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Beyond Supervised Learning
for Pervasive Healthcare
Xiao Gu, Fani Deligianni, Jinpei Han, Xiangyu Liu,
Wei Chen, Guang-Zhong Yang*, and Benny Lo*

Abstract—The integration of machine/deep learning and sens-
ing technologies is transforming healthcare and medical practice.
However, inherent limitations in healthcare data, namely scarcity,
quality, and heterogeneity, hinder the effectiveness of supervised
learning techniques which are mainly based on pure statistical
fitting between data and labels. In this paper, we first identify the
challenges present in machine learning for pervasive healthcare
and we then review the current trends beyond fully supervised
learning that are developed to address these three issues. Rooted
in the inherent drawbacks of empirical risk minimization that
underpins pure fully supervised learning, this survey summarizes
seven key lines of learning strategies, to promote the general-
ization performance for real-world deployment. In addition, we
point out several directions that are emerging and promising
in this area, to develop data-efficient, scalable, and trustwor-
thy computational models, and to leverage multi-modality and
multi-source sensing informatics, for pervasive healthcare.

Index Terms—Pervasive Sensing, Healthcare, Deep Learning,
Machine Learning, Real-World Applications.

I. INTRODUCTION

Over the past decade, paradigm shifts have been made
towards the way healthcare is delivered and managed. In par-
ticular, emerging pervasive sensing technologies, ranging from
flexible, ultra-thin sensors, to low-power modules, coupled
with advanced data analytics [1], [2], have enabled real-time
personalized health monitoring, which transforms healthcare
practice in terms of diagnostics [3], preventive healthcare [4],
and rehabilitative and assistive technologies [5], as shown in
Figure 1. Systems that are capable of acquiring physiological
and behavioral signals are established, and they gradually turn
into a common practice to draw information that indicates the
states of human health and well being [6].

In particular, artificial intelligence (AI), especially deep
learning, has enabled the analysis of large complex sensing
information, with a series of advanced computational models
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being proposed and developed. The combination of these
models and large datasets has resulted in systems that can po-
tentially outperform clinical experts in a variety of healthcare
applications [3], [7].

Albeit the superior performance demonstrated by artificial
intelligence in sensing informatics, the success of existing
approaches is mostly driven by statistical fitting between input
data and given labels. This fully supervised learning paradigm
largely relies on the diversity and size of curated data that
assumes well-balanced datasets with identical distributions
between training and testing data. However, for real-world
healthcare applications utilizing sensing informatics, these
prior assumptions seldom hold, making the robustness of
AI methodologies poor, especially when the algorithm de-
velopment and deployment stage are mostly separated [8].
Specifically, we have raised the following three questions
regarding the challenges in the context of deploying deep
learning in data obtained by emerging, innovative sensing
technologies,

• Scarcity - Although pervasive sensing enables continuous
long-term data collection upon sensor deployment, can
we get enough data-label pairs for training?

• Quality - Although pervasive sensing enables data col-
lection in free-living environments, beyond controlled
laboratory settings, can we guarantee the quality of both
the sensing data and associated labels?

• Heterogeneity - Although pervasive sensing enables col-
lecting data from multiple sources (subjects, devices, hos-
pitals, etc.), can we make sure that the data is collected
from the same data space, independently and identically
distributed?

In fact, the answers to the above three questions are mostly
unfavorable in the real world, posing significant obstacles in
leveraging sensing informatics to meet practical healthcare
needs, by pure fully supervised learning paradigms. In this
paper, we provide theoretical insights into these three is-
sues underlying existing machine/deep learning methodologies
for healthcare sensing applications, summarize the problem’s
nature and challenges, followed by in-depth discussions on
typical examples, and present a comprehensive review of
potential solutions.

It should be noted that existing surveys have provided
insightful ideas in terms of different aspects of model gener-
alization and robustness [9], [10], [11], [12], [13]. Meanwhile,
a series of surveys have discussed the application of deep
learning in typical sensing modalities [2], [14], [15], [16], [17].



2

Sleep
Monitoring

Epilepsy
Detection

Arrhythmia
Recognition

Fall
Prevention

Daily Activity
Recognition

Diabetes
Diagnosis

Dietary
Monitoring

Smart
Wheelchair

Exoskeleton/
Prosthetics

Preventive Healthcare Clinical Diagnostics Assistive and Rehabilitative

Alzheimer’s 
Disease Diagnosis

Rehabilitation
Training

Social
Robotics

?

Egocentric
Vision

EEG

Gaze

Camera

Blood
Pressure

IMU

Pressure

ECG

EMG

PPG

Fig. 1. The integration of advanced sensing informatics and machine/deep learning technologies benefits healthcare applications, ranging from preventive
healthcare, clinical diagnostics, to rehabilitation and assistive technologies.

In contrast, this survey is not focused on discussing specific
applications, and instead, provides insights into the machine
learning challenges associated with conventional learning
paradigms when handling pervasive sensing informatics in
health care. Our contributions are listed below.

• Problem Nature and Challenges. We present a summary
that provides theoretical insights into the inherent issues
associated with applying deep/machine learning to sen-
sory data in healthcare. We emphasize the common issues
across varied healthcare applications, and provide context
with concrete examples for intuitive understanding.

• Comprehensive Review of Technical Approaches.
A comprehensive survey of the state-of-the-art ma-
chine/deep learning approaches to address the above
issues in the existing literature. This provides a guide
to key methodologies and inspiration for research on
pervasive healthcare.

• Promising and Emerging Research Directions. An
overview of promising and emerging research directions
in pervasive healthcare, to foster research that well ad-
dresses real-world practical needs.

II. CHALLENGES

Over the course of pervasive healthcare model development,
without loss of generality, we denote the input data as X ,
and the output label as Y . The input data X represents the
pervasive sensing informatics, with the data types ranging from
videos/images (e.g., ambient/wearable cameras), time series
(e.g., ECG, EEG, PPG, IMU), or multi-modality combinations.
The output labels Y vary across different applications, thus
leading to different machine learning tasks, such as clas-
sification, regression, segmentation, etc. The computational
model f : X → Y , infers the target based on the input.
The purely fully supervised paradigm aims to minimize the
average error across all the training samples {xi, yi}ni=1, by
commonly applied classification/regression loss functions L
for measuring the discrepancy between the prediction and
label. This is known as the Empirical Risk Minimization
(ERM), formulated as below,

R =
1

n

n∑
i=1

L(f(xi), yi).
1 (1)

This is used to approximate the expected risk on the training
data distributions Ptr, i.e., E(x,y)∼ptr

L(f(x), y).
Subsequently, the empirical error ε estimated on the testing

data is, therefore, formulated as in Equation (2).

ε = E(x,y)∼pteL(f(x), y)

= E(x,y)∼ptr

pte(x, y)

ptr(x, y)
L(f(x), y),

(2)

where ptr and pte refer to the distribution of training and
testing data, respectively.

As indicated in Equation (2), such a learning paradigm
requires large amounts of diverse and plausible paired {x, y}
to derive the model f , and its success on predicting labels of
the testing data mostly lies in the assumption of the identical
distribution between Pte(X,Y ) and Ptr(X,Y ). However, in
sensing-based healthcare applications, there are three main
factors deteriorating the performance of model deployment.
We summarize these key issues as Scarcity, Quality, Hetero-
geneity. Below, we give detailed explanations with concrete
healthcare applications as examples.

A. Scarcity - Limited amount of paired {x, y}
1) Label Scarcity - Limited Availability of Y : Recent ad-

vances in sensor development have made the acquisition of
continuous physiological and behavioral data in the wild pos-
sible. This could generate vast volumes of health informatics
data upon deployment. However, handling and annotating the
collected raw data is not trivial.

Manual annotation of streaming data is often not practi-
cal, which requires domain-related medical knowledge and/or
considerable annotation time. This applies especially to
timestamp-wise annotation tasks, such as temporal event seg-
mentation [18], or cardiac characteristic waveform recog-
nition [19]. Typically, in lab settings, medical experts or
highly specialized devices are used to acquire gold stan-
dards labeling [20], [21], [22]. For example, in sleep-studies,

1In Section III, for some approaches, the difference between their equations
and this ERM, is highlighted in blue.
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Fig. 2. Examples of the three main issues in sensing data acquisition and annotation for pervasive healthcare applications. We selected three representative
applications that apply sensing techniques to healthcare practice, and list the concrete examples of the three issues inherent in these applications.

Polysomnography is used to acquire complex multi-modal data
of brain/eye/muscle activities [23]. However, in free-living
environments, it is not possible to get access to those
gold-standard devices without tedious calibration procedures
and complex experimental settings.

Furthermore, some tasks, such as affective recognition and
fatigue/pain assessment, rely on retrospective self-assessment
by the subjects [24]. Such pipeline is limited, in practice, to
be applied in free-living environments. This results in sparse
datasets and missing data, thus inducing biases over the course
of modeling and inference.

2) Low Prevalence - Imbalanced P (Y ): The challenges
associated with acquiring enough {X,Y } training pairs result
from not only the underlying difficulty in acquiring the labels
Y , but also from insufficient X samples across certain Y
categories [25]. For example, the prevalence of rare diseases
and related adverse events is relatively low. This would also
cause the total label space distribution P (Y ) imbalanced.

One typical example has been noted in established ar-
rhythmia detection datasets [26], [27], with an extremely low
prevalence of certain rare beat types, such as supraventricular
premature [28], [29]. On the other hand, in daily routine
based applications, it has also been argued that the label space
follows severely imbalanced distributions, such as in human
action recognition [18], and affective behavior analysis [30].
For instance, in action recognition datasets, there are only
a few actions being frequently executed in daily routines,
whereas a large number of actions only happen rarely. Such
sample scarcity of minor classes contributes to an overall
challenging long-tailed classification problem [31].

In fact, recent work has shown that the distribution of P (Y )
can be used as a posteriori to calibrate the model output
probability so that the dominant classes are assigned with
higher probabilities [32]. However, this process does not favor
the classes with fewer samples. In fact, this would lead to a
significant limitation for healthcare applications, where models
are expected to perform consistently well across all classes,
in order to be clinically useful. Furthermore, this posterior
calibration would, rather, result in poorer performance, if there
is any discrepancy of P (Y ) between training and testing data.

B. Quality - Low-quality of x or y

The capability of modeling the relationship between X and
Y can be affected by the quality of either the raw data or
labeling. The quality of sensor signals has been a long-lasting
issue for real-world deployment. On the other hand, the inher-
ent ambiguity/noises existing in acquiring healthcare-related
ground-truth labels have also attracted significant research
attention. Both issues have to be carefully handled during
training, in order to avoid spurious correlations caused by the
noises in X/Y .

1) Sensing Data Quality - Raw data X: Advances in
sensing technologies have enabled the development of minia-
turized, wireless sensor systems that are able to amplify
the signal while suppressing unwanted noises. Nevertheless,
deploying sensors in an unconstrained environment would
attenuate the signal quality acquired compared to those in
controlled experiments in various ways. For example, motion
artifacts, loose contact, illumination changes, and undesirable
sensor positioning would result in unpredictable deterioration
of data quality [33], [34]. In addition, there might be crosstalk
effects for multi-modality/channel signals that are difficult to
detect and resolve, e.g., multi-channel EMG [35], EEG [36],
[37]. Furthermore, insufficient power, transmission interrup-
tions, weak signal strength, and limited memory capacity [38],
would unfortunately result in signal loss and thus degrade the
effective resolution and quality of data.

2) Label Quality - Label Y : Clean and consistent labeling
Y is also challenging in most healthcare applications. Nor-
mally, labeling is defined in two ways: Firstly, experimen-
tal sessions are assigned beforehand, and data are labeled
subsequently. This is mostly adopted in applications related
to the cognitive/affective states, which are difficult to quan-
tify objectively, such as motor imagery classification [39],
workload estimation [40], and emotion recognition [41], [42].
For instance, in basic motor-imagery brain-computer interface
(BCI) paradigms, the subjects are given an instruction cue
to imagine the corresponding body movements; in emotion
recognition studies, videos or images are used as stimuli.
Those instructional cues or stimuli types are adopted as
the ground truth of recorded data. However, one inherent
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drawback is that the subjects may not follow the instructions
exactly, which will result in data mislabeling.

Secondly, the data are annotated during post-processing
by experts retrospectively. Recruiting multiple annotators for
crowd-sourcing annotation [43], [44] has been a common prac-
tice for labeling massive amounts of data, especially streaming
data. In this case, biases and inconsistencies arise due to
the subjective nature of the annotation or the differences in
expertise level. This is a well-known issue in clinical practice,
and it has been already raised in the curation of several sensing
datasets [3], [45], [44].

C. Heterogeneity - Mismatch of Pte(X,Y ) and Ptr(X,Y )

Another reason for failing to successfully deploy a model
pretrained on X ×Y following Ptr(X,Y ) to Pte(X,Y ) is due
to their mismatch [46], [47]. The past decade has witnessed
a surge of research activities focused on mitigating the shifts
between training and testing in general computer vision / ma-
chine learning field [48]. A series of benchmark datasets such
as DomainNet [49] have been developed, which focus mainly
on the domain shifts in the conditional probability P (Y |X).
However, in pervasive healthcare, the factors contributing
to the heterogeneity are more complicated. Rethinking the
composition of P (X,Y ), we summarize the representative
heterogeneity factors in healthcare sensing as below.

1) Data Space Dim(X) Shifts: Sensor signals are mostly
multi-channel, such as EEG/EMG/ECG. Experiments con-
ducted in the wild involve different channel numbers, sensor
configuration changes, sampling frequency differences, and
data-collection protocol variations, which results in dimension-
ality mismatch of the original data space [50], [51], [52], [53].
For example, Reyna et al. [51] has explored the model gen-
eralization capability of varied-lead ECGs for cardiovascular
diseases. The authors pointed out the fact that although the
standard 12-lead ECG is widely used in clinical diagnosis,
portable devices for daily monitoring tend to have limited
accessibility to all the leads [51]. Another example is the
difference in the electrode channel settings utilized in BCI
experiments both in terms of relative position and number.
Xu et al. [52] noted differences in motor-imagery datasets,
which hinders direct data aggregation, and it requires ad-hoc
channel selection [52]. However, this eliminates potentially
useful information.

2) Domain Shifts P (X|Y ): Similar to the general computer
vision tasks, the conditional distribution P (X|Y ) shift is also
an outstanding urgent issue for healthcare related sensing
informatics. There are a variety of factors that can lead
to the heterogeneity of P (X|Y ), ranging from inter-subject
variability to differences in sensor positions, devices, and
contexts.

In fact, the poor generalization performance in cross-subject
settings has been noted in many healthcare studies [54], [21],
[55], [56], [57]. In [21], the authors have suggested that
the biometric information encoded in certain human-centric
signals, such as gait, would bias the pathology related repre-
sentation learning.

Furthermore, for most sensing applications, the relative
sensor positions are critical to sensor characteristics, e.g.,

the body-worn positions of wearable sensors [58], and the
perspectives of ambulatory sensors [59], [60]. For the wearable
movement and physiological sensors, such as IMU, EMG,
and EEG, it is impractical to constrain the same sensor
position across sessions [58] and across subjects [61], [62].
Although some classic methods have introduced anatomical
calibration strategies to mitigate this issue, it is not practical
to translate them into free-living environments for pervasive
sensing. Furthermore, in ambulatory sensing [59], [4], the
relative perspective of the subject captured by the sensor is
variable and hard to constrain.

In addition, the sensing context also plays an important role
in data representation. For example, for vision signals collected
in daily environments, the backgrounds and illuminations
of the collected images might change across scenes [63].
Gait cycle characteristics would also vary between different
conditions such as fixed-speed treadmill and self-paced [64].

3) Target Shifts P (Y ): Another issue results from the shift
of the target distribution of P (Y ). These differences in the
prevalence of the labels can occur when data are sampled
from different subjects, contexts, population groups, etc. The
prevalence of different disease categories would change along
with personal characteristics and behaviors; For instance,
the prevalence of some neurodegenerative diseases has been
reported to exhibit gender differences [65]. This poses chal-
lenges to performing personalized prediction, diagnosis and
treatment.

On the other hand, the probability of different classes also
depends on the context. This results from the variances in the
prevalence of a certain class across different contexts or pop-
ulation of interest. For example, for daily activity recognition,
some actions like “turn on/off tap” can rarely occur in the
living room but are quite common in the bathroom.

4) Concept Drifts P (X,Y )t: In pervasive sensing, con-
cept drifts [66], [67], i.e. P (X,Y )t 6= P (X,Y )t+1 mani-
fest as the result of inherent sensor drifts over time. This
non-stationary setting is a significant challenge in continuous
online health monitoring tasks. Representative examples are
the low-frequency drifts and measurement bias in physiolog-
ical sensors [68] along with measurement error accumulation
in inertial sensors [69]. Whereas this issue is not present in
commonly applied offline training-testing paradigms of model
deployment, in online scenarios they will compromise the
classification/regression performance [70].

In summary, we provide a few examples regarding the
aforementioned three issues in Figure 2 to illustrate these
issues in real-world pervasive healthcare applications. A more
detailed discussion based on specific applications is available
in the Supplementary Material.

III. TECHNICAL APPROACHES

To handle the aforementioned three issues, we summarize
the advanced learning approaches, covering effective data
augmentations, sampling strategies, loss function engineering,
supplementary tasks, adaptive learning strategies, mixture of
multiple models, and domain knowledge guidance. A visual
summary is shown in Figure 3.
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A. Learn with Effective Augmentations

The learning theory underpinning ERM training has proved
that one trivial solution to minimizing ERM is to memorize all
the samples, especially when the sample size is limited, and
the network is over-parameterized. This results in poor gener-
alization when the testing samples are, even slightly, different
from the training data [71]. Data augmentation can be seen
as a regularization strategy, also known as the Vicinal Risk
Minimization (VRM) principle [72]. It aims to create virtual
training samples that are in close proximity of the original
samples but not identical. This results in an increased amount
and diversity of the original training samples. In this way, it
aims to achieve generalization of the machine learning model
and prediction invariance across datasets sampled from the
same distribution. Hence, it is of vital importance to investigate
effective augmentations that can lead to ideal vicinity space.

The creation and training of virtual data lying in vicinity
space is formulated as below,

PVtr(x̂, ŷ) =
1

n

n∑
i

V(x̂, ŷ|xi, yi),

argmin
1

m

m∑
i=1

L(f(x̂i), ŷi),

(3)

where PVtr refers to data distribution in the vicinity space.
1) Mixup: Existing research has demonstrated that by just

linearly interpolating training samples in terms of both x and
y, the model complexity can be implicitly controlled. This
results in a robust augmentation strategy, known as Mixup,
which introduces linear behavior as useful inductive bias to the
model [71]. Mixup has been adopted widely and it has shown
promising results in ECG [73], EEG [74], images/videos [75].
Following the success of mixup, several studies have further
investigated the principle in class imbalance settings [76] and
domain shifts [77].

2) Domain-Knowledge Guided Augmentation: Instead of
data-agnostic linear interpolation, the vicinity of the training

Effective
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Sampling Strategies

Supplementary Tasks

Multiple Models

Adaptive Strategies

Loss Engineering
Domain Knowledge

Guidance

• distribution mapping
• importance weighting
• active learning

• mix-up
• domain-knowledge guided
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• deep generative models
• simulators

• loss functions for
imbalanced distributions

• loss functions for
noisy labels

• self-/semi-/weakly supervised learning
• multi-task learning

• ensemble learning
• knowledge distillation

• domain adaptation
• domain generalization
• few-shot learning
• concept-drift adaptation
• reinforcement learning

Fig. 3. Illustration of lines of learning approaches in existing literature that go
beyond pure fully supervised learning, ranging from effective data augmen-
tations, sampling strategies, loss engineering, supplementary tasks, adaptive
strategies, mixture of multiple models, to domain knowledge guidance.

data could be based on domain-knowledge of the specific
dataset. This results in commonly applied data augmentation
strategies in the spatial domain (e.g., flipping, scaling, and
rotation), temporal domain (e.g., temporal shuffling), and
spectral domain (e.g., frequency filters and wavelet transfor-
mations) in varied types of sensing modalities [78], [79].
Nevertheless, the way these methods are applied can have
a profound impact on the performance of the models. For
example, imposing temporal consistency of spatio-temporal
augmentations has been suggested to facilitate a significant
improvement of model performance compared to naive aug-
mentations in spatial or temporal dimensions alone [80].

Different from the above commonly applied augmentation
strategies, several works investigate augmentation techniques
that are tailored to specific sensing modalities [81], [82],
[83]. They were mostly inspired by application-specific un-
derlying factors leading to the data variations in real-world
sensing data. For instance, Gopal et al. [81] proposed a
physiologically-inspired augmentation method over 12-lead
ECG signals, which firstly maps multi-lead ECGs to vector-
cardiogram (VCG) space, followed by 3D spatial augmenta-
tions and back-projection to the original ECG space. This is
motivated by the observation that each ECG lead represents a
different view of the same cardiac cycle and the VCGs derived
from ECGs represent the heart’s electrical activity along
three orthogonal spatial axes. Another similar example is the
rotational distortions applied on EEG or High-Density sEMG
signals, which shift the electrode positions to generate artificial
data [83], [84]. This can improve the model robustness against
the variations of EEG-cap sensor positions.

3) Deep Generative Models: Instead of direct transforma-
tions of the input, a popular trend is to apply deep gener-
ative models to synthesize novel data by learning the data
distribution in a generative manner. They approximate the
data distribution in the latent space, based on the original
training data, and subsequently realize the generation of virtual
samples by drawing novel points from the latent space. Recent
advances in deep generative models, such as variational au-
toencoder (VAE), generative adversarial network (GAN), flow,
and diffusion models, have resulted in powerful methodologies
for realistic synthetic data generation.

This line of work has been explored in a wide range
of modalities, such as videos [85], ECG [86], EEG [87],
EMG [88], etc. Performing data synthesis to induce more di-
versity has attracted considerable research efforts, such as [86],
[87]. Recent research has also investigated the possibility of
synthesizing data from different views/modalities, which is
particularly useful when the data from one view/modality is
sufficient and exhibits better quality, whereas that from another
is limited. For example, Liu et al. [85] proposed a cross-view
synthesis framework to generate first-person videos from those
recorded from third-person viewpoints. Rey et al. [89] at-
tempted to generate wearable IMU data from monocular RGB
videos, simulating artificial yet semantically meaningful data.

On the other hand, the generative methodologies present an
unsupervised solution to performing signal denoising/cleaning.
Existing deep learning based signal denoising methods are
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mainly based on supervised training, and they mainly require
paired clean-noisy sensing data; however it is practically
difficult to acquire paired clean data for training in the real
world. Several works in the existing literature have applied
generative methods to generate clean samples from noisy
samples [90], [91] or to learn artifacts [92], in an unsupervised
manner.

4) Simulators: Another alternative is to use simulators
to generate realistic synthetic data [93]. For vision signals,
off-the-shelf simulators for novel viewpoint image gener-
ation exist and they incorporate several modalities (RGB,
Depth, Infra-Red) [94]. Among existing literature, Srivas-
tava et al. [95] developed a benchmark for embodied AI
that can simulate a range of real-world activities. Tome et
al. [96] developed a large-scale egocentric pose estimation
dataset with the help of graphic render software Maya, leading
to large variations across characters, environments, actions,
and lighting conditions.

On the other hand, apart from off-the-shelf graphic simu-
lators, a series of physiological and biomechanical parametric
models have been proposed to explain or model the underlying
function of real-world biological systems. For example, a
system of ordinary differential equations (ODEs) was pro-
posed by McSharry et al. [19] to describe the dynamics of
characteristic ECG waveforms, which has been adopted in
[97], [98] for ECG synthesis. Additionally, the parametric
human model SMPL [99] and its follow-ups [100], [101],
[102] have enabled a series of works on human-centric data
synthesis. Recent works, such as synthesizing image data
from different viewpoints [21], movement data (IMU) from
different positions [103], [104], have demonstrated enhanced
generalization capability enabled by diversity augmentation,
thus mitigating the distribution gap between training-testing.

However, as mentioned, real-world sensing informatics are
often contaminated with large noises, which cannot be easily
modeled in a simulator based on a purely model-driven,
bottom-to-top approach. Hence, significant domain shifts be-
tween those simulator-generated data and real-world data arise,
which will impact real-world deployment. Further work on
more advanced strategies should be applied to mitigate such
real-synthetic domain gap issues [105], [21].

B. Learn with Sampling Strategies

Another commonly adopted strategy for machine learning
model training is to deliberately change the original data
distribution Ptr(X,Y ), so as to achieve identical distributions
between training and testing or to amplify the importance of
representative/hard samples, while minimizing the importance
of noisy samples.

1) Distribution Mapping: In sensing applications, we often
have to tackle situations where the training and test distribu-
tion are not the same, or the training distribution is imbal-
anced whereas the evaluation metrics treat each class equally.
Resample-based approaches such as Random Over Sampler
(ROS), Random Under Sampler (RUS), Cluster Centroids
(CC), Near Miss (NM), Edited Nearest Neighbours (ENN),
Repeated Edited Nearest Neighbors (RENN), Neighborhood
Cleaning Rule (NCR) and One-Sided Selection (OSS) have

been commonly applied to cope with the data imbalance
issue [78], [106], [107], [108]. This strategy can also be inte-
grated with the data augmentation algorithms in Section III-A
to enforce changes in the distribution [109].

2) Importance Weighting:

argmin
1

n

n∑
i=1

w(xi)L(f(xi), yi) (4)

Recent research has found that not all samples are equally
informative. For example, some data points contain noisy an-
notations, or they sample a small homogeneous neighborhood
of the manifold space and thus they are trivial. Adjusting
weights to different samples based on their importance (in-
formativeness or noise degree) can facilitate obtaining better
decision boundaries.

To mine hard informative samples that facilitate better
model training, Lin et al. [110] considered those inputs with
large MSE losses as hard samples when predicting hand
kinematics from surface EMG, and only performed updates on
these hard samples. Li et al. [111] jointly explored the sample
importance in the task of EEG-based emotion recognition. It
treated hard samples as those with higher losses and utilized
a sample importance vector to identify them while mini-
mizing the loss aggregated from all samples. Subsequently,
a self-paced function was introduced to gradually train the
model from easy to hard samples. The selection criteria of
these works were mostly based on large training losses to find
hard samples.

On the other hand, one line of research for learning with
noisy labels is centered around identifying noisy samples
and removing them during training [112], [113]. Most ex-
isting research built upon the assumption that clean samples
would be associated with small training losses. Representative
methods have been developed to select noisy samples. For
example, co-Teaching [113] and JoCoR [114] utilized two
networks with different learning abilities where only clean
samples would exhibit consistent learning performance. They
have been applied in ECG arrhythmia detection [108] and
BCI [115]. Another work SCN [116] derived the importance of
each sample by a self-attention mechanism, and treated those
low-weighted samples as noisy ones in affective analysis.

It is noteworthy that for hard samples, their importance is
normally targeted to be augmented, whilst for noisy samples,
cases are opposite. However, it is often challenging to identify
whether the sample is hard or noisy, since both are based on
large-loss assumptions during training. Alternative solutions
that do not explicitly pick up noisy samples by large training
losses, are necessary to avoid such confusion [117]. For
instance, in [117], the authors assumed that noisy labels in
facial expression recognition would lead to a model only
focusing on part of the relevant features, and subsequently
applied attention-based erasing strategies to avoid memorizing
the noisy samples.

3) Active Learning: On top of the above, another line of
approach, active learning, tackles the annotation cost issue.
It aims to minimize the involvement of human annotators by
only selecting the most useful unlabeled samples for anno-
tating, and thus the selection criteria for unlabeled samples
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are quite important for this approach. In most cases, the
existing methodologies are either based on uncertainty or
diversity/representativeness. The uncertainty-based approach
aims to select the samples with the highest probability of
being wrongly classified, i.e., those samples with high-entropy
predictions. For instance, Wang et al. [118] proposed that
the ECG samples that are near the classification hyperplane
are the most informative samples because they tend to have
high entropy. Similar ideas have also been applied in [119]
to select the most informative samples for BCI inference
model adaptation on new subjects, thus reducing calibration
efforts. On the other hand, diversity/representativeness-based
approach aims to select samples that could cover a diverse
input and output spaces. On straightforward solution is to
perform unsupervised clustering, and subsequently selects
samples evenly distributed across clusters. Bi et al. [120] took
into account both uncertainty and diversity/representativeness,
when performing active learning based activity recognition
with the presence of novel activities.

C. Learn with Loss Engineering

In classification tasks, commonly utilized functions of loss
L are cross-entropy, whereas in regression tasks are L1 or L2

losses. These types of losses are not powerful enough when
faced with the challenges described in Section II. There are
several works dedicated to engineer loss functions to handle
those issues.

1) Loss Functions for Imbalanced Distributions: In the
context of imbalanced distribution, one of the most fundamen-
tal works is to design loss functions to balance the contribution
of each class. A series of classification loss functions such as
focal loss, label-distribution-aware margin loss, equalization
loss, balanced softmax cross-entropy loss and so on have been
developed to circumvent the imbalanced distribution [121].
These losses proposed varied strategies to balance the distri-
bution of each class during training by logit adjustment. They
have already been applied in various healthcare applications
suffering from data imbalance issues, such as facial expression
understanding [106], intention prediction [122], and anoma-
lous ECG recognition [123], [124].

Compared to classification, regression tasks have received
less attention in terms of their inherent imbalance issue [125],
[126]. The study of Yang et al. [125] is the pioneering work
that investigated imbalanced regression problems based on
deep learning, followed by other works like [126] that devel-
oped a balanced regression loss function. They were mostly
inspired by works from imbalanced classification; Yang et
al. [125] focused on reweighting loss for samples lying in
rare ranges, whilst Ren et al. [126] aimed to approximate a
surrogate training loss on balanced distribution, statistically
converted from the imbalanced training data.

2) Loss Functions for Noisy Labels: Loss function cus-
tomization has been an important direction in handling label
noises [12]. The goal is to design noise-robust or noise-aware
loss functions, or estimates the label confusion matrix as
caused by label noises to be injected into the loss func-
tion [127].

The core idea underpinning noise-robust loss function de-
sign is to achieve an identical global minimum of empiri-
cal loss (cfg. Eq.2) between training with noisy labels and
training with clean labels. Existing research [12] indicated
that simply applying cross-entropy loss cannot realize this
appropriately. Instead, a series of loss functions such as
generalized cross-entropy loss [128], symmetric cross entropy
loss [129], and active passive loss [130], have been proposed
to mitigate the limitation of cross-entropy loss.

Another way to deal with noisy labels is by approxi-
mating inter-class relationships to model the probability of
mislabeling. Zhang et al. [131] developed an emotion-aware
distribution loss to smooth the targeted label for EEG-based
affect recognition. It smooths the probability of similar emo-
tions yet keeps the probability of opposite emotions to zero.
Zheng et al. [41] considered the problem of multi-dataset
annotation inconsistency in facial expression datasets, and
utilized multiple noise transition matrices, to maximize the
log-likelihood of inconsistent annotations.

D. Learn with Supplementary Tasks

On top of direct end-to-end training for the single specific
label Y of the targeted applications, a popular direction is to
seek help from supplementary tasks.

1) Self-/Semi-/Weakly Supervised Learning: Since training
a fully supervised learning model requires the availability of
large amounts of data X with high-quality labels Y , which
are not available in most healthcare applications, a series of
self-/semi-/weakly supervised approaches have been proposed.

a) Self-Supervised Learning: Self-supervised learning
aims to learn semantically meaningful representations by
self-generated proxy tasks [10], and subsequently to benefit
the downstream tasks (actual tasks) by minimizing the need
for accessing a large number of data-label pairs for supervised
training. It is formulated as below,

argmin
1

n

n∑
i=1

L(f(xi), p(xi)) (5)

where p(xi) refers to the corresponding label of xi in the
self-generated proxy tasks.

In this way, self-supervised methods exploit the inherent
ability of deep neural networks (DNNs) to automatically learn
hierarchical representations of the input data by self-curated
labels. This has been an increasingly popular research topic
in general image recognition and language understanding
fields [10]. These works have inspired a surge of research
activities, as well as posed novel challenges on self-supervised
learning for pervasive sensing informatics.

Existing self-supervised learning approaches are generative,
contrastive, or adversarial [132]. The generative approaches
aim to perform reconstruction or context-related generation
tasks to learn semantic representations [133], [134], whereas
the contrastive ones maximize the similarity between the
latent representations of positive-paired inputs, indexed from
pseudo labels [135], [136]. On the other hand, adversarial
approaches can be seen as an amalgamation of generative
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and contrastive learning, since they combine the genera-
tive process with a distributional divergence loss. Existing
self-supervised pretexts on natural-image-recognition [135]
or natural-language-processing [134] applications may not
be directly applicable to sensing informatics, since their
low-level representations are fundamentally different, and far
more complicated. Instead, they emphasized the necessity of
leveraging domain knowledge to build novel self-supervised
approaches [137], [138], [139], [140], [141], [142].

For instance, Cheng et al. [137] suggested that biosignal
representations include both disease/task information and bio-
metrics. To learn the former in a self-supervised manner,
they developed a subject-aware contrastive learning frame-
work, which incorporated an adversarial subject identifier
to learn subject-invariant representations from physiological
signals such as EEG and ECG. Banville et al. [138] focused
on exploring EEG representations with self-supervised learn-
ing tasks. Subsequently, classifiers developed based on the
self-supervised features outperformed fully supervised DNNs,
whereas the latent structure revealed clinically meaningful
physiological parameters such as age effects. Wagh et al. [140]
leveraged domain-guided knowledge to learn effective EEG
representations, where three tasks including hemispheric sym-
metry, behavioral state estimation, and age contrastive loss,
were proposed. These proposed tasks have demonstrated ben-
efits to specific downstream EEG classification tasks (such as
eye state detection, and gender classification). Additionally,
Kiyasseh et al. [142] proposed a patient-specific contrastive
learning method, exploiting both temporal and spatial invari-
ance for ECG arrhythmia detection.

On the other hand, in connected healthcare settings, sen-
sor signals are often collected from several modalities, and
they reflect different aspects/views of the same underlying
neuro-physiological process. Therefore, self-supervised learn-
ing can be facilitated by tasks that take into account the
correlation across these co-occurring modalities. For example,
Ehsani et al. [143] leveraged the human interaction and
attention cues encoded in egocentric videos, including body
part movement (IMU) and gaze, to help learn visual scene
representations from egocentric videos. Shukla et al. [144]
explored the interaction between audio and visual modalities
for self-supervised emotion representation learning.

b) Semi-Supervised Learning: In semi-supervised learn-
ing, training is performed on both a small amount of labeled
data and a large volume of unlabeled data [145], [146]. The
general form of semi-supervised learning is as below,

argmin
1

nL

nL∑
i=1

L(f(xi), yi) +
1

nU

nU∑
i=1

L′
(f(xi), R(xi,XL

)), (6)

where nL and nU refer to the amount of labeled and
unlabeled samples, and R refers to the task built upon
the relationship between unlabeled and labeled datasets. A
wide variety of methods have been developed to perform
semi-supervised learning, and we refer the readers to [145],
[147] for comprehensive theoretical surveys.

The key idea of semi-supervised learning is to find a
surrogate loss that can be applied to unlabeled data. One

representative line of work is the supervised-training based on
pseudo labeling. Wei et al. [148] targeted at a motor imagery
classification problem and proposed a pseudo-labeling strategy
based on the feature distance to the class-wise prototypes
generated from labeled samples. Li et al. [149] resorted
to multi-branch prediction consistency to derive pseudo la-
bels from ECG recordings. In action recognition field, re-
searchers have exploited complementary modalities [150] or
models [151] for more reliable pseudo labels.

Another line of work pays more attention to the prin-
ciple of consistency regularization, assuming that the pre-
diction should be similar under different augmentations
and adversarial perturbations. Several works have integrated
self-supervised learning solutions into semi-supervised learn-
ing frameworks by considering the principle of consistency
regularization [152]. For example, FixMatch [153] was a
successful combination of self-training and consistency reg-
ularization. It derived pseudo labels based on samples with
weak augmentations and subsequently applies the pseudo
labels as ground truth for the same samples superimposed
with strong augmentations. Due to its simple yet effective
strategy, it has been applied to a series of applications, such
as activity recognition [151] and emotion recognition [154].
In some cases, since the pseudo labels may not be correct, the
importance weighting strategies introduced in Section III-B2
can be applied to select those unlabeled samples with more
convincing pseudo labels [155].

c) Weakly Supervised Learning: To tackle the lack of
large, high-quality labeled data, weakly-supervised learning
relies on “weakly”-annotated data that is much easier to
acquire. Weakly supervised learning is categorized into inex-
act, incomplete and inaccurate supervision that corresponds,
respectively, to scenarios where high-quality labels exist only
for a small subset of training data, only indistinct labels exist
for the training data and labels are inaccurate [156]. In this
section, we would like to focus more on inexact supervision,
where coarse-gained annotations or descriptions are given,
whereas the solutions for the other two types have been cov-
ered in other sections including self-/semi-supervised learning
(Section III-D1), importance weighting (Section III-B2)/loss
functions (Section III-C2) for noisy labels.

The formula representing coarse-gained based weakly su-
pervised learning is as below,

argmin
1

n

n∑
i=1

L(f(xi), ci), (7)

where ci refers to the coarse-grained annotation of xi.
Instead of interpreting and annotating data at each frame, the

coarse-grained annotating procedure is much less tedious. For
example, in human activity recognition tasks, it is much easier
for an annotator to infer whether the targeted activity occurred
in a long sequence, rather than strictly annotating each times-
tamp [157]. Wang et al. [157] exploited a recurrent attention
framework to perform training on sequential weakly-labeled
multi-activity and location tasks. Liu et al. [158] proposed a
weakly supervised framework for arrhythmia detection, which
permits training a fine-grained (beat-by-beat) arrhythmia de-
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tector with the use of large amounts of coarsely annotated
ECG data (labels are given to each recording) to improve the
generalization ability. Saab et al. [159] explored weak super-
vision for EEG seizure onset detection. Instead of relying on
experienced clinicians to provide labels, the authors resorted
to the annotations already being produced within existing
clinical workflows, given by a mixture of technicians, fellows,
students, and board-certified epileptologists during initial data
screening [160]. These annotations, although less accurate, can
significantly improve the detection of the seizure onset.

2) Multi-Task Learning:

argmin
1

T

T∑
t=1

1

nt

nt∑
1

L(ft(xi), y
t
i), (8)

where t stands for a single task, T the total task number,
and {xi, yi}nt

i=1 is the data with annotations under the task t.
Multi-task learning stands for incorporating additional tasks

into the overall network optimization to regulate the represen-
tations. It differs from self-supervised learning, in the fact that
the additional tasks are normally trained simultaneously for the
purposes of regularization, and in a fully supervised manner.

Multi-tasking imposes inter-task feature similarity con-
straints that can effectively improve the generalization per-
formance of tasks that are semantically related [161], [162],
[163], [164], [165]. In pervasive sensing for healthcare ap-
plications, the collected data can represent multiple different
yet related tasks. For example, in affective analysis, human
emotion comes with varying representation forms, including
category expression, action units and valence/arousal. They
are inherently related, and based on this, several multi-tasking
frameworks have been exploited [166], [167]. Besides, in
[168], the authors simultaneously predicted the systolic and
diastolic blood pressure from PPG, achieving better perfor-
mance than directly estimating each individual parameter. The
heterogeneity between different tasks can also be transductive
(e.g., the same target space), considering, for example, the
inference on each subject as an individual task [169], [169],
[163], [162].

E. Learn with Adaptive Strategies

Previous discussions have highlighted the heterogeneity
issue in human-centric sensing as a common yet challenging
problem. Below we present several common lines of research
based on adaptive strategies that are designed to cope with
shifts in the underlying distribution.

1) Domain Adaptation: Domain adaptation is one partic-
ular area of transfer learning, which aims to transfer the
knowledge learned from source domains to the target domain,
assuming access to a reasonable amount of labeled/unlabeled
data in the target domain during training [13]. Considering
differences in the number and type of features between the
source and target domain, existing deep learning based domain
adaptation approaches can be divided into either homogeneous
or heterogeneous.

Research in homogeneous domain adaptation mostly fo-
cuses on the distribution shifts of P (X) caused by do-
main shift P (X|Y ). Existing solutions are either discrep-
ancy based, adversarial or reconstruction based approaches.

The discrepancy-based approach aims to eliminate the rep-
resentation shifts across different domains. The discrepancy
measures the difference between two distributions, and they
often are used as loss functions for network optimization.
For example, Zhang et al. [62] utilized the non-parametric
measure of maximum mean discrepancy (MMD) to align
feature representations of myoelectric patterns across subjects.
Jin et al. [170] incorporated multi-layer, multi-kernel MMD
constraints to minimize the distribution discrepancy across
different domains, in ECG based atrial fibrillation.

The adversarial based algorithms aim to minimize the
domain shifts directly with adversarial training. For in-
stance, Zhang et al. [54] built upon one popular adversarial
based domain adaptation method, maximum classifier discrep-
ancy [171], to realize cross-subject human locomotion intent
prediction. Li et al. [172] looked into EEG-based emotion
recognition and applied gradient reversal layer for adversarial
domain adaptation on the representation extracted from the
early layers.

The reconstruction-based approaches are built on a recon-
struction based structure, utilizing either the reconstructed
samples [173] or hidden representations [174], [175] for
domain adaptation [174], [175], [173]. The former performs
low-level domain adaptation by transforming feature repre-
sentations from source domains to target domains in order to
synthesize labeled training samples in the target domain. Xu et
al. [173] applied CycleGAN based network to generate motor
imagery EEG signals from normal subjects to stroke patients,
thus enabling domain adaptation across these two groups.
The latter hidden-representation-based adaptation applies stack
autoencoders to align the representation. Specialized training
strategies and architectures are normally required to enforce
the similarity across domains. For example, recent work on
EEG-based emotion recognition [174] applied a subject-shared
encoder and subject-private encoders for all subjects to address
inter-subject variability and thus enabled domain adaptation.

On the other hand, heterogeneous domain adaptation is
required to address changes in the dimensionality of input fea-
tures X . This applies to the scenarios where data are collected
from different sensing modalities and spatial-temporal resolu-
tions [176], [177]. For instance, Gao et al. [176] investigated
EEG signals collected from multiple devices with different
numbers of channels. The authors firstly projected the sensor
recordings to a common manifold space and subsequently
performed domain adaptation based on the feature extracted
from the manifold embeddings. Nevertheless, compared to ho-
mogeneous domain adaptation, this area is much less explored.

Recent works on domain adaptation have demonstrated a
series of further promising trends. Multi-source or multi-target
domain adaptation has been designed to address the problem
where the training data or testing data are collected from mul-
tiple distributions [178], [179]. For instance, Wei et al. [178]
treated data from different subjects as unique sources and
argued that multi-source domain adaptation could introduce
more task-related knowledge than just considering multiple
sources as a whole combined source. Another approach is the
target distribution shift. Focusing on shifts not only in P (Y |X)
but also in P(Y), [180] explored domain adaptation methods
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for brain-computer interface tasks with different label sets.
Label alignment was achieved by aligning the EEG covariance
matrices of the source space to the target space. The authors
tackled the covariate shift along with the differences in label
sets by re-centering the source per class at the corresponding
class of the target space.

2) Domain Generalization: In contrast to domain adapta-
tion which conducts training with access to the target data,
another line of research, domain generalization, aims to gen-
eralize to domains that are totally unseen during training [48].
Domain generalization has received increasing attention in
computer vision. Existing solutions for domain generalization
cover augmenting data diversity [181], aligning intra-class
inter-domain representations [182], simulating domain gaps
during training [183], [31], as well as performing disentangled
representation learning [184].

In sensor informatics, the adoption of domain generaliza-
tion solutions has attracted a significant amount of research
efforts [185], [186], [187], [188], [189], [190], [191], [192],
[193], [194], [195]. Adversarial/discrepancy based training
to realize domain-invariant feature representation have been
utilized in several works [192], [194], [187]. Another popular
line of strategies is based on disentangled representation
learning. Gu et al. [185] proposed a disentangled representa-
tion learning framework to learn subject-invariant and clean
sensory representations from noisy sensing modalities, for
generalizable pathological gait analysis. Jeon et al. [188]
attempted to maximize the mutual information intra-class
inter-subject EEG samples, to realize feature disentangle-
ment. In sensor-based human activity recognition, Qin et
al. [187] also divided the latent representation into both
domain-specific and domain-invariant. Instead of considering
the domain-specific representations as redundant, the authors
leveraged such features to enhance the model discrimination
capability for each domain.

Existing research also studied the possibility of utilizing
multi-modal sensor informatics to pursue domain general-
ization, since different sensing modalities may have varied
degrees of sensitivity to domain shifts. For instance, for
healthcare-related action recognition/monitoring, both audio
and image can be used. More importantly, audio signals carry
complementary information that is less affected by different
environmental conditions. Inspired by this, Planamente et
al. [190] leveraged the representation alignment between audio
and visual modalities to eliminate intrinsic adverse environ-
mental conditions.

3) Few-Shot Learning: Considering the scarce resources
of the healthcare data, few-shot adaptation is an emerging
technique that enables model adaptation to new realms (e.g.,
subjects and scenarios), or new tasks, with samples of lim-
ited sizes via a pre-trained model. The concept of few-shot
learning was originally proposed and mainly developed for
inductive transfer, to generalize the model to novel unseen
label space with only a few samples [9]. It was dominated by
meta-learning based approaches [196]. Rahimian et al. [197]
applied a meta-learning framework to enable few-shot EMG
based hand gesture recognition. Tang et al. [198] employed
prototype to select representative samples, realizing few-shot

wearable time-series classification.
It is noteworthy that a relatively large amount of existing

research integrates few-shot learning to solve domain adap-
tation tasks, realizing fast cross-domain transductive transfer
learning. These strategies enable seamless development of
personalized healthcare computational model [9] and they
have been applied to a variety of scenarios, such as mo-
tor imagery classification [199], sleep staging [200], activity
recognition [201], and others [202], [203], [204].

4) Concept Drift Adaptation: Online adaptation to temporal
changes of the input data and target variables is a unique
and challenging problem for streaming data [205]. Therefore,
concept drift adaptation is important for real-time healthcare
applications to address data drifts. Although concept drift
adaptation is a relatively unexplored research area, particularly
in healthcare, it is expected to grow rapidly [206].

It is difficult, in practice, to realize online adaptation of
a single model during training, since only a limited number
of samples under the same distribution can be collected for
training, under data drifts [70]. Du et al. [207] developed
a novel strategy to characterize and recognize the temporal
distribution shifts, and clustered temporal data into several
groups to perform distribution matching during training. To
make dynamic adaptations to continually drifting data streams,
ensemble learning is dominating conventional algorithms,
which adapts the learning process of the sub-models gradu-
ally. For instance, researchers attempted to ensemble multiple
classifiers to deal with the temporal covariate shifts of EEG
time series, by adaptively combining the most informative
predictions [208], [209].

5) Reinforcement Learning: Beyond conventional super-
vised learning that typically performs statistical fitting
over training pairs, reinforcement learning (RL) forms as
decision-making process learning of an agent through the
interaction (action and reward) with the environment. RL
offers a unique approach for realizing adaptiveness in per-
vasive healthcare by iteratively learning from the environ-
ment and improving decision-making over time. The dynamic
nature of healthcare situations, ranging from patient health
status, treatment interventions, and progression of disease, fits
well within the RL framework and has been proposed in
a large number of healthcare applications including chronic
diseases [210], mental disorders [211], and critical clinical
care [212]. A detailed review of the theoretical formulation
of RL and its application in healthcare can be found in recent
reviews/guidelines [213], [214].

Nevertheless, scarcity and compromised data quality result
in incomplete and noisy state space of the agent and pose
significant challenges in RL efficiency. RL also requires as-
signing data with a “reward” label that might be impractical to
obtain in real-world applications. Therefore, the ability to learn
optimal policies with large unlabeled data has also attracted
considerable interest in the RL community [215]. Furthermore,
pervasive sensing brings unique challenges in terms of signals
with large time horizons without direct outcome measures, as
well as the demands for online estimation of optimal treatment
strategies [216].
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F. Learn with Multiple Models
Existing literature has found that the performance of only

one single model may be limited. Leveraging the coherent
performance boosted from multiple models has been a popular
direction to circumvent this issue.

1) Ensemble Learning: Ensemble learning has been a
commonly used strategy that averages (sometimes weighted)
the output of multiple models trained with different data
proportions [217], data distributions [218], model architec-
tures [219] and so on. In healthcare applications, missing
data/input variables and even the whole sensor modalities are
common, which are difficult to handle in developing appropri-
ate machine learning models. Prince et al. [217] studied this
problem in Parkinson’s disease (PD) monitoring. They devel-
oped a multi-source ensemble learning method to handle the
scenario where different PD patients might undergo different
PD tests, namely tapping, walking, voice, and memory. Rad et
al. [220] combined multiple models trained under stochastic
optimization algorithms to achieve a better stereotypical motor
movement detection for Autism Spectrum Disorders with
wearable sensors. In [221], the authors proposed a novel
parallel ensemble framework to capture complementary EEG
connectivity features for neuropsychiatric patients.

2) Knowledge Distillation: Knowledge distillation aims to
transfer knowledge from well-trained teacher networks to
student networks, so that the student network is able to master
the higher capacity or unique knowledge from the teachers.

In existing works, Wang et al. [222] exploited the
frame-to-frame correlation property in EEG recordings and
proposed a frame-level distillation neural network to remove
redundant and meaningless information in single frames.
Wu et al. [223] studied the gap between the patient-specific
model and patient-independent model for seizure prediction,
and indicates that the models trained on all patients’ data can
capture more informative features yet may not be as sensitive
as patient-specific models, whereas each patient includes only
a few samples for training. In this work, the authors leveraged
knowledge distillation to transfer knowledge from the network
trained on all patients to patient-specific models, thus bridg-
ing the gap between patient-specific and patient-independent
predictors. Sepahvand and Abdali-Mohammad [224] focused
on single-lead ECG arrhythmia detection, and proposed
a teacher-student architecture to bridge the gap between
multi-lead and single-lead ECG signals. Jeon et al. [225]
compared time-series data augmentation strategies that are
effective for knowledge distillation, and summarized a general
set of recommended strategies.

On the other hand, knowledge distillation can be applied
to the model learned from different sensing modalities, to
leverage the complementary/correlated information presented
in different modalities. Liu et al. [226] suggested that in action
recognition, vision-based approaches are prone to occlusion
and appearance variances compared to wearable sensor-based
approaches. This observation leads to the attempt of using
networks trained on wearable sensors to guide training based
on visual signals. Other works also investigated the possibility
of cross-modality knowledge distillation for emotion recogni-
tion, which transferred knowledge derived from facial images

to other sensory modalities, e.g., EEG [227], voice [228].

G. Learn with Domain Knowledge

Leveraging domain knowledge has been emphasized in sev-
eral aspects of the approaches introduced above, such as data
augmentations, loss engineering, and self-/weakly-supervised
loss design. On top of these, we are going to discuss
another two directions that have been explored in per-
vasive health applications to fully exploit domain knowl-
edge, i.e., domain-knowledge guided features and explainabil-
ity/interpretability.

As “black boxes“, deep learning models are mostly trained
end-to-end with direct statistical fitting. However, considering
the severely small number of annotations and significant noise
contamination, there are many potential local optimums or
shortcuts that could be learned as the decision boundary.

1) Domain-Knowledge Guided Features: To mitigate this,
existing research has considered incorporating feature engi-
neering into model training. They exploited those features
that have been commonly used in conventional methods,
summarized with domain knowledge, as input, instead of
extracting features directly with end-to-end training [229],
[230]. For example, Zhang et al. [230] employed both wavelet
and common-spatial-pattern transformation to extract discrim-
inative features for training. In this way, they guided the
development of more EEG-based efficient seizure prediction.
For better ECG-based cardiac arrhythmia detection, Hong et
al. [229] integrated both deep-learning extracted features and
hand-crafted features, including statistical, signal, morpholog-
ical, and unsupervised features.

2) Explainability/Interpretability: To incorporate domain
knowledge into model learning with the aim of lifting its
generalization capability, another line of research pays atten-
tion to the explainability/interpretability. It can facilitate the
understanding of the whole workflow from raw representations
to the final prediction/decisions, by uncovering the inner
properties of “black-box” models.

Research into explainable machine learning models is com-
plex since the nature of appropriate explanations depends both
on the type of the application as well as on the system’s
user [231]. Explanations can also be categorized as model
agnostic/black box explanations that normally depend on a
mechanism that perturbs the input features, and models spe-
cific explanations that are tailored to specific architectures.
Other types of explanations and taxonomies also exist and
include but not limited to surrogate models, counterfactual
explanations, post-hoc and ad-hoc explanations.

In pervasive healthcare, one typical explainabil-
ity/interpretability related research uncovers the feature
that a trained model pays attention to, thus helping speculate
whether the attended feature is meaningful and subject to
domain knowledge, or else merely spurious correlated [232],
[233], [234]. For instance, regarding human skeleton data,
researchers exploited the spatio-temporal attention to discover
the unique characteristics of action recognition, pathological
gait [235], and individual walking patterns [233]. To discover
the interpretability of motor-related EEG data, Borra et
al. [234] utilized gradient-based techniques to derive salient
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Fig. 4. Associations between the issues listed in Section II and the approaches
in Section III. Representative works of pervasive healthcare are provided
alongside each association links. In addition, a table summarizing the potential
ways of how to apply these approaches to address each issue, is available in
the Supplementary Material.

spectral-spatial features, and found that the learned feature is
coherent with the motor-related EEG activity.

On the other hand, the explainability/interpretability can
involve the computational architectural design, resembling
clinical workflows that depend on interpretations of unique
physiological/biological characteristics underlying the data
modalities along with medical knowledge. For example, in
ECG reading, cardiologists will base their diagnosis on specific
characteristics of the ECG waveform, such as the P wave,
the QRS complex and the RR intervals [236]. One solution
is to apply domain knowledge as supervisory signals for
training and incorporating (clinical) decision logical flows
into the architecture design [236], [140], [237]. For instance,
Hong et al. [236] designed a hierarchical attention network
by performing attention on multiple levels (including beat,
rhythm, and frequency), to improve the prediction of ECG
arrhythmia. Zhou et al. [238] attempted to discover the anoma-
lous morphological changes of heartbeats based on generative
adversarial training. For the anticipation of human actions,
Zhang et al. [237] referred to the “two-system” assumption
on human cognition [239], and developed a two-branch model
(intuition and analysis based) for action anticipation.

3) Human-in-the-Loop Learning: Involving human-level
control presents another way of incorporating domain knowl-
edge during model training. The ability of deep RL to make
decisions from unstructured data with minimal feature en-
gineering and achieve human-level control has made it a
very promising approach for human-in-the-loop systems [242].
There is a significant increase of applications that use deep

RL in modeling human joint kinematics and joint moments
for use in assistive robots and prosthetics [243]. Several
human-in-the-loop systems have been developed with RL for
facilitating decision making in BCIs [244], [245]. Neuro-
physiological signals, such as EEG can facilitate learning by
providing feedback via brain signals elicited when an error has
been detected (error-related potentials) [245]. This information
can be incorporated into the reward function and facilitate
faster convergence without the need of “labeling” the signal
based on explicit human feedback. RL is also expected to
play an important role in enabling human-AI interfaces in
sensor networks that involve ambient and wearable sensing
for monitoring patients in natural settings [246].

To conclude, in Figure 4, we provide a Sankey diagram
to illustrate the associations between different approaches
and issues utilized in existing works on pervasive healthcare
applications, whereas a more detailed table summarizing the
potential mapping between approaches and issues is given
in the Supplementary Material. It should be noted that these
above approaches are not standalone, independently, to solve
certain single issues. Instead, in most cases, several approaches
are combined together to function in a collaborative manner.

IV. EMERGING AND PROMISING DIRECTIONS

Thus far, a detailed overview has been provided, on exist-
ing technical advances that go beyond pure fully supervised
learning for pervasive healthcare. These provides fundamental
solutions/operations to addressing the real-world generaliza-
tion issues in pervasive healthcare. In fact, the rapid evolution
of deep/machine learning as well as the growing interests of
deploying them to real-world applications, has fostered a series
of emerging/promising directions (cfg. Figure 5) that are aimed
for robust and trustworthy models that can handle pressing
real-world challenges and meets practical needs.

A. From Single-Modality to Multi-Modality

In collected health settings, sensing informatics can be
collected from varied modalities [1], [247], presenting both
modality-unique representations and task-common informa-
tion. For instance, in gait analysis, inertial sensors reflect
movement kinematics, whilst pressure sensors capture the
ground reaction forces, which reflect kinetics [248]. For
brain-computer interfaces, EEG represents brain electrical ac-
tivities, whereas NIRS reflects brain oxygenation level [249].
Dedicated research is required to guide the feature extraction
by taking into consideration their interaction across modali-
ties. In fact, taking advantage of modality-unique represen-
tations can enhance representation power, whilst maximizing
task-common information avoids overfitting or short-cuts on a
single modality.

As discussed in Section III, there have been several lines
of solutions on handling data from multiple modalities. These
include, but are not limited to cross-modality data generation
(Section III-A), cross-modality self-supervised learning (Sec-
tion III-D1, multi-moality domain adaptation/generalization
(Section III-E), multi-modality ensemble/knowledge distilla-
tion (Section III-F1)). They go beyond simplistic feature con-
catenation or ensemble modeling, and are promising directions
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From quantitative measurement 
To trustworthiness

From single-modality 
To multi-modality

From conventional architectures 
To scalable models

From fully supervision 
To minimal supervision

From uni-source 
To multi-source

From static computation 
To dynamic neural networks

From single issue 
To real-world compound issues

Fig. 5. Emerging and Promising Directions in Pervasive Healthcare.

that require increasing research attention. Among these, we
would like to emphasize two directions that could underpin
the development of multi-modality fusion methodologies.

1) Cross-Modality Self-Supervised Learning:
Self-supervised vision-language pretraining, such as
CLIP [136], has received rapidly increasing attention in
computer/machine vision tasks. They have demonstrated
superior capabilities in deriving semantically meaningful
representations from both images and languages. It can
implicitly mitigate the limitations in single-modality
self-supervised learning, saving the need for designing
effective data augmentations to transform data into another
view. This is promising to be adopted in multi-modality
sensing informatics, since acquisition of multi-modality data
is trivial with off-the-shelf sensing technologies [1].

On the other hand, in some cases, different modalities of
human-centric informatics reflect different stages throughout
the loop of human perception, cognition, and action. Leverag-
ing their inherent relationships [250], [143], can help facilitate
self-supervised representation learning, and, in turn, obtain
better models in general computer vision [143].

2) Multi-Modality for Domain Shifts: Data acquired from
each individual modality reflect different aspects of the same
healthcare task and thus inherently suffer from domain shifts.
Nonetheless, the domain shifts underlying each modality are
mostly unique, and not correlated. For instance, the wearable
inertial sensors are sensitive to their body-worn positions,
whilst wearable cameras suffer from the changes of cam-
era viewpoints as caused by camera orientation variations.
Such modality-unique bias can be eliminated by aligning
representations across modalities; this would inspire works
with an emphasis on domain generalization [251], [190],
where domain-shift-prone sensing modality can be helped by
those modalities that are less affected by domain shifts. In
addition, it should be noted that the representation capability
across modalities should be taken into consideration to avoid
overlooking the less-representative modalities [190].

B. From Fully Supervision to Minimal Supervision

The trends in healthcare sensor informatics lead to greater
amounts of raw sensor data with less clean annotations.
In line with the scarcity and quality issue, this highlights
the need of developing data efficient learning methodolo-
gies by minimizing the reliance on annotations. Beyond
the key technical breakthroughs underpinning learning with
minimal supervision (e.g., Section III-B3 active learning,
Section III-D1 self-/semi-/weakly supervised learning, Sec-
tion III-E3 few-shot learning), here we present two promising
directions to facilitate retrieving meaningful representations
from raw sensor informatics.

1) Incorporating Domain Knowledge: Domain knowledge
is essential in self-supervised pretext design, which not only
includes the physiological/biological mechanisms underlying
signals, but also considers the fundamental challenges in
associated tasks.

Designing self-supervised loss is data/modality-dependent.
As discussed in Section III-D1, self-supervised contrastive
learning is a promising direction. Its success highly de-
pends on effective data augmentations resembling the
way real-world sensor informatics could be perturbed, in
time/spatial/frequency domains. This fails the strategy of
naively transferring augmentation operations in general com-
puter vision fields, and emphasizes the need of exploring
effective augmentations for each specific modality [81], [252].
On the other hand, self-supervised loss should be relevant to
the primary task. Task-unique domain knowledge can facilitate
self-supervised loss design. For example, in human pose esti-
mation [253] and facial expression recognition [254], the prop-
erty of “chirality” has been investigated, where the mirroring
of faces or bodies would impose equivariant transformations
of the output or intermediate feature space.

2) Weak Annotation Retrieval: Beyond the conventional
data annotation procedure, exploring weak annotations that
are directly available from data collection workflows is a
promising direction. For example, annotations provided by
junior clinicians or trainees in original clinical workflows can
carry related information [159], and they reduce the annotation
workload [157]. Beyond these, leveraging human attention
over the course of clinical experts screening the data based
on eye tracking has been explored in medical imaging [255].
This approach can be potentially extended to general sensing
informatics in clinical diagnostic settings to provide weak
annotations.

C. From Uni-Source to Multi-Source

The characteristics of healthcare data differ across re-
gions, hospitals, and individuals. This promotes data diver-
sity during training, whilst it also increases the difficulty in
handling the data heterogeneity to ensure model generaliza-
tion/personalization.

1) Beyond Simple Domain Shifts: The domain shifts across
multiple sources highlight the necessity of techniques such
as domain generalization/adaptation (Section III-E1,III-E2).
However, different from current multi-source benchmarks in
natural image recognition, the heterogeneity associated with
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real-world healthcare data distributions is much more compli-
cated. First of all, those natural-image benchmarks are con-
strained to a limited number of domains with distinct domain
differences. However, in healthcare, the number of domains
is much larger (e.g., patient number), and in most cases,
existing solutions on explicitly eliminating data heterogeneity,
cannot handle the data collected from tens or hundreds of
sources, efficiently. Moreover, the heterogeneity factors in the
real world are highly complex, and the discrepancy degrees
across sources are varied [256]. These problems have been
raised, with several promising directions being proposed and
evaluated in computer vision, such as compound domain adap-
tation [256], source-free domain adaptation [257], test-time
adaptation [258], open-set domain adaptation [259]. However,
their efficacy in real-world pervasive healthcare applications
is yet to be validated.

2) Learn in Federated Settings: Another emerging direction
of training on multiple sources is federated learning [260]. It
trains models on samples held at distributed edge devices or
servers. One representative pipeline is to perform local training
on each local edge, and then send the local model updates
to the main server. Such decentralized training keeps data
localized in remote edges, and increases data complexity by
collecting data from massive number of sources. Nevertheless,
it also poses novel challenges in optimizing the model, as well
as performing privacy-preserved data analysis. On one hand,
the heterogeneity across edges violates the independently
and identically distributed assumption significantly. Existing
approaches on handling data heterogeneity in non-federated
settings could be extended to federated learning. However, it
is challenging to develop scalable models when distributed
among a large number of edge devices and meanwhile guaran-
tee the training convergence [260]. On the other hand, although
data are kept in the edges, the model updates can also result
in leaking sensitive information. Hence, it remains a challenge
to guarantee/enhance privacy in federated training [261].

D. From Static Computation to Dynamic Neural Networks

Considering the varied representation forms of the sensing
informatics over the course of real-world deployment, such
as feature permutation and dimensionality changes (which
results in the issue of quality and heterogeneity), automatically
making adaptions of the network structure or parameters is
one promising direction [262]. Some ideas underlying the
approaches (e.g., Section III-E4,III-F1) introduced above have
already touched the concepts of “dynamics”. We refer the
readers to [262] for a detailed recipe of existing dynamic
neural network techniques. In particular, the following three
aspects are meaningful for the generalization issue in pervasive
healthcare applications.

1) Scalable to Input Variations: Real-world sensing data is
prone to the changes of sensor spatio-temporal configurations.
Adapting the network architectures or parameters can enable
a unified model that is able to handle real-world sensing data
under different representation forms, such as feature permu-
tation, dimensionality changes [53], concept drifts [208], etc.
Recent research has already attempted to implement dynamic
convolution kernels on corrupted images [263].

2) Representation Capability: On the other hand, dynamic
neural networks are able to derive more meaningful represen-
tations by a series of strategies, such as attention mechanisms
and mixture of experts [262]. These can be applied in pervasive
healthcare applications with sophisticated designs, to boost the
inference performance.

3) Inference Efficiency: There is a pressing need for de-
ploying deep learning in computational-resource-limited set-
tings, such as edge devices. Dynamic neural networks have
proved to be able to promote efficient inference via varied
strategies, such as early-exiting [264], partial model activa-
tion [265], and so on.

E. From Quantitative Measurement to Trustworthiness

The rapid and widespread adoption of deep/machine learn-
ing techniques on pervasive sensing applications has the po-
tential to provide objective measures of well-being and disease
progression, along with rehabilitation strategies. This approach
would empower patients with chronic diseases/disorders as
well as elderly people to live an independent life at home
while managing their conditions. To support this goal there is
a strong initiative to promote AI advances to provide valuable
insight in the field of healthcare informatics. This requires
building human-centered technologies that are trustworthy by
enabling intuitive explanations, uncertainty estimation and
privacy preservation in both centralized and distributed frame-
works [266], [267].

1) Explainable Machine Learning Models: Instead of
rigidly adopting existing deep learning architectures to conduct
end-to-end training, more efforts are necessary to uncover
the “blackbox”. This can enhance the model capability by
more effectively modeling the relationship between data and
labels and minimizing spurious correlations. Meanwhile, the
improved interpretability can help the experts trust the model
inference performance, and select trustworthy and reasonable
deployment models. Researchers envision human-in-the-loop
systems (as discussed in Section III-G3) that not only learn
from data but also incorporate direct users’ feedback [268].

2) Privacy and Security: Privacy and security concerns
also challenge the translation of recent advances in sensing
technology and artificial intelligence in health care [269].
Several ethical concerns arise in relation to the data and
privacy of the users. Deep learning is a powerful method that
inherently memorizes data and therefore it can be exploited in
several ways that can result in leakage of sensitive information
at inference time. A recent review has highlighted adversarial
attacks along with model and data poisoning as major vul-
nerabilities during model training that can compromise both
privacy and safety of the patient [269]. To mitigate privacy
concerns, deep learning capabilities can be also implemented
based on hybrid in-situ&in-silico algorithms [270]. This recent
breakthrough provides a unique capability to develop smart
sensors for privacy-preserved and secure machine learning
solutions that are able to be trained efficiently.

3) Fairness: Fairness in machine learning refers to identify-
ing and correcting algorithmic biases that can result in gender
and racial neglect and/or discrimination. Algorithmic biases
can emerge unintentionally and thus are difficult to identify.
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Among the most common reasons is the lack of representative
samples from sensitive groups and biases already existing
in historic data [271], [272]. Although the need to oversee
machine learning pipelines for fairness has been understood,
the research on how to guarantee this is still in its infancy
[273]. For example, when the prevalence of a disease is
inherently higher in one sensitive group over another, it is
yet unclear how to guarantee fairness without compromising
accuracy.

F. From Conventional Architectures to Scalable Models

Although traditional architectures, are typically developed,
trained, and deployed using a modest number of graphic
cards, currently the increasing volume and complexity of
healthcare data underpin the need for evolving scalable deep
learning models. Notably, both ends of the scale spectrum,
from small models suitable for edge device deployment to
large foundational models at the server level, are receiving
increasing attention in the research landscape.

1) Small Models on Edge Devices: The advent of pervasive
sensing technologies has led to the development of edge
devices capable of generating a wealth of sensing informatics
in real-time. Meanwhile, the continual progression of hardware
miniaturization and optimization makes the incorporation of
machine/deep learning models into these devices a promising
prospect. This incorporation can enable real-time analysis and
decision-making at the point of data collection, in addition to
addressing privacy concerns by retaining sensitive health data
under the control of the user.

However, it is often impossible to directly deploy a model
trained in laboratory computers/servers to edge devices, or
perform model training on edge devices themselves, given
their limited data processing power and storage capability. As
such, efficient learning strategies, from efficient model design
to on-device training/processing, are paramount for developing
models that can operate in these resource-constrained environ-
ments while maintaining high predictive accuracy [274].

2) Large Foundation Models: On the other hand, large
foundation models typically trained on massive amounts of
data at extensive server scales [275], promise to be an ef-
fective tool for discerning complex patterns and extracting
valuable insights from sensing informatics. The recent suc-
cess of these models hinges on the adept deployment of
self-supervised learning paradigms on substantial volumes of
unlabeled data. Emerging works on large language models
[276] and vision models [277] have underscored their con-
siderable potential in abstracting high-level knowledge from
natural languages/images.

The pretrained large foundation model has been featured
by its rapid adaptability to downstream tasks with minimal
labeled samples [275], as well as the emerging training
paradigms based on multiple modalities [278]. Considering
the multi-modality and the high-dimensionality of the sensing
data, along with the diverse nature of healthcare tasks, it
presents substantial opportunities for developing and lever-
aging foundation models for various healthcare scenarios.
Despite their potential, issues typically associated with model

training and deployment persist, in addition to other challenges
like interpretability and the ethical usage of data.

G. From Single Issue to Real-World Compound Issues

Existing research mostly focuses solely on one single issue
at a time, which is rarely the case. In fact, in the open real
world, situations concerning sensing applications are compli-
cated and multiple issues would co-occur. The solution to
addressing one single issue may be built upon the assumption
that another co-occurring issue is not encountered [31]. One
representative example is the coexistence of heterogeneity and
scarcity. Although domain adaptation/generalization has been
developed to solve the heterogeneity across multi-source data,
the difficulty of collecting enough data in each domain cannot
be overlooked as well [181]. For instance, for arrhythmia
detection, both data scarcity issue (arrhythmia class imbal-
ance) and heterogeneity issue (cross-subject morphological
variations) exist. These compound issues in the real world
significantly limit the model performance upon real-world
deployment. In the future, novel algorithms and frameworks
that are robust against compound realistic issues, are expected.

V. CONCLUSIONS

Machine/deep learning has demonstrated unprecedented
performance in data analytics, and they have been successfully
applied in handling sensor informatics for healthcare appli-
cations. However, the fundamental empirical risk minimiza-
tion theory underpinning the purely fully supervised learn-
ing paradigm, is associated with severe issues in real-world
healthcare sensing. The scarcity of labeled data pairs, the
quality of both data and label, as well as the heterogeneity
across different sources, result in poor generalization of the
computational models statistically fitted in training data. This
has raised much attention in the research community and
several lines of learning approaches have been proposed to
tackle the above issues, ranging from data augmentations,
sampling strategies, loss engineering, supplementary tasks,
adaptive strategies, mixture of multiple models, to incorpo-
rating domain knowledge.

We overview and critically appraise key trends in tackling
the aforementioned limitations. Existing state-of-the-art ap-
proaches focus on one issue and they are not designed and
appropriately evaluated in real-word scenarios. More emphasis
should be given in human-centered approaches that promote
trust. This requires taking into consideration several aspects
that include the privacy of the user, the ability to provide
intuitive explanations and reliably estimate the uncertainty of
the models. Furthermore, it has become evident that minimally
supervised models should be developed to handle contin-
uous streams of heterogeneous, multi-modal data both in
centralized and federated settings. Dynamic neural networks
that adapt their structure or parameters during inference is
a promising direction to enable scalable and efficient infer-
ence on computational-resource-limited devices while they
enhance representation capabilities. In addition, considering
the increasing volume and complexity of healthcare sensing
informatics, developing deep learning towards both small-scale
and large foundational models is necessary.
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