts for more cogni-
tive variance than mechanism B across studies, then 
this is a type of evidence informative toward this end.10 
Specifically, by rank-ordering mechanisms in terms of 
explained variance, our decision process on what fits 
in the center of our theories becomes more objective, 
as we avoid placing all of our eggs in the basket of our 
own potentially flawed thinking. At present, however, 
effect size is rarely considered or explicitly communi-
cated in cognitive neuroscience, which instead focuses 
on p values in its statistical reporting (which does not 
address explanatory scope; Sullivan & Feinn, 2012).

How would tackling effect size work in practice? An 
approach well-trodden in other fields is meta-analysis. 
By systematically aggregating results across studies and 
performing statistical analyses over them, the effect size 
of different neural mechanisms can be approximated 
and compared. This approach is bolstered by efforts to 
systematically organize neuroscience data (Akil et al., 
2011; Markiewicz et al., 2021). On a separate track, the 
rapid growth of collective research efforts comes with 
unique opportunities for effect-size estimation. Multi-
center initiatives make it possible to systematically 
explore parameter spaces, thereby getting a handle on 
factors that distort true effect sizes (Kandel et al., 2013). 
And in adversarial collaborations, neural mechanisms 
with a history of empirical success are pitted against 
each other in the same cognitive context to see which 
best accommodates the data (Cowan et al., 2020; Melloni 
et al., 2021). A further advantage of high-resource efforts 
like these is that they help disentangle the individual 
contribution of several correlated mechanisms, so that 
we do not confuse one explanation for another or 
wrongly estimate our effects (Tosh et al., 2022).

In summary, by factoring in how much cognitive 
variance is explained by a putative mechanism, we are 
giving nature an extra seat at the table, so to speak. 
Whereas conceptual inquiry offers deductively derived 
insights, effect size provides a data-driven estimation of 
explanatory scope that matters as well. It should be 

noted that there are other underutilized approaches to 
estimating explanatory scope besides estimating effect 
size. Most notably, one can address the question from 
an algorithmic angle, leaving brain experiments aside 
momentarily to pursue higher-level analyses (Levenstein 
et al., 2023). By modeling the algorithms assumed to be 
at play in different neural mechanisms, it may be found 
that one model manifests a wider range of computations 
that humans are known to perform, or it may be observed 
that one model strikes a particularly fine balance 
between accuracy and parsimony (Vandekerckhove 
et al., 2015) or some other epistemic virtue that gives it 
a leg up on other mechanistic hypotheses.

A Few Considerations

What are some assumptions and limitations of the view 
presented? First and foremost, this work is deeply tied 
up with Marr’s three-level framework: The implemen-
tational, algorithmic, and computational levels are 
adopted as binoculars through which to understand the 
mind and brain. This means that if any of the levels are 
flawed or incomplete when put together then so too 
are the scientific explanations that they yield. A rich 
body of literature is dedicated to Marr’s epistemology 
and its limitations (Peebles & Cooper, 2015), which 
includes discussions on what each level means or 
should mean (Hardcastle & Hardcastle, 2015), sugges-
tions on what level might be missing from the picture 
(Poggio, 2012), and critiques of levels of analyses as a 
meta theoretical method in the first place (Danks, 2013). 
Although a good many of the arguments presented in 
this contribution will not collapse even if one rejects 
Marr’s levels, some will, and most of them will be 
affected in one way or another. Therefore, criticisms of 
Marr’s framework carry over to the perspective offered 
here.

Second, still concerning assumptions, one might 
question whether the project of mapping algorithms to 
parts of the brain and that of mapping computations 
onto algorithms can be done reliably. To touch on this 
some more, multiple realizability is continually looming 
on the horizon, especially in a framework that seeks to 
have different levels converge. Just as countless com-
puter programs can find the maximum value in a matrix, 
and just as summing algorithms can be realized by 
devices that vary in physical makeup, so too are the 
parts, algorithms, and computations of the brain under-
determined by each other. This leaves us in a state of 
uncertainty as to whether our mechanistic models reflect 
the brain’s operations even as we gather what-if-things-
had-been-different answers. Perhaps the way to deal with 
this is through a project of gradual expansion. After a 
mechanistic model has been found to account for 
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computations in one experimental context, it can be 
brought to bear on another—ideally one that ups the 
ecological validity. With appropriate revisions or full-on 
redevelopments, we might build increasingly encompass-
ing mechanistic models of cognition and iterate toward 
truth.

Third, in terms of reach itself, there is more to under-
standing cognition than mapping out every mechanism 
there is to be found in the brain. For one, the present 
proposal has said little about the computational level 
that sets our explananda: Except for a recommendation 
in Box 1, I have mostly adopted it as fixed, viewing it 
as ready to work with. But spelling out what cognition 
consists of, how various computations interlink, and 
why the structure of the world leads us to process 
information in the distinct ways we do (Bechtel & 
Shagrir, 2015) are all important undertakings because 
they delineate, contextualize, and indeed fill up our 
target explananda. Every level offers unique constraints 
that narrow the possible answers on other levels, and 
the computational level is no exception.

Concluding Remarks: Toward Unification

This contribution echoes the sentiment that linking cog-
nition to segments of the brain does not give adequate 
explanations for cognitive neuroscience. Mechanism is 
needed, and that much is agreed upon. But how the 
term is used varies substantially within and across 
research programs. Although variation in language use 
does not have to be a problem by itself, it does point 
to a lack of agreement on what properties a neural 
mechanism has and how we should go about looking 
for them. This runs the risk of hindering convergence 
at the theoretical level, where fruits harvested across 
programs need to be integrated. Less allegorically, if 
each program employs a different format of scientific 
explanation, a unified cognitive neuroscience is hard 
to reach.

In this contribution, I have argued that combining 
Marr’s framework with recent philosophical work on 
mechanisms in science offers a unifying lens through 
which we can formalize the goal of explaining how the 
brain realizes cognition. The short version is that we 
need a specification of the brain’s design principles and 
the parts that realize them to produce computation. 
Such an account leaves significant heterogeneity on 
what in the brain can make for a mechanism while 
offering clear limits on what cannot.

For example, neural mechanisms can involve parts of 
the brain below the scale of neurons or above it, and they 
can either be huddled together or spread out in space. 
All neural mechanisms are causal, but not all causal rela-
tions in the brain are neural mechanisms. Also, neural 

mechanisms do not need to be deterministic—although 
the brain is stochastic, there is still an underlying mecha-
nistic architecture of cognition to be carved out by the 
joints. Finally, to meet the bar of neural mechanism, parts 
of the brain must be subject to computing algorithms 
rather than simply activate in an algorithmically impover-
ished sequence, such as in a causal pathway.

Cross-program unification involves building a mosaic 
of all established findings. I have argued that in build-
ing this mosaic, our decision process on what fits in 
the center and periphery can benefit from considering 
the explained variance of candidate neural mechanisms 
toward the explanandum. Finally, mechanistic under-
standing can be quantified by the degree to which 
formulated algorithms applied to brain data help pre-
dict or alter cognition—testing whether description 
maps onto reality. Together, hopefully these reflections 
serve to invigorate a mechanistic approach to cognitive 
neuroscience that cuts across research programs. To 
end with the obligatory mantra, then, more research is 
needed to understand the neural mechanisms of 
cognition.

Transparency

Action Editor: Rogier Kievit
Editor: Rogier Kievit
Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of 
interest with respect to the authorship or the publication 
of this article.

Funding
The author did not receive funding for this work.

ORCID iD

Sander van Bree  https://orcid.org/0000-0003-4894-5938

Acknowledgments

The author thanks Iris van Rooij, Olivia Guest, John Krakauer, 
Federico Adolfi, the Computational Cognitive Science research 
group, and Casper Kerrén for their constructive input and 
discussions on this work. The author also thanks Christoph 
Daube and members of the labs headed by Maria Wimber 
and Simon Hanslmayr for relevant discussions on the topic 
of neural mechanisms in cognitive neuroscience.

Notes

 1. There are different accounts of what computational-level 
descriptions must consist of. For an overview of these accounts, 
see the work of Bechtel and Shagrir (2015), Rescorla (2020), 
and Shagrir and Bechtel (2017, section 6.2).
 2. Marr’s three-level framework is a way to analyze systems that 
have mechanisms (an epistemological project), with mechanism 
itself being the organized interaction between parts that results 
in a phenomenon (a metaphysical claim). My argument is that 
these considerations together serve to refocus work in search 
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of neural mechanisms, not that Marr’s framework and levels of 
mechanism collapse into each other (Piccinini & Craver, 2011).
 3. We can even exploit our mechanistic understanding of 
DNA to build efficient memory systems (Goldman et al., 2013), 
which allow us, for example, to store Shakespeare’s sonnets 
(Yong, 2013).
 4. Caution is warranted with this type of inference, because 
the finding that cognition changes as a function of causal inter-
ventions can be explained by a plethora of confounders. For 
alternative explanations in brain stimulation, see Bergmann and 
Hartwigsen (2021), Schutter and Hortensius (2010), and van 
Bree et al. (2019). For alternative explanations in lesion studies, 
see Vaidya et al. (2019).
 5. That is to say, the stimulation has a local effect that impairs 
the intraregion computations directly while exerting only indi-
rect influences on downstream regions by altering their input as 
a consequence of altered functioning upstream.
 6. Models that meet the necessary criteria for mechanism  
may nevertheless vary substantially in richness. For example, 
a basic model might describe neuronal ensembles that imple-
ment evidence accumulation up to a threshold. Then subse-
quent research in the mechanism stage might enrich the model 
with details on where the threshold lies, the dynamics by which 
evidence accumulation unfolds, factors that explain how sto-
chastic the process is, or any other detail that further explains 
what computations obtain across circumstances.
 7. The question addressed in this paragraph is whether the 
concept of mechanism holds up in random systems. This should 
not be confused with the question of whether randomness itself 
can figure in mechanism (which it can, see Harris & Wolpert, 
1998, for a seminal example).
 8. With that said, Pessoa (2023) summarized some reflections 
on distributed computation, interactional complexity, and func-
tional decomposition that could have implications for the view 
presented here.
 9. Note again that in our effect-size estimation, we are fixating 
on cognition rather than on neural signals. Indeed, if we succeed 
at stimulating the left- and right-coding ensembles focally with-
out having stimulation shunt to nearby areas, the locally induced 
action potentials are unlikely to exert much of a footprint in neu-
roimaging signals. Yet if the targeted neurons are where motion 
direction is coded, the effects of the experimental manipulation 
on behavior will be large. In other words, variance on the neural 
signal and cognitive level may dissociate, and what matters for 
assaying scope is the latter, because it indexes the explanandum.
10. Direct comparisons do not require external reference 
frames, so even if difficult questions (like what constitutes a 
small or large effect size) remain, this need not prevent the 
project of comparing mechanisms from going forward.

References

Akil, H., Martone, M. E., & Van Essen, D. C. (2011). Challenges 
and opportunities in mining neuroscience data. Science, 
331(6018), 708–712. https://doi.org/10.1126/science 
.1199305

Barack, D. L., & Krakauer, J. W. (2021). Two views on the 
cognitive brain. Nature Reviews Neuroscience, 22(6), 
Article 6. https://doi.org/10.1038/s41583-021-00448-6

Barsalou, L. W. (2017). What does semantic tiling of the cortex 
tell us about semantics? Neuropsychologia, 105, 18–38. 
https://doi.org/10.1016/j.neuropsychologia.2017.04.011

Bassett, D. S., & Sporns, O. (2017). Network neurosci-
ence. Nature Neuroscience, 20(3), 353–364. https://doi 
.org/10.1038/nn.4502

Bechtel, W., & Richardson, R. C. (1993). Discovering com-
plexity: Decomposition and localization as strategies in 
scientific research. Princeton University Press.

Bechtel, W., & Shagrir, O. (2015). The non-redundant contri-
butions of Marr’s three levels of analysis for explaining 
information-processing mechanisms. Topics in Cognitive 
Science, 7(2), 312–322. https://doi.org/10.1111/tops.12141

Bergmann, T. O., & Hartwigsen, G. (2021). Inferring causality 
from noninvasive brain stimulation in cognitive neurosci-
ence. Journal of Cognitive Neuroscience, 33(2), 195–225. 
https://doi.org/10.1162/jocn_a_01591

Braun, C. (1990). Bottom-up approaches to cognition: A 
defence of cognitive neuroscience (pp. 285–296). https://
doi.org/10.1007/978-1-4613-9688-8_28

Buzsáki, G. (2019). The brain from inside out. Oxford 
University Press. https://doi.org/10.1093/oso/9780190 
905385.001.0001

Chemero, A., & Silberstein, M. (2008). After the philosophy 
of mind: Replacing scholasticism with science. Philosophy 
of Science, 75(1), 1–27. https://doi.org/10.1086/587820

Churchland, P. S. (1986). Neurophilosophy: Toward a unified 
science of the mind-brain. A Bradford Book.

Cosmelli, D., Lachaux, J.-P., & Thompson, E. (2007). Neurodynami-
cal approaches to consciousness. In E. Thompson,  
M. Moscovitch, & P. D. Zelazo (Eds.), The Cambridge hand-
book of consciousness. Cambridge University Press. https://
doi.org/10.1017/CBO9780511816789.027

Cowan, N., Belletier, C., Doherty, J. M., Jaroslawska, A. J., 
Rhodes, S., Forsberg, A., Naveh-Benjamin, M., Barrouillet, 
P., Camos, V., & Logie, R. H. (2020). How do scientific 
views change? Notes from an extended adversarial col-
laboration. Perspectives on Psychological Science, 15(4), 
1011–1025. https://doi.org/10.1177/1745691620906415

Craver, C. F. (2001). Role functions, mechanisms, and hierar-
chy. Philosophy of Science, 68(1), 53–74. https://doi.org/ 
10.1086/392866

Craver, C. F. (2006). When mechanistic models explain. 
Synthese, 153(3), 355–376. https://doi.org/10.1007/s11229- 
006-9097-x

Craver, C. F. (2007). Explaining the brain: Mechanisms and 
the mosaic unity of neuroscience. Clarendon Press.

Craver, C. F., & Tabery, J. (2015). Mechanisms in science. In  
E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclope-
dia of philosophy (Fall 2023). Metaphysics Research Lab, 
Stanford University. https://plato.stanford.edu/archives/
fall2023/entries/science-mechanisms/

Cummins, R. (1995). Connectionism and the rationale 
constraint on cognitive explanation. Philosophical 
Perspectives, 9, 105–125. https://doi.org/10.2307/2214214

Cummins, R. (2000). “How does it work?” versus “What are 
the laws?”: Two conceptions of psychological explana-
tion. In F. C. Keil & R. A. Wilson (Eds.), Explanation and 
cognition (pp. 117–144). The MIT Press.

https://doi.org/10.1126/science.1199305
https://doi.org/10.1126/science.1199305
https://doi.org/10.1038/s41583-021-00448-6
https://doi.org/10.1016/j.neuropsychologia.2017.04.011
https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/nn.4502
https://doi.org/10.1111/tops.12141
https://doi.org/10.1162/jocn_a_01591
https://doi.org/10.1007/978-1-4613-9688-8_28
https://doi.org/10.1007/978-1-4613-9688-8_28
https://doi.org/10.1093/oso/9780190905385.001.0001
https://doi.org/10.1093/oso/9780190905385.001.0001
https://doi.org/10.1086/587820
https://doi.org/10.1017/CBO9780511816789.027
https://doi.org/10.1017/CBO9780511816789.027
https://doi.org/10.1177/1745691620906415
https://doi.org/10.1086/392866
https://doi.org/10.1086/392866
https://doi.org/10.1007/s11229-006-9097-x
https://doi.org/10.1007/s11229-006-9097-x
https://doi.org/10.2307/2214214


16 van Bree

Danek, A. H., & Wiley, J. (2017). What about false insights? 
Deconstructing the aha! Experience along its multiple 
dimensions for correct and incorrect solutions separately. 
Frontiers in Psychology, 7, Article 2077. https://www.fron 
tiersin.org/articles/10.3389/fpsyg.2016.02077

Danks, D. (2013). Moving from levels & reduction to dimen-
sions & constraints. Proceedings of the Annual Meeting 
of the Cognitive Science Society, 35. https://escholarship 
.org/uc/item/8qn6z6sv

Deco, G., Rolls, E. T., & Romo, R. (2009). Stochastic 
dynamics as a principle of brain function. Progress in 
Neurobiology, 88(1), 1–16. https://doi.org/10.1016/j.pneu 
robio.2009.01.006

Dijkstra, N., & de Bruin, L. (2016). Cognitive neuroscience and 
causal inference: Implications for psychiatry. Frontiers 
in Psychiatry, 7, Article 129. https://doi.org/10.3389/
fpsyt.2016.00129

Doerig, A., Sommers, R. P., Seeliger, K., Richards, B., Ismael, J.,  
Lindsay, G. W., Kording, K. P., Konkle, T., van Gerven, 
M. A. J., Kriegeskorte, N., & Kietzmann, T. C. (2023). The 
neuroconnectionist research programme. Nature Reviews 
Neuroscience, 24(7), Article 7. https://doi.org/10.1038/
s41583-023-00705-w

Dröge, A., Fleischer, J., Schlesewsky, M., & Bornkessel-
Schlesewsky, I. (2016). Neural mechanisms of sentence 
comprehension based on predictive processes and deci-
sion certainty: Electrophysiological evidence from non-
canonical linearizations in a flexible word order language. 
Brain Research, 1633, 149–166. https://doi.org/10.1016/j 
.brainres.2015.12.045

Friederici, A. D. (2011). The brain basis of language processing: 
From structure to function. Physiological Reviews, 91(4), 
1357–1392. https://doi.org/10.1152/physrev.00006.2011

Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in 
psychological research: Sense and nonsense. Advances 
in Methods and Practices in Psychological Science, 2(2), 
156–168. https://doi.org/10.1177/2515245919847202

Gallistel, C. R., & King, A. P. (2009). Memory and the computational 
brain: Why cognitive science will transform neuroscience. 
Wiley-Blackwell. https://doi.org/10.1002/9781444310498

Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A.,  
Dunn, B. A., Moser, M.-B., & Moser, E. I. (2022). Toroidal 
topology of population activity in grid cells. Nature, 
602(7895), 123–128. https://doi.org/10.1038/s41586-021-
04268-7

Glennan, S. S. (1996). Mechanisms and the nature of causa-
tion. Erkenntnis, 44(1), 49–71. https://doi.org/10.1007/
BF00172853

Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, 
E. M., Sipos, B., & Birney, E. (2013). Towards practical, 
high-capacity, low-maintenance information storage in 
synthesized DNA. Nature, 494(7435), 77–80. https://doi 
.org/10.1038/nature11875

Guest, O., & Martin, A. E. (2021). How computational model-
ing can force theory building in psychological science. 
Perspectives on Psychological Science, 16(4), 789–802. 
https://doi.org/10.1177/1745691620970585

Guest, O., & Martin, A. E. (2023). On logical inference 
over brains, behaviour, and artificial neural networks. 

Computational Brain & Behavior, 6(2), 213–227. https://
doi.org/10.1007/s42113-022-00166-x

Hardcastle, V. G., & Hardcastle, K. (2015). Marr’s levels 
revisited: Understanding how brains break. Topics in 
Cognitive Science, 7(2), 259–273. https://doi.org/10.1111/
tops.12130

Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent 
noise determines motor planning. Nature, 394(6695), 
780–784. https://doi.org/10.1038/29528

Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A pro-
posed function for hippocampal theta rhythm: Separate 
phases of encoding and retrieval enhance reversal of prior 
learning. Neural Computation, 14(4), 793–817. https://
doi.org/10.1162/089976602317318965

Hommel, B. (2020). Pseudo-mechanistic explanations in psy-
chology and cognitive neuroscience. Topics in Cognitive 
Science, 12(4), 1294–1305. https://doi.org/10.1111/
tops.12448

Kandel, E. R., Markram, H., Matthews, P. M., Yuste, R., & 
Koch, C. (2013). Neuroscience thinks big (and collab-
oratively). Nature Reviews Neuroscience, 14(9), Article 9. 
https://doi.org/10.1038/nrn3578

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). 
The fusiform face area: A module in human extrastri-
ate cortex specialized for face perception. Journal of 
Neuroscience, 17(11), 4302–4311. https://doi.org/10.1523/
JNEUROSCI.17-11-04302.1997

Kaplan, D. M. (2011). Explanation and description in compu-
tational neuroscience. Synthese, 183(3) 339–373.

Kaplan, D. M., & Craver, C. F. (2011). The explanatory force 
of dynamical and mathematical models in neuroscience: 
A mechanistic perspective. Philosophy of Science, 78(4), 
601–627. https://doi.org/10.1086/661755

Katz, Y. (2012). Noam Chomsky on where artificial intelli-
gence went wrong. The Atlantic. https://philarchive.org/
rec/KATNCO

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, 
M. A., & Poeppel, D. (2017). Neuroscience needs behav-
ior: Correcting a reductionist bias. Neuron, 93(3), 480–490.  
https://doi.org/10.1016/j.neuron.2016.12.041

Langdon, C., Genkin, M., & Engel, T. A. (2023). A unifying 
perspective on neural manifolds and circuits for cognition. 
Nature Reviews Neuroscience, 24(6), Article 6. https:// 
doi.org/10.1038/s41583-023-00693-x

Levenstein, D., Alvarez, V. A., Amarasingham, A., Azab, H., Chen, 
Z. S., Gerkin, R. C., Hasenstaub, A., Iyer, R., Jolivet, R. B.,  
Marzen, S., Monaco, J. D., Prinz, A. A., Quraishi, S., 
Santamaria, F., Shivkumar, S., Singh, M. F., Traub, R., 
Nadim, F., Rotstein, H. G., & Redish, A. D. (2023). On the 
role of theory and modeling in neuroscience. Journal of 
Neuroscience, 43(7), 1074–1088. https://doi.org/10.1523/
JNEUROSCI.1179-22.2022

Levy, A., & Bechtel, W. (2013). Abstraction and the orga-
nization of mechanisms. Philosophy of Science, 80(2), 
241–261. https://doi.org/10.1086/670300

Lindsay, G. W. (2021). Convolutional neural networks as a 
model of the visual system: Past, present, and future. 
Journal of Cognitive Neuroscience, 33(10), 2017–2031. 
https://doi.org/10.1162/jocn_a_01544

https://www.frontiersin.org/articles/10.3389/fpsyg.2016.02077
https://www.frontiersin.org/articles/10.3389/fpsyg.2016.02077
https://escholarship.org/uc/item/8qn6z6sv
https://escholarship.org/uc/item/8qn6z6sv
https://doi.org/10.1016/j.pneurobio.2009.01.006
https://doi.org/10.1016/j.pneurobio.2009.01.006
https://doi.org/10.3389/fpsyt.2016.00129
https://doi.org/10.3389/fpsyt.2016.00129
https://doi.org/10.1038/s41583-023-00705-w
https://doi.org/10.1038/s41583-023-00705-w
https://doi.org/10.1016/j.brainres.2015.12.045
https://doi.org/10.1016/j.brainres.2015.12.045
https://doi.org/10.1152/physrev.00006.2011
https://doi.org/10.1177/2515245919847202
https://doi.org/10.1002/9781444310498
https://doi.org/10.1038/s41586-021-04268-7
https://doi.org/10.1038/s41586-021-04268-7
https://doi.org/10.1007/BF00172853
https://doi.org/10.1007/BF00172853
https://doi.org/10.1038/nature11875
https://doi.org/10.1038/nature11875
https://doi.org/10.1177/1745691620970585
https://doi.org/10.1007/s42113-022-00166-x
https://doi.org/10.1007/s42113-022-00166-x
https://doi.org/10.1111/tops.12130
https://doi.org/10.1111/tops.12130
https://doi.org/10.1038/29528
https://doi.org/10.1162/089976602317318965
https://doi.org/10.1162/089976602317318965
https://doi.org/10.1111/tops.12448
https://doi.org/10.1111/tops.12448
https://doi.org/10.1038/nrn3578
https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
https://doi.org/10.1086/661755
https://philarchive.org/rec/KATNCO
https://philarchive.org/rec/KATNCO
https://doi.org/10.1016/j.neuron.2016.12.041
https://doi.org/10.1038/s41583-023-00693-x
https://doi.org/10.1038/s41583-023-00693-x
https://doi.org/10.1523/JNEUROSCI.1179-22.2022
https://doi.org/10.1523/JNEUROSCI.1179-22.2022
https://doi.org/10.1086/670300
https://doi.org/10.1162/jocn_a_01544


Perspectives on Psychological Science XX(X) 17

Love, B. C. (2015). The algorithmic level is the bridge between 
computation and brain. Topics in Cognitive Science, 7(2), 
230–242. https://doi.org/10.1111/tops.12131

Love, B. C. (2021). Levels of biological plausibility. 
Philosophical Transactions of the Royal Society B: 
Biological Sciences, 376(1815), Article 20190632. https://
doi.org/10.1098/rstb.2019.0632

Machamer, P., Darden, L., & Craver, C. (2000). Thinking about 
mechanisms. Philosophy of Science, 67(1), 1–25. https://
doi.org/10.1086/392759

Marder, E. (2011). Variability, compensation, and modula-
tion in neurons and circuits. Proceedings of the National 
Academy of Sciences, USA, 108(Supplement_3), 15542–
15548. https://doi.org/10.1073/pnas.1010674108

Markiewicz, C. J., Gorgolewski, K. J., Feingold, F., Blair, R., 
Halchenko, Y. O., Miller, E., Hardcastle, N., Wexler, J., 
Esteban, O., Goncavles, M., Jwa, A., & Poldrack, R. (2021). 
The OpenNeuro resource for sharing of neuroscience data. 
eLife, 10, Article e71774. https://doi.org/10.7554/eLife.71774

Marr, D. (1982). Vision: A computational investigation into the 
human representation and processing of visual informa-
tion. W. H. Freeman.

Mazurek, M. E., Roitman, J. D., Ditterich, J., & Shadlen, M. N. 
(2003). A role for neural integrators in perceptual decision 
making. Cerebral Cortex, 13(11), 1257–1269. https://doi 
.org/10.1093/cercor/bhg097

McNealy, K., Mazziotta, J. C., & Dapretto, M. (2006). Cracking 
the language code: Neural mechanisms underlying speech 
parsing. Journal of Neuroscience, 26(29), 7629–7639. 
https://doi.org/10.1523/JNEUROSCI.5501-05.2006

Mehler, D. M. A., & Kording, K. P. (2020). The lure of mis-
leading causal statements in functional connectivity  
research. arXiv:1812.03363. http://arxiv.org/abs/1812 
.03363

Melloni, L., Mudrik, L., Pitts, M., & Koch, C. (2021). Making the 
hard problem of consciousness easier. Science, 372(6545), 
911–912. https://doi.org/10.1126/science.abj3259

Parvizi, J., Jacques, C., Foster, B. L., Withoft, N., Rangarajan, V., 
Weiner, K. S., & Grill-Spector, K. (2012). Electrical stimula-
tion of human fusiform face-selective regions distorts face 
perception. The Journal of Neuroscience, 32(43), 14915–
14920. https://doi.org/10.1523/JNEUROSCI.2609-12.2012

Peebles, D., & Cooper, R. P. (2015). Thirty years after Marr’s 
vision: Levels of analysis in cognitive science. Topics in 
Cognitive Science, 7(2), 187–190. https://doi.org/10.1111/
tops.12137

Pessoa, L. (2023). The entangled brain. Journal of Cognitive 
Neuroscience, 35(3), 349–360. https://doi.org/10.1162/
jocn_a_01908

Piccinini, G., & Craver, C. (2011). Integrating psychol-
ogy and neuroscience: Functional analyses as mecha-
nism sketches. Synthese, 183(3), 283–311. https://doi 
.org/10.1007/s11229-011-9898-4

Poeppel, D. (2012). The maps problem and the mapping 
problem: Two challenges for a cognitive neuroscience of 
speech and language. Cognitive Neuropsychology, 29(1–
2), 34–55. https://doi.org/10.1080/02643294.2012.710600

Poeppel, D., & Adolfi, F. (2020). Against the epistemological 
primacy of the hardware: The brain from inside out, turned 

upside down. eNeuro, 7(4), Article ENEURO.0215-20.2020. 
https://doi.org/10.1523/ENEURO.0215-20.2020

Poggio, T. (2012). The levels of understanding framework, 
revised. Perception, 41(9), 1017–1023. https://doi.org/10 
.1068/p7299

Rescorla, M. (2020). The computational theory of mind. In 
E. N. Zalta (Ed.), The Stanford encyclopedia of philoso-
phy (Fall 2020). Metaphysics Research Lab, Stanford 
University. https://plato.stanford.edu/archives/fall2020/
entries/computational-mind/

Rodd, J. M., Davis, M. H., & Johnsrude, I. S. (2005). The neural 
mechanisms of speech comprehension: fMRI studies of 
semantic ambiguity. Cerebral Cortex, 15(8), 1261–1269. 
https://doi.org/10.1093/cercor/bhi009

Rolls, E. T., & Deco, G. (2010). The noisy brain: Stochastic 
dynamics as a principle of brain function. Oxford 
University Press. https://doi.org/10.1093/acprof:oso/9780 
199587865.001.0001

Ross, L. N. (2021). Causal concepts in biology: How pathways 
differ from mechanisms and why it matters. The British 
Journal for the Philosophy of Science, 72(1), 131–158. 
https://doi.org/10.1093/bjps/axy078

Schutter, D. J. L. G., & Hortensius, R. (2010). Retinal origin 
of phosphenes to transcranial alternating current stim-
ulation. Clinical Neurophysiology, 121(7), 1080–1084. 
https://doi.org/10.1016/j.clinph.2009.10.038

Shagrir, O., & Bechtel, W. (2017). Marr’s computational level 
and delineating phenomena. In D. M. Kaplan (Ed.), 
Explanation and integration in mind and brain science 
(pp. 190–214). Oxford University Press.

Sullivan, G. M., & Feinn, R. (2012). Using effect size—Or why 
the P value is not enough. Journal of Graduate Medical 
Education, 4(3), 279–282. https://doi.org/10.4300/
JGME-D-12-00156.1

Tosh, C., Greengard, P., Goodrich, B., Gelman, A., Vehtari, A.,  
& Hsu, D. (2022). The piranha problem: Large effects swim-
ming in a small pond (arXiv:2105.13445). arXiv. https:// 
doi.org/10.48550/arXiv.2105.13445

Vaidya, A. R., Pujara, M. S., Petrides, M., Murray, E. A., & 
Fellows, L. K. (2019). Lesion studies in contemporary neu-
roscience. Trends in Cognitive Sciences, 23(8), 653–671. 
https://doi.org/10.1016/j.tics.2019.05.009

Valente, A., Pillow, J. W., & Ostojic, S. (2022, October 31). 
Extracting computational mechanisms from neural data 
using low-rank RNNs. Advances in Neural Infor mation 
Processing Systems. https://openreview.net/forum? 
id=M12autRxeeS

van Bree, S., Formisano, E., van Barneveld, D., George, E., 
& Riecke, L. (2019). No evidence for modulation of outer 
hair-cell function by 4-Hz transcranial alternating current 
stimulation. Brain Stimulation: Basic, Translational, and 
Clinical Research in Neuromodulation, 12(3), 806–808. 
https://doi.org/10.1016/j.brs.2019.01.022

Vandekerckhove, J., Matzke, D., & Wagenmakers, E.-J. (2015). 
Model comparison and the principle of parsimony. In 
J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels 
(Eds.), The Oxford handbook of computational and math-
ematical psychology. Oxford University Press. https://doi 
.org/10.1093/oxfordhb/9780199957996.013.14

https://doi.org/10.1111/tops.12131
https://doi.org/10.1098/rstb.2019.0632
https://doi.org/10.1098/rstb.2019.0632
https://doi.org/10.1086/392759
https://doi.org/10.1086/392759
https://doi.org/10.1073/pnas.1010674108
https://doi.org/10.7554/eLife.71774
https://doi.org/10.1093/cercor/bhg097
https://doi.org/10.1093/cercor/bhg097
https://doi.org/10.1523/JNEUROSCI.5501-05.2006
http://arxiv.org/abs/1812.03363
http://arxiv.org/abs/1812.03363
https://doi.org/10.1126/science.abj3259
https://doi.org/10.1523/JNEUROSCI.2609-12.2012
https://doi.org/10.1111/tops.12137
https://doi.org/10.1111/tops.12137
https://doi.org/10.1162/jocn_a_01908
https://doi.org/10.1162/jocn_a_01908
https://doi.org/10.1007/s11229-011-9898-4
https://doi.org/10.1007/s11229-011-9898-4
https://doi.org/10.1080/02643294.2012.710600
https://doi.org/10.1523/ENEURO.0215-20.2020
https://doi.org/10.1068/p7299
https://doi.org/10.1068/p7299
https://plato.stanford.edu/archives/fall2020/entries/computational-mind/
https://plato.stanford.edu/archives/fall2020/entries/computational-mind/
https://doi.org/10.1093/cercor/bhi009
https://doi.org/10.1093/acprof:oso/9780199587865.001.0001
https://doi.org/10.1093/acprof:oso/9780199587865.001.0001
https://doi.org/10.1093/bjps/axy078
https://doi.org/10.1016/j.clinph.2009.10.038
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.48550/arXiv.2105.13445
https://doi.org/10.48550/arXiv.2105.13445
https://doi.org/10.1016/j.tics.2019.05.009
https://openreview.net/forum?id=M12autRxeeS
https://openreview.net/forum?id=M12autRxeeS
https://doi.org/10.1016/j.brs.2019.01.022
https://doi.org/10.1093/oxfordhb/9780199957996.013.14
https://doi.org/10.1093/oxfordhb/9780199957996.013.14


18 van Bree

van Gelder, T. (1995). What might cognition be, if not com-
putation? Journal of Philosophy, 92(7), 345–381. https://
doi.org/jphil199592719

van Rooij, I. (2022). Psychological models and their distrac-
tors. Nature Reviews Psychology, 1(3), Article 3. https://
doi.org/10.1038/s44159-022-00031-5

van Rooij, I., & Baggio, G. (2021). Theory before the test: How 
to build high-verisimilitude explanatory theories in psy-
chological science. Perspectives on Psychological Science, 
16(4), 682–697. https://doi.org/10.1177/1745691620 
970604

Wimsatt, W. C. (1997). Aggregativity: Reductive heuristics for 
finding emergence. Philosophy of Science, 64, S372–S384.

Woodward, J. (2003). Making things happen: A theory of 
causal explanation. Oxford University Press.

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over 
explanation in psychology: Lessons from machine learn-
ing. Perspectives on Psychological Science, 12(6), 1100–
1122. https://doi.org/10.1177/1745691617693393

Yong, E. (2013). Synthetic double-helix faithfully stores 
Shakespeare’s sonnets. Nature. https://doi.org/10.1038/
nature.2013.12279

Zimmerer, F., Scharinger, M., Cornell, S., Reetz, H., & Eulitz, C.  
(2019). Neural mechanisms for coping with acousti-
cally reduced speech. Brain and Language, 191, 46–57. 
https://doi.org/10.1016/j.bandl.2019.02.001

https://doi.org/jphil199592719
https://doi.org/jphil199592719
https://doi.org/10.1038/s44159-022-00031-5
https://doi.org/10.1038/s44159-022-00031-5
https://doi.org/10.1177/1745691620970604
https://doi.org/10.1177/1745691620970604
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1038/nature.2013.12279
https://doi.org/10.1038/nature.2013.12279
https://doi.org/10.1016/j.bandl.2019.02.001

