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Livestock movements contribute to the spread of several infectious diseases.

Data on livestock movements can therefore be harnessed to guide policy on

targeted interventions for controlling infectious livestock diseases, including

Rift Valley fever (RVF)—a vaccine-preventable arboviral fever. Detailed livestock

movement data are known to be useful for targeting control e�orts including

vaccination. These data are available in many countries, however, such data are

generally lacking in others, including many in East Africa, where multiple RVF

outbreaks have been reported in recent years. Available movement data are

imperfect, and the impact of this uncertainty in the utility of movement data on

informing targeting of vaccination is not fully understood. Here, we used a network

simulation model to describe the spread of RVF within and between 398 wards

in northern Tanzania connected by cattle movements, on which we evaluated

the impact of targeting vaccination using imperfect movement data. We show

that pre-emptive vaccination guided by only market movement permit data could

prevent large outbreaks. Targeted control (either by the risk of RVF introduction

or onward transmission) at any level of imperfect movement information is

preferred over random vaccination, and any improvement in information reliability

is advantageous to their e�ectiveness. Our modeling approach demonstrates how

targeted interventions can be e�ectively used to inform animal and public health

policies for disease control planning. This is particularly valuable in settings where

detailed data on livestock movements are either unavailable or imperfect due to

resource limitations in data collection, as well as challenges associated with poor

compliance.
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1. Introduction

Infectious diseases are an important challenge facing livestock

production systems (1) particularly in developing countries, due

to their substantial impact on livestock health and welfare, and in

terms of economic losses (2, 3). Worldwide, infectious diseases of

animals that affect humans (zoonoses) are responsible for over 2.5

billion cases of illnesses in humans, with an estimated 2.7 million

deaths every year (4, 5). Due to the impacts of many factors—

including climate change, urbanization, globalization, changing

eating habits, deforestation, and human-wildlife interaction—

human and animal populations are at high and increasing risk of

zoonotic disease transmission, emergence, and re-emergence (6–8).

Infectious diseases, including zoonoses, can spread within

and between livestock populations by various routes, including

direct contact, via vectors such as mosquitoes, consumption of

contaminated animal products, and livestock movements (9).

Livestock movements, for trading and grazing, play a significant

role in disease spread between populations (10). For instance, the

2001 foot-and-mouth disease (FMD) epidemic in the UK was

primarily driven by long-distance movements of livestock between

holdings and local transmission within holdings at the early stage

of the epidemic before a movement ban was implemented (11, 12).

Vaccination is an effective measure for controlling infectious

disease outbreaks (4). However, to design an efficient vaccination

strategy for infectious disease control, it is crucial to understand the

behavior of disease transmission within and between populations.

Decisions about where to impose a disease control strategy rely on

a range of factors, including the specific pathogen, the outbreak

type (whether it is a common source or propagated outbreak),

the size of the target population, the contact network connecting

the population, the resources available, and the effectiveness of the

control strategy. While many researchers have used compartmental

models that assume a well-mixed homogeneous population to

explore the impact of interventions (13, 14), these models overlook

contact pattern heterogeneity, which is known to significantly

impact disease dynamics (13, 15–17). Network-based approach

represents an intuitive way of explicitly capturing contact pattern

heterogeneity (18). It is a way of describing the interplay between

infectious disease transmission and the contact network pattern, as

well as providing a means of testing the impact of interventions in

silico (14, 19).

Tanzania is one of the countries in East Africa where infectious

diseases, including zoonoses, pose a challenge to livestock and

human health and welfare. Several efforts have been made to

reduce the burden of dangerous zoonotic diseases, including

rabies, Rift Valley fever (RVF), and brucellosis in Tanzania (20).

For example, in 2010, the Tanzanian government launched a

nationwide vaccination campaign against rabies, following many

other countries aiming to meet the global target for eliminating

human deaths caused by rabies by 2030 (21). As resources are

often limited in low-income countries such as Tanzania, insights

frommodeling analyses can help guide such vaccination campaigns

to yield the greatest impact on disease outbreaks. During the

last officially reported RVF outbreak in Tanzania (2007–2008),

extensive control measures were implemented by the government,

including RVF surveillance, animal movement restrictions, ban on

cattle slaughter, and vaccination of livestock (22). These measures

incurred a cost of approximately US$3.84 million, with a significant

portion allocated to livestock vaccination. Over 4 million livestock

were vaccinated, primarily in areas without the disease, to prevent

its further spread (23). The commercial vaccine used against RVF in

domestic ruminants in Tanzania and other African countries is the

live Smithburn vaccine (24), developed by Smithburn (25). While

it provides long-lasting immunity with a single dose Sindato et al.

(24), it can cause problems like abortions in pregnant animals and

fetal malformation (26). To overcome these challenges, scientists

have been developing new RVF virus vaccines (27, 28). A promising

candidate is the RVF virus Clone 13 vaccine, which has undergone

trials and is now approved for use in cattle and small ruminants in

South Africa, Botswana, and Namibia (29).

Livestock are typically managed in distinct units, which in

Tanzania comprise herds and flocks that are kept in households or

multi-family compounds within villages. These livestock units are

linked by movements, many of which go through markets (30, 31),

forming a complex network of nodes (representing populations

of livestock) and links (representing livestock movements between

populations). Such networks can be modeled using a meta-

population framework (32, 33), which allows us to test the impact

of targeted vaccination strategies (14).

Targeted vaccination strategies that exploit the hierarchy of

nodes’ connectivity in a network are highly effective when the

complete structure of the network is known (19, 34–36). Previous

research has extensively investigated the impact of network-based

vaccination strategies on an epidemic spread, primarily focusing on

either theoretical (model) networks (34–40) or real-world networks

from developed countries with rich livestock movement data (10,

41–44). However, the application of network structures to study

vaccination strategies in African livestock settings has been limited

(31, 45–48). For example, Hébert-Dufresne et al. (40) compared

the effectiveness of targeted immunization strategies on various

networks, including the World Wide Web, US power Grids and

Co-authorship networks using SIR and SIS models. Similarly,

Eames et al. (49) studied preventive vaccination on a weighted

contact network using a SIR model, while Keeling et al. (42)

compared pre-emptive vaccination with a combination of reactive

vaccination and culling strategies for foot-and-mouth disease in

the UK using a farm-based simulation model. Chaters et al. (31)

analyzed livestock trade movement networks in northern Tanzania

and evaluated the effectiveness of network-derived interventions,

including vaccination and movement bans.

In most real-world scenarios, it is often not possible to

obtain complete network data. Our knowledge of the network

structure of populations is usually imperfect due to incomplete

or unreliable data (50, 51). Network studies rely on data that

differ from the true network connecting the population under

investigation (51). Such error can substantially impact network

measures, which might considerably affect their performance in

epidemic control on the true network (51, 52), therefore motivating

analyses to understand how different network measures are

impacted by imperfect information. While studies have explored

the robustness of centrality measures to missing or sampled data,

and measurement errors (51–55), only a few have examined the

impact of incomplete network information on the effectiveness
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of intervention strategies (56, 57), with limited or no research

conducted using data from Africa where resource limitations and

poor compliance often result in imperfect data.

In this study, we investigate the effectiveness and robustness

of various vaccination strategies under imperfect knowledge of

network structure. To do this, we simulated the spread of an

infectious disease with properties informed by the characteristics

of RVF virus spread. We use a stochastic Susceptible-Exposed-

Infected-Recovered (SEIR) model on both theoretical networks

(generated by simple network models, including random, scale-

free and small-world) as well as a network of livestock movements

across three regions in northern Tanzania (31), upon which we

tested the impact of simulated targeted vaccination. Theoretical

networks were included to test the robustness of our conclusions to

network structure. We focused on RVF as an exemplar because it is

an important vaccine-preventable livestock infection where we can

build on previous studies of the role of livestock movements in the

spread of infection (31). The primary goals of this study are twofold:

first, to model the effectiveness of epidemic control using network-

informed vaccination strategies, and second, to investigate how the

performance of these strategies varies under imperfect knowledge

of the network.

2. Methods and materials

2.1. Overview

This in silico study followed five basic steps: (1) generate a

cattle movement network; (2) simulate the condition of imperfect

information about the network; (3) use different network-targeted

strategies to select nodes for vaccination under imperfect network

information; (4) simulate multiple scenarios of Rift Valley fever

(RVF) virus transmission over the network with selected vaccinated

nodes; and (5) compare mean outbreak size after one year under

various vaccination strategies and levels of imperfect network

information. We begin this section by describing the study area

and how cattle movement networks were generated, followed by

a description of the network-based vaccination targeting strategies

(using degree, betweenness, and PageRank centrality measures)

and risk-based strategies (the risk of RVF introduction into the

cattle population, derived from an index for indicating rainfall)

that were considered in this study. The last three subsections

focus on the RVF virus transmission model, how vaccination was

implemented, and how scenarios of imperfect network information

were modeled.

2.2. Study area

The study area comprises three regions—Arusha,Manyara, and

Kilimanjaro—located in the northern part of Tanzania (Figure 1),

containing ∼4.8 million inhabitants in a total area of 95,348

km2 (58). Livestock production in these regions is predominantly

carried out for food, income, and social status (30, 31). A detailed

description of the study area and its livestock practices is given

in de Glanville et al. (30). There are various complex socio-

economic reasons for livestock movement in northern Tanzania,

including access to natural resources such as grazing, water, and

salt (59), exchange of livestock as gifts and payments (60), and trade

movements through the market system (31, 61).

2.3. Network generation

This study exploits the multiplex network of cattle movements

in northern Tanzania generated by Chaters et al. (31). Themultiplex

(which we shall refer to here as the “data-driven" network, see

Figure 2) contains two layers: a movement network of cattle

through markets and a network connecting adjacent wards. In the

first layer, Chaters et al. (31) market movement permit data were

used to generate a static network of cattle movements between 398

wards within three regions (Arusha, Kilimanjaro, and Manyara)

in northern Tanzania, where the number of cattle moved is based

on the estimates of the number moved in a month. A ward is an

administrative unit of a mean area 243 km2 containing a mean

human population of 12,000 and a mean cattle population of 9,000

across all 398 wards (31). The market permit data were collected as

part of the SEEDZ (Social, Economic and Environmental Drivers

of Zoonoses in Tanzania) project, the protocols and procedures

of which were approved by the ethics review committees of the

Kilimanjaro Christian Medical Center (KCMC/832) and National

Institute of Medical Research (NIMR/2028) in Tanzania, and

in the UK by the ethics review committee of the College of

Medical, Veterinary and Life Sciences at the University of Glasgow

(39a/15). Approval for study activities was also provided by the

Tanzanian Commission for Science and Technology (COSTECH)

and by the Tanzanian Ministry of Livestock and Fisheries, as well

as by regional, district, ward and village-level authorities in the

study area.

The cattle movement network data were aggregated spatially at

the ward level and temporally by month because the destinations

recorded on the movement permits could not typically be located

at a finer scale (31). A spatial network, created by connecting each

ward to all its spatially adjacent wards, was added to the market

movement network, as a means of accounting for contacts that

occur between wards through sharing of grazing and water sources,

and movements of animals through gifting and private sales (31).

We used the combined monthly market movement networks to

generate a static directed weighted network over a year, which was

then used to calculate network measures. The spatial network was

excluded from the calculation of network measures because we

expect targeting strategies would be guided by market network data

in real policy situations.

We generated unweighted theoretical networks with an equal

number of nodes (398) and mean degree (4) as the monthly

“unweighted mean market movement" network to explore the

effect of varying network structures on results. These included

Erdős-Rényi (ER) random networks, scale-free networks, and

small-world networks. ER random networks are characterized by

randomly connecting nodes with a given probability, representing

a baseline structure where connections are distributed with equal

probability across the network (63). Scale-free networks, on the

other hand, follow a power-law distribution of node degrees,

meaning that a few nodes (called hubs) have many connections,
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FIGURE 1

Map of the study area in northern Tanzania. Arusha, Manyara, and Kilimanjaro regions are highlighted in purple. Map created using Google map data

available through ggmap package (62) in R. Shape files obtained from NBS, United Republic of Tanzania https://www.nbs.go.tz/index.php/en/

census-surveys/gis.

while most nodes have relatively fewer connections (38). Small-

world networks exhibit both local clustering and short average

path lengths (64). This means that while nodes tend to be

connected to their immediate neighbors due to local clustering,

there are also shortcuts that connect distant nodes, allowing

for a relatively rapid spread of diseases across the network

(65).

Only the information onwhether there was amarketmovement

of cattle between wards in the data-driven network was used

to generate the unweighted mean market network. For random

networks, we use the 66. Erdős and Rényi (66) G(N,M) model with

N = 398 nodes and M = 2 × 398 links, resulting in random

networks with mean degree 4.

To generate small-world networks, we followed the model

proposed by Watts and Strogatz (64). First, arrange nodes (wards)

in a 1-dimensional circular lattice (a ring) such that each node is

connected to two nearest neighbors on either side. With probability

p = 0.1 (which is above the percolation threshold), each link is

rewired, resulting in long-distance links (shortcuts) (64).

For scale-free networks, we adapted the algorithm described

by Albert and Barabási (38). We begin with a fully-connected

network generated using the preferential attachment model, with

N = 398 nodes, m = 2 (the number of links added at each time

step), and power = 1. The giant strongly connected component

(GSCC) size of networks created by this algorithm is generally

1. To obtain networks with a larger GSCC size, we reshuffled

the network’s links while preserving the degree distribution. The

summary statistics of networks generated are presented in Table 1.

All networks are directed and were generated using the “igraph”

package (67), available within R version 4.1.1 (68).
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FIGURE 2

Weighted multiplex network of livestock movements between 398 wards (nodes) in northern Tanzania. Node area is proportional to node degree.

Generally, cattle purchased in primary markets are batched into larger groups by traders and transported to secondary markets, where prices are

higher. A node is either an origin, a destination, or both. An origin is a node with at least one outward movement of cattle via market. Movements of

cattle are predominantly through primary or secondary markets, with secondary markets having the largest volume of trade (weighted degree of

nodes). In addition, each ward is connected to adjacent wards through local movements of cattle, representing non-market movements such as

private sales and gifting, which were not captured by the movement permit data.

2.4. Network measures

In a spreading process, the importance of a node in a network

is characterized by its structural position, and its contribution

to epidemic spread over the network (69). Highly central or

influential nodes are likely to infect or expose many other nodes

disproportionately, and potentially drive the speed and severity of

epidemic outbreaks (70, 71). Identifying the most central nodes is

essential for breaking the transmission chain and slowing down

the speed at which an epidemic is spreading (34–36). Here, we

study three standard centrality measures (degree, betweenness,

and PageRank) widely considered to be relevant to disease spread

(34, 35, 40, 72–74).

The degree centrality of a node in an undirected network is the

number of links connected to the node; for directed networks, this

may be out-degree or in-degree (75). The degree centrality is vital

in studying infectious disease transmission because it measures the

number of potentially infectious contacts (14, 36, 75). Betweenness

centrality measures the extent to which a node lies on the shortest

path connecting other nodes of the network (76). In the context

of disease spread, it describes the importance of a node to disease

propagation across the communities of the network (14). PageRank

is a metric used to rank web pages in the Google search engine

(77). It ranks web pages based on the number of backlinks (number

of links pointing to the page or in-degrees) or highly important

backlinks (77). It indicates the probability of visiting a node by a
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TABLE 1 Summary statistics of the networks generated.

Network N 〈k〉 Std (deg) CC GWCC GSCC

Erdős-Rényi 398 4 1.99 0.01 390 253

Scale-free 398 4 7.22 0.02 398 295

Small-world 398 4 0.87 0.25 398 389

Data-driven† 398 14.5 11 0.30 398 398

N, number of nodes; 〈k〉, mean degree; Std (deg), the standard deviation of network degree;

CC, mean clustering coefficient; GWCC and GSCC, giant weakly and strongly connected

components.
†The data-driven network is weighted. Its unweighted version has a mean degree of 4, like the

theoretical networks, which are unweighted.

random walker in a network (77). Each of these measures assigns

“importance" differently and has their strengths and shortcomings.

2.5. Risk of RVF introduction into cattle
population

Mosquitoes are both reservoirs and vectors for the RVF virus

and, therefore, capable of keeping the virus in the enzootic cycle

for a very long time—even in the absence of livestock—through

vertical transmission from infected adult female mosquitoes to

their offspring (78). Mosquito-borne diseases such as RVF are

susceptible to climate-mediated changes (22, 79). Abnormally high

rainfall can trigger the hatching and amplification of mosquito

vectors, hence provoking outbreaks (80). Several studies have

demonstrated that the remotely sensed Normalized Difference

Vegetation Index (NDVI), one of the most used indices for green

vegetation, is a good indicator of rainfall and conditions suitable

for the emergence of RVF (22, 81, 82). According to Linthicum

et al. (83), it is possible to anticipate RVF outbreaks in East Africa

up to 5 months before they occur using a range of climate indices,

including NDVI.

To calculate RVF introduction risk, the average monthly NDVI

raster for the study area between January 2000 and December 2017

was divided by wards into grid cells. The risk score of a ward in the

data-driven network is the proportion of cells of the ward that has

an NDVI value between 0.15 and 0.4 (an indicator of regions with

high rainfall, roughly equivalent to mean annual rainfall between

100 and 800 mm) (82). In theoretical networks, risk scores were

randomly distributed.

2.6. Disease simulation

An SEIRmodel was used to describe the transmission dynamics

of RVF virus within wards, based on Métras et al. (84). At any

time, each bovid belongs to one of the four states: susceptible (S),

exposed (E), infectious (I), or recovered (R). Susceptible individuals

get infected and moved to the exposed class at rate β . Exposed

individuals become infectious at a rate α and recover at a rate γ .

We modeled transmission via vectors as delay in infectiousness

onset through the state E as a large-spatial-scale approximation

for the vector incubation stage and the latent period in cattle (84).

TABLE 2 Model parameters used in the SEIR model.

Parameter Description Unit Value Range References

α Incubation

period

Day 7 (5, 14)† (84, 85)

γ Infectious period Day 7 (1, 5) (78, 85)

R0 Mean basic

reproduction

number

— 4 (1, 6.8) (84, 86, 87)

C Coupling

strength

— 0.02 — User defined

e Vaccine efficacy — 1 (0.7, 1) (29, 88, 89)

†The range of values for the incubation period accounts for (4, 8) days extrinsic incubation

period in vectors and (1, 6) days latent stage in livestock (84).

FIGURE 3

The distribution of RVF emergence risk was simulated by linking

disease emergence to climate suitability for RVF vectors. RVF risk

score ranges between 0 and 1 (right); a high-risk score represents

high RVF risk.

To account for heterogeneity in transmission rates between wards,

the average observed NDVI was incorporated into the transmission

parameter, represented by the equation:

R
(i)
0 =

β

γ
×

(1−NDVIi)

mean(1−NDVIi)
,

where R
(i)
0 is the ward-specific basic reproduction number defined

as the expected number of secondary infections produced by an

infected individual in a wholly susceptible population (13). At the

mean value of NDVI, the average R0 value corresponds to
β
γ

= 4.

The distribution of R0 values across all 398 wards can be found in

the Supplementary Figure 6.

Because it would be unrealistic to assume homogeneous mixing

of cattle within a ward, each ward was divided into 64 grid cells in
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an 8×8matrix of sub-nodes, with each cell representing a sub-node,

i.e. a sub-village within each ward (see Supplementary Figure 1

for a pictorial description of the model). Within each cell,

transmission is driven by a homogeneous mixing SEIR model.

Transmission between proximal sub-nodes within each ward was

allowed through a spatial coupling process to account for the risk

of infection transmission between sub-nodes through interactions

such as the use of shared resources. The proportion of infections

produced in a sub-node i of a ward k through the coupling process

at any time t is defined by

∑

j∈N (i)

βkSiIj

Nj
C,

where N (i) is the set of the first neighbors of the sub-node i, Nj is

the total number of cattle in a neighboring sub-node j of sub-node

i, and C is the coupling strength. Parameter values are presented in

Table 2.

Cattle were moved between network wards through network

links every month (30 days) to allow RVF virus to spread between

wards. These monthly movements of cattle are processed within

the first four days of each month. The network link weights

determined the number of cattle moved in the data-driven network.

In contrast, cattle movements in the theoretical networks were

based on the mean number of animals moved through markets.

In each simulation scenario, we select a proportion of nodes for

vaccination based on the strategy of interest. Since we are only

interested in successful epidemics, we seeded infection in five wards

based on disease introduction risk (see Figure 3) and with 10

infected cattle in each of those wards, to reduce the probability

of stochastic extinction, as less intensive seeding resulted in many

failed simulations. For each ward selected for disease introduction,

seeded cases were uniformly distributed between grids of the

ward, and the epidemic was allowed to spread locally and through

cattle movements within and between wards, respectively. The

numbers of animals in each state were updated at daily time

steps. All simulations were implemented using the SimInf package

(90) within the R statistical software environment (68). SimInf

is a flexible framework for data-driven spatiotemporal infectious

disease modeling that efficiently handles population demographics

and network data (90). It uses continuous-time Markov chains

and the Gillespie stochastic simulation algorithm (91), allowing

for stochastic transitions between compartments as a Poisson

process (90).

2.7. Vaccination strategies

To explore the impact of vaccination on RVF virus transmission

dynamics, a proportion of nodes (10%, 20%, 30%, 40%, and 50%)

were selected for pre-emptive vaccination (i.e. in anticipation of a

higher risk of disease outbreaks), at 75% within-node coverage (the

proportion of cattle to be vaccinated in each ward to achieve herd

immunity, 1 − 1
R0
). Once vaccinated, each bovid might become

immune to the infection with some probability, e, which represents

the vaccine efficacy. In this model, we assume e = 100% (that is,

the vaccine is 100% efficacious) and no waning immunity. Immune

cattle cannot become infected and do not contribute to disease

transmission. The assumption of 100% vaccine efficacy and 75%

within-ward coverage can be interpreted as equivalent to 100%

coverage with 75% vaccine efficacy.

Given limited resources, we wish to select a proportion

of nodes for vaccination to ensure the greatest reduction in

epidemic size. Here, we considered four vaccination strategies.

These included three network-based strategies, where nodes with

high degree, betweenness, or PageRank centrality rank are targeted

for vaccination, and a risk-based strategy motivated by habitat

suitability for disease occurrence (Figure 3). The aim of comparing

network-based against risk-based strategies was to understand

whether the risk of introduction of disease is a better determinant

of outbreak size than the risks associated with propagation across

the network. We also considered random vaccination and a

no-vaccination scenario to establish two baseline measures for

comparison to targeted vaccination scenarios.

The effectiveness of vaccination strategies under perfect

information was measured in terms of percentage reduction

in the mean number of wards with at least 0.5% bovid

infections (MNWI) under each vaccination scenario relative

to the MNWI under the no-vaccination scenario across all 400

simulations. Effectiveness was calculated as (no-vaccination

MNWI minus vaccination MNWI)/(no-vaccination MNWI).

The threshold of 0.5% bovid infections was chosen to

avoid classifying infected wards with very small and short-

lived outbreaks, which would be unlikely to be detected in

reality (72).

2.8. Simulating imperfect network
information

To examine the effectiveness of vaccination strategies under

conditions of imperfect but unbiased cattle movement network

data, we used the following process: (1) given a perfect network

G(N,M), where N and M are the nodes and link sets, calculate

the node-level measure of interest S; (2) derive the rank RS of

S, and break ties randomly; (3) add normally distributed noise

ǫ to the rank RS such that the actual rank and the noisy rank

Rn = rank(RS + ǫ) are correlated by ρ ∈ (0, 1], where ρ is the

Spearman rho rank correlation coefficient and ǫ ∼ N (0, σ 2);When

σ 2 = 0 and therefore ρ = 1, the actual rank and the noisy rank

are precisely the same (perfect information). As σ 2 −→ ∞ and

ρ −→ 0, the noisy rank approaches a random ranking, which does

not rely on network information. (4) Select the top-ranked nodes

for vaccination based on the noisy rank Rn.

We simulated the impact of increasing levels of network

data error on the efficacy of network-based targeting of

vaccination by investigating a range of ρ values from 1

(perfect network information) to 0 (no network information).

Effectiveness was measured in terms of the relative difference

in MNWI when 20% of wards are vaccinated, at 75% within

ward coverage, using the outcome of random vaccination

as a baseline. We also simulated and reported the results

for 10%, 30%, 40%, and 50% vaccinated wards in the

Supplementary material.
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3. Results

3.1. RVF virus transmission dynamics and
the impact of cattle movements

At the end of 365 days in the absence of vaccination, our

simulation model resulted in a mean cumulative incidence of

infected wards of 80% in ER random networks, 75% in scale-free

networks, 91% in small-world networks, and 74% in the data-

driven network (Figure 4).

A larger outbreak (proportion of infected wards) was observed

more often in small-world networks than in the other two

theoretical network types, which can be explained through the size

of the giant strongly connected components (GSCC) presented in

Table 1. We observed the role of livestock movements on disease

spread, occurring every month, through the sudden increase in

cumulative incidence following themonthlymovements (Figure 4).

3.2. Impact of intervention strategies

The effectiveness of targeted strategies varies with network

type (Figure 5). Targeting vaccination at 10% of wards that rank

highest on degree and betweenness reduced MNWI by about 11

and 20% in ER random networks, 4 and 11% in scale-free networks,

16 and 23% in small-world networks, and 33 and 29% in the

data-driven network. When 20% of wards are vaccinated, degree

and betweenness strategies reduced MNWI by over 50% in the

data-driven network. At 20% degree and betweenness reduced

cumulative incidence by about 36 and 47% in ER random networks,

12 and 25% in scale-free networks, 37 and 42% in small-world

networks, and 55 and 54% in the data-driven network. Using a

PageRank strategy, we need to vaccinate up to 40% of wards to

reduce cumulative incidence by 50% in ER random, small-world

networks, and scale-free networks; and just over 20% in the data-

driven network. When the proportion of vaccinated wards exceeds

20%, vaccination by PageRank shows better performance than

degree vaccination in scale-free networks.

In general, random vaccination offers the worst performance in

all networks. Risk-based vaccination showed similar effectiveness

to the PageRank strategy in all networks when the number of

vaccinated wards is not more than 10%, and outperformed the

strategy in certain scenarios and networks. Specifically, at 10% of

vaccination wards, PageRank and risk vaccination reduced MNWI

by only 6 and 4% in ER random networks, 4 and 2% in scale-free

networks, 14 and 13% in small-world networks, and 20 and 23% in

the data-driven network. In small-world networks, where 30% of

vaccination wards were targeted, the risk-based strategy achieved

a significant reduction of 53% in MNWI, while PageRank yielded

a reduction of 45%. Furthermore, in the data-driven network,

vaccination coverage of 20% using the risk-based strategy resulted

in an effectiveness of 52%, outperforming PageRank with an

effectiveness of 41%.

Our results reveal that vaccination based on the risk of

disease emergence is highly effective in the data-driven network.

Particularly noteworthy is the superiority of risk-based vaccination

over all network-based strategies when the proportion of vaccinated

wards exceeds 20%. Conversely, in scenarios where fewer than 20%

of wards are vaccinated, degree and betweenness strategies exhibit

greater effectiveness. In the data-driven network, all network-

based strategies achieve an effectiveness of over 80% when half

of the wards are vaccinated. Notably, risk vaccination stands out,

achieving an effectiveness of up to 94%.

3.3. E�ect of adding noise on e�ectiveness

We examined the impact of incomplete network information

on the effectiveness of vaccination strategies by introducing noise

to our assessment of risks. Figure 6 shows the relative difference

in cumulative incidence when 20% of wards are vaccinated using

random vaccination as the baseline. Across all networks and for

all values of ρ > 0, targeted strategies outperformed random

vaccination. Even at a very high noise level (low values of ρ),

targeted strategies consistently achieved greater reductions in

cumulative incidence compared to random vaccination in all

networks. One exception is the risk strategy in scale-free networks,

where effectiveness fell below that of random vaccination at high ρ

values (Figure 6). In general, the effectiveness of targeted strategies

decreases almost linearly with increasing noise and converges

to random vaccination as ρ approaches 0. Similar trends were

observed when 10%, 30%, 40%, and 50% of wards are vaccinated

(see Supplementary Figures 2–5).

In the case of perfect network information (ρ = 1), the

betweenness vaccination strategy outperformed random

vaccination by ∼40% in ER random networks, 19% in scale-

free networks, 27% in small-world networks, and 37% in the

data-driven network (see Figure 6). Both degree and PageRank

strategies showed improvements of about 27 and 8% in ER random

networks, 6% and 7% in scale-free networks, 19 and 11% in

small-world networks, and 39 and 21% in the data-driven network.

Similarly, risk vaccination demonstrated better performance than

random vaccination in ER random, small-world, and data-driven

networks, with improvements of 4%, 13%, and 35%, respectively.

However, in scale-free networks, risk vaccination showed a slight

decrease of 1% compared to random vaccination.

Both betweenness and degree strategies lost their effectiveness

by over 50% in all networks when our knowledge of network

information dropped by half (ρ = 0.5). A similar observation

was noted about risk strategy in the data-driven and small-world

networks, where effectiveness declined by over 50% when our

knowledge of disease emergence points is 50% correct. Although

the degree and betweenness vaccination strategies outperformed

other strategies in the data-driven network at ρ = 1, their

effectiveness became comparable to risk-based vaccination when ρ

dropped below 0.5.

4. Discussion

In this study, we used a meta-population model to simulate the

spread of RVF virus on livestock movement networks, examined

the impact of network-based and risk-based vaccination strategies,

and explored how imperfect information affects their effectiveness.

This research addressed a common real-life problem in veterinary
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FIGURE 4

Simulated mean cumulative incidence by network type. The RVF meta-population model was simulated for one year, at a daily time step, with

parameter values in Table 2, allowing disease spread within and between populations. Cattle movements between wards occur monthly, with rates

determined by the weights of the data-driven network. In theoretical networks, 100 animals were moved between wards every month. This choice

was based on the mean number of animals moved through the market network. The plots shown are the mean cumulative incidence of 400

simulations with a 95% confidence interval.

research—incomplete and patchy data about livestock movement

patterns—arising in Tanzania and many other countries.

The major finding of this investigation is that the loss of

effectiveness of targeted vaccination strategies with increasing

data imperfection is approximately linear regardless of network

structure. Essentially, any improvement in information reliability is

equivalently beneficial. These findings are consistent with a similar

study conducted by Rosenblatt et al. (56) on immunization

strategies in the presence of missing data. Their study

also demonstrated that targeted immunization consistently

outperforms random immunization, even when confronted with

high levels of data imperfection such as missing nodes. Therefore,

our results emphasize the robustness and practical significance of

targeted vaccination strategies, despite the considerable challenges

posed in this case by incomplete network information.

Additional results showed no universally optimal targeting

strategy across all network structures and proportions of vaccinated

nodes. Nevertheless, vaccination by betweenness and degree

strategies are generally the most effective network-based strategies.

This observation is robust to very different network structures

and corroborates the results of other research studies (31,

40–42, 49, 92). Betweenness-based vaccination emerges as the

most effective strategy across all theoretical networks, surpassing

other targeted vaccination approaches. Meanwhile, degree-based

vaccination demonstrates superior performance among network-

based strategies specifically in the data-driven network. Even
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FIGURE 5

Percentage reduction in node cumulative incidence relative to no vaccination by the proportion of vaccinated nodes, at 75% within-node coverage,

for di�erent vaccination strategies.

though the data-driven network is fully connected with a GSCC

of 398, the outbreak size was smaller than that of the small-world

with a GSCC of 388 network. A possible explanation for this

circumstance might be because up to 34% of the link weights in

the data-driven network are significantly less than 1, representing

lower onward transmission risk through those links.

Under perfect information, we noted a crossover point between

the effectiveness of network-based (degree and betweenness) and

geographical risk-based vaccination in the data-driven network.

For example, when a small proportion of wards are vaccinated

(<30%), both degree and betweenness vaccination work better

than geographical risk-based vaccination. However, when the

proportion of vaccinated wards is higher, risk vaccination

outperformed all network-based vaccination. This evidence

suggests that if our knowledge of network information were perfect,

there might be scenarios where vaccinating the points of RVF

virus introduction into the system is preferred over vaccinating the

points of onward transmission. In scenarios where we can only

cover 20% of wards, our findings show there is a noise level at

which the effectiveness of degree and betweenness are no different
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FIGURE 6

The e�ect of increasing noise on the e�ectiveness of vaccination strategies when 20% of nodes are vaccinated, at 75% within-node coverage. Noise

was added to simulate conditions of imperfect network information. Perfect and imperfect ranks were compared using Spearman’s ρ rank

correlation coe�cient, with a correlation coe�cient of 1 indicating perfect information.

from the effectiveness of risk vaccination. Again, this observation

suggests that if our knowledge of network information is imperfect,

depending on how well we know the highly central and high-

risk wards, we might choose one strategy over the other when

we can only vaccinate a few wards. Because this result is not

guaranteed to be robust to changing assumptions of the underlying

network structures, we are unable to extrapolate it to all networks.

For instance, in random and scale-free networks, all targeting

strategies are perfectly linear with increasing noise and there is

no crossover.

There are some potential limitations of this study. We have

shown that the strategy of targeting using network data is

effective and robust to data errors to some degree. However, the

incorporation of finer-scale data would be required to make the

model applicable to predicting the effectiveness of targeting specific

wards. The network used in this study is generated based on the

outcome of Chaters et al. (31), and it is not an exact representation

of the Tanzanian cattle movement system. The data used in the

study by Chaters et al. (31) relied on fragmented and patchy

paper-based market permit movement data, which may limit the
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accuracy of the inferred network. Additionally, the network does

not capture the complexities of non-market movements, such

as movements to resource locations and private sales. In our

model, we assumed that cattle movements between wards happen

monthly and are processed as scheduled events within the first

four days of every month. Subsequently, we assumed no further

movements between wards until the next month. This pattern of

movements, though motivated by the analysis of Chaters et al. (31),

may have important implications for the spread of RVF across

wards. However, the flexibility of our model framework allows

for the incorporation of regular movement patterns, say, weekly

and fortnightly markets. The number of nodes used to generate

theoretical networks was kept very small to mimic the data-driven

system, which might affect our ability to generalize results to larger

networks. The size of a network can influence its overall structure

and the interactions between its nodes. As the number of nodes in

a network increases, the number of possible connections between

nodes also increases, which can result in more intricate network

structures. This, in turn, can impact the dynamics of disease

transmission within the network. It is worth noting that although

this study investigates the impact of imperfect information, we did

not address the impact of information bias, which may present a

more challenging problem to overcome. In addition, we did not

evaluate the impact of the bias and error associated with noise

in the risk of RVF, as expressed through NDVI. Whilst NDVI

can be accurately measured, our strategy of targeting introduction

into the highest NDVI wards may have relevant inaccuracies

due to the complexity of the correlation between NDVI and the

emergence of RVF at the ward scale (82). Furthermore, we assumed

perfect vaccine efficacy and no loss of vaccine-induced immunity.

However, studies have shown that vaccine efficacy varies depending

on the type of vaccine and the livestock species (27, 28). For

instance, Njenga et al. (29) reported that the RVF virus Clone 13

vaccine showed greater effectiveness in small ruminants than in

cattle, and it elicited a long-lasting antibody response that lasted

up to 12 months (93). Considering the timing of preemptive

vaccination in cattle, there is a potential for immunity to wane

before the end of the simulation period. The combined effect of

imperfect vaccine protection and potential waning immunity could

impact the effectiveness of vaccination strategies. Several studies

have found that mixing livestock herds with wildlife increases RFV

virus seroprevalence (94–96). However, we did not investigate how

wildlife might impact intervention scenarios.

Lastly, our model did not consider mosquito-vector dynamics.

This decision was due to insufficient data about the abundance

and activities of specific mosquitoes (Aedes species) capable of

transmitting the RVF virus. It is evident that mosquitoes contribute

to keeping the RVF virus within the enzootic cycle by transmitting

the virus from host to host, leading to the persistence of RVF. To

provide a more comprehensive understanding of RVF dynamics,

future studies could extend our model to explicitly incorporate

mosquito population dynamics and consider multiple hosts where

relevant data is available.We recommend exploring the inclusion of

additional complexities, such as heterogeneity in host susceptibility

(e.g., age structure), finer-scale livestock movement systems (e.g.,

at the village level) and diverse intervention strategies (e.g.,

movement bans). We used NDVI as an example of how emergence

and transmission risk might vary over space, but a potential

improvement to the model would be to link RVF risk to a wider

range of dynamic habitat predictors. Additionally, investigating

the role of non-market movements on network structures would

provide valuable insights. By investigating these aspects, we can

enhance our understanding of the dynamics of RVF and other

similar zoonotic diseases. This knowledge will contribute to the

development of more effective strategies for the control and

prevention of these diseases.

Our study provides a framework to examine the hypothesis

that targeted strategies, which have been extensively studied and

proven highly effective under perfect information, can still be

beneficial even under imperfect information. Our results suggest

that targeting interventions, even with limited information, is likely

to reduce the spread of infectious livestock diseases. Furthermore,

our findings highlight the significant gains that can be achieved

by improving information and data availability for livestock

movement. In light of these findings, it is crucial to emphasize

the importance of striving for comprehensive and high-quality

data collection. Therefore, we strongly recommend prioritizing

robust data collection practices whenever feasible. By improving

data quality and carefully designing and planning network-driven

intervention strategies, particularly in regions like sub-Saharan

Africa where livestock movement data is often incomplete, we

can enhance disease control efforts and mitigate the impact of

infectious diseases on livestock populations.
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