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Abstract
Superconducting coil is an essential and critical component in any superconducting apparatus
used in large-scale power applications such as in superconducting machines of propulsion
systems, in fault current limiters of the distribution system for future cryo-electric aircraft, or in
windings of superconducting transformers for power grid applications. The superconducting
coils in winding of large-scale power devices operate in kind of harsh environments from both
temperature—considering liquid hydrogen or gaseous helium as coolant—(thermal stress) and
electro-magneto-mechanical stress, point of views. Reliable operation of the coils in winding is
of vital importance for the reliability of the superconducting device and the safety of the
application that the device is used for. If the superconducting coil confronts a fault or an
abnormal condition in the laboratory-level operation, it is straightforward to test the coil by
measuring its critical current, AC loss, etc, to find whether it is damaged or not. However, there
would be an urgent need to have faster and more intelligent fault detection and condition
monitoring approaches with the possibility to become fully autonomous and real-time, in
large-scale power applications, especially in sensitive applications such as in future
cryo-electric aircraft, or in the fusion industry. To reach such intelligent fault-finding
approaches, artificial intelligence-based techniques have been foreseen to be a promising
solution. In this paper, we have developed an intelligent fault detection technique for finding a
faulty superconducting coil, named the frequency-temporal classification method. This method
has two main steps: first, this paper utilizes the discrete Fourier transform and independent
component analysis to convert measurement signals of the healthy and faulty coils from (1) the
time-series domain to the frequency domain; and (2) into time-series source signals.
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Second, this paper trains the support-vector machine using the derived frequency components.
This trained model is then used for making fault detection for other superconducting coils. The
developed technique can classify a fault with 99.2% accuracy.

Keywords: artificial intelligence, discrete Fourier transform, fault, fault diagnostic,
superconducting coil, Intelligent fault detection technique

(Some figures may appear in colour only in the online journal)

1. Introduction

Large-scale superconducting power devices are usually con-
sisted of many coils in the form of winding in order to be sup-
plied with higher voltage and carry higher currents to increase
transmitted power. Some examples of using these supercon-
ducting coils are in superconducting machines, fault current
limiters, transformers and magnets for cryo-electric aircraft,
power networks, or fusion industry applications [1–4]. The
superconducting coil as a critical component of a device oper-
ates under very low cryogenic temperatures, such as the tem-
perature of the liquid or gaseous helium, liquid hydrogen, or
liquid nitrogen, i.e. in a range of 4 K–77 K. Thermal stresses
can sometimes lead to establishing hotspots in coils [5, 6]. On
the other hand, since large-scale power devices in steady-state
conditions usually transmit/transfer high power, supercon-
ducting coils are working under electro-magneto-mechanical
stresses. These stresses can be significantly higher during tran-
sient and short circuit conditions which can lead to mechanical
damages such as kink, bending, weak point establishments or
even winding deformation [7–10]. Reliable and safe operation
of the superconducting coils and the superconducting device
itself is of vital importance for many critical applications such
as cryo-electric aircraft with passengers onboard and also for
power network applications to guarantee a continuous supply
of power. If a superconducting coil face with a fault or mal-
function in a laboratory-scale device, it would be fairly easy
to test the coil by measuring critical current, and AC loss to
find out if it is damaged; but in the real world, when a coil
is wound with other coils in a winding of a superconduct-
ing device, there would be a need to have fast and smart fault
detection method with a possibility to become fully autonom-
ous and real-time to ensure online fault detection. For reach-
ing to such fault-finding approaches, artificial intelligence (AI)
based techniques can be considered as a promising solution
[11–15].

AI-based methods are recently implemented in many dif-
ferent engineering problems. But the application of AI tech-
niques for applied superconductivity problems is certainly
overlooked [11, 13], especially for fault detection purposes
within the superconductivity community. There is a great
potential to involve AI methods in the detection of faults in
superconducting windings. This paper makes the following
original contributions:

(1) This paper, for the first time, develops a frequency-
temporal classification method to detect faulty supercon-
ductor coils.

(2) This frequency-temporal classification method only
requires the voltage measurement of one fundamental fre-
quency cycle, thus offering advantages in terms of being
data-efficient, cost-efficient, and practical in industrial
applications.

The developed frequency-temporal classification method
contains two steps. First, this paper utilizes the discrete Fourier
transform (DFT) and independent component analysis (ICA)
to convert measurement signals of the healthy and faulty coils
from (1) the time-series domain to the frequency domain;
and (2) into time-series source signals [16, 17]. Therefore, it
decomposes the time-series voltage signals into the combin-
ation of a set of different frequency components and inher-
ent time-series components. Second, this paper trains the
support-vector machine (SVM) using the derived frequence-
components [18]. This trained model is then used for detecting
fault for other superconducting coils with voltage signal data
only.

Case studies reveal that the combination of DFT and
SVM indeed improves the detection accuracy to a satisfy-
ing value: no less than 99.2%. Furthermore, case studies
also: (1) discuss and demonstrate the importance of apply-
ing DFT in improving fault detection accuracy; and (2) com-
pare the detection accuracy by a number of different classi-
fication methods and justifies the selection of SVM in this
paper.

The rest of the paper is organized as follows: section 2
presents the experimental setup for measuring the voltage sig-
nals of the healthy and faulty coils. The modeling method-
ology and procedure are explained in section 3. Section 4
presents the case studies. Section 5 concludes the findings of
this paper.

2. Experimental setup

2.1. Specifications of the healthy coil and faulty coil

Both the healthy coil and faulty coil were wound with 4 mm-
wide SuperPower tape. The parameters of the conductor are
listed in table 1.
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Table 1. Parameters of superconducting tape.

Items Values

Manufacturer SuperPower
Tape type SCS4050-AP
Width, (mm) 4
Thickness of tape, (mm) 0.1
Thickness of HTS layer, (µm) 1
Minimum Ic (A) 127
Stabilizer material Copper
Thickness of stabilizer, (µm) 20 on both sides

Figure 1. Healthy coil and faulty coil assembly.

Table 2. Specifications of the healthy and faulty coils.

Items Healthy coil Faulty coil

Coil type Helical Helical
Inner diameter, (mm) 87 87.4
Layer number 1 1
Turn number 5 5
Pitch length, (mm) 5 5
Insulation Kapton tape Kapton tape
Valid distance of voltage taps, (cm) 129.6 131.2
Self-inductance, (µH) 3.30 (L1) 3.22 (L2)

Figure 1 shows the assembly of the healthy coil and faulty
coil, wound around one G10 tube, 89 mm in diameter. Both
coils had five turns with a pitch length of 5 mm, and they were
electrically insulated byKapton tapes. The two coils were con-
nected in series, through the copper bars, indicated as ‘1, 2,
3, and 4’ in figure 1. Voltage taps on the healthy coil were
soldered 20 mm away from the copper bar, and so did the
voltage taps on the faulty coil. The specifications of these two
coils are listed in table 2.

2.2. Experimental testing system

Establishing and training the AI models requires ‘represent-
ative’ groups of data from faulty and healthy coils. Hence,

Figure 2. Schematic of the testing rig set up.

we carried out 33 experimental tests on the healthy and faulty
coils, by exciting the coils with sinusoidal currents under three
frequencies and different current amplitudes. The frequencies
were 27 Hz, 54 Hz, and 81 Hz. Current amplitudes were set as
5 A, 10 A, 20 A, 30 A, 40 A, 50 A, 60 A, 70 A, 80 A, 90 A,
and 100 A. It is noted that the critical current of the coils was
128 A for the healthy coil, and 134 A for the other coil before
it went faulty. Voltage signals were captured, stored and used
for the model building and validation.

Figure 2 depicts the testing system for the healthy and
faulty coils. A signal generator was used for generating a
sinusoidal wave, which was sent to and amplified by a power
amplifier.

The output of the power amplifier was further connected
into a step-down transformer, to increase the current amp-
litude to the desired value. The healthy coil and faulty coil
were connected in series in the circuit excited by the second-
ary output of the transformer. A shunt resistor (500 A/50 mV)
was used in the testing system to read the current in both
coils, and the currents in the two coils are identical due
to the series connection. All experimental tests were con-
ducted in liquid nitrogen (LN2) bath, at 77 K and satur-
ated vapor pressure. The signals from both coils and the
shunt resistor were logged by a NI DAQ module, which was
controlled directly by the LabVIEW program in a personal
computer.

2.3. Sample signals

An example of sampled voltage signal for the faulty coil is
shown in figure 3. By observing this signal, one can easily
understand that it very much looks like normal signal that we
usually log during any normal and steady state operation of a
typical coil. It is interesting that while it is impossible to find
any disorder or abnormality in the time-based signal (shown in
figure 3(a)), frequency-time analysis presents distinctive fea-
tures that can help to discriminate healthy coils from the dam-
aged one as shown in figure 3(b).

3



Supercond. Sci. Technol. 36 (2023) 085021 M Yazdani-Asrami et al

Figure 3. Sampled voltage signal of the faulty coil measured at
54 Hz (a) with frequency domain feature signals for faulty and
healthy coils (b).

3. Modeling methodology

This section develops a statistical method, named the
frequency-temporal classification, to detect the HTS coil’s
fault by using measured voltage signals only. This method
could deliver promising fault detection accuracy with minimal
implementation complexity. Case studies in section 4 justify
that this method delivers satisfactory fault detection accur-
acy of over 99% by utilizing data from only one fundamental
frequency cycle of measured voltage. This method, there-
fore, presents advantages in terms of data-efficiency, cost-
efficiency, and practicality in industrial applications. Figure 4
flowcharts the developed frequency-temporal classification
method.

The flowchart contains three stages. First, before apply-
ing the developed method, the raw dataset is divided into two
groups, coil voltage data with known states (known healthy or
faulty states) and without known states, respectively. Stage 1 is
the data preprocessing stage. This stage will align time-series
voltage signals at the beginning of each alternative period and

Figure 4. The flowchart to explain the developed frequency-
temporal classification method.

scale all data to a range of 0–1. The scaling process removes
the effect of different magnitudes of data collected from dif-
ferent applications. Stage 2 involves feature extraction pro-
cesses on both frequency and time-series domains. This stage
will extract discriminative features from processed data with
known states. A more discriminative of extracted features
implies a higher prediction accuracy could be obtained from
the trained model. Further, DFT and reversed-ICA are applied
to data without known states for obtaining the same feature
bundle on both the frequency and the time-series domain.
Stage 3 involves classification model training and fault pre-
diction for data without known states. This stage will util-
ize the extracted features of data with known states to train
a classification model. A well-trained model will be gen-
erated and will predict the condition for coils of unknown
states. To obtain the prediction, the extracted features for
coils of unknown states are the input for the well-trained
model.

The rest of this section is organized as follows: section 3.1
describes the background of the classification technique;
section 3.2 defines the input data; section 3.3 describes the
voltage signal decomposition on both frequency domain and
time-series domain; section 3.4 trains the classification model;
section 3.5 presents the validation process.

3.1. Background of classification using AI

Classification is an AI task that can separate a set of obser-
vations into two or multiple groups according to their feature
data. A good well-known example for it is in email systems
where the operator uses classification models to identify spam
and non-spam emails according to the feature data (keywords,
e.g. advertisement, money-making, cash) of received emails.
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Figure 5. Simplified ANN configuration with a single hidden layer.

Classification has been widely applied in computer vision,
speech recognition, pattern recognition, power systems, etc
[19, 20].

The classification process is briefed as follows:

(1) Given a set of training samples with certain categories as
the input data, e.g. in email classification, the two categor-
ies are spam and non-spam.

(2) Taking appropriate mathematic approaches (such as prin-
cipal component analysis [21], ICA [16]) or empirical
approach to select the features from the raw data of the
given observations. It should be stressed that the selected
feature data should apply to all categories.

(3) Training the classification method using the selected fea-
ture data and their known categories for the given training
samples.

(4) For any samples without a given category, repeat step (2)
to select their feature data; utilizing these features and the
trained classifier to identify these samples’ categories.

Typically, classification methods have two categories: (1)
probabilistic classification method, e.g. logistic classification,
neural networks, etc.; and (2) non-probabilistic classification
method, e.g. linear classification, Adaboost, SVM, k-nearest
neighbor (KNN). Two examples of probabilistic and non-
probabilistic classification methods are briefed below.

Artificial neural network (ANN) is a classic probabilistic
machine learning method [22]. It intends to develop a probab-
ilistic relationship between the features and the categories.

Figure 5 shows a simplified ANN with l (l= 1 in this
illustrated figure for the example) hidden layers. The rela-
tionship between the input data (x) and output data (y) is
given by:

yn = σ

 m∑
j=1

w(2)
nj f

(1)

(
n∑

i=1

w(1)
ji xi+ b(1)

)
+ b(2)

 (1)

where σ ()denotes the output activation function; f(1) ()

denotes the activation function for layer 1; w(2)
nj is the weight

between the nthneuron in layer 2 (the output layer) and jth in
layer 1 (the hidden layer); w(1)

ji is the weight between the jth

neuron in layer 1 (the hidden layer) and ith in layer 0 (the

Figure 6. A simple example of SVM classification for a problem
with two categories of input data and the feature data also have two
dimensions.

input layer); b(1) and b(2) are the bias to layer 2 and layer 1,
respectively. The ANN concept and performance are detailed
in [22–25]. In training the ANN model, the weight in each
layer is probabilistically derived [24].

Non-probabilistic classification methods would fit a lin-
ear or non-linear plane or hyperplane to separate the feature
data with maximum margin according to the feature data and
the input data’s categories [18]. If the feature data have n
dimension, the non-linear plane or hyperplane would have n-1
dimension [18]. For example, the hyperplane for SVM is fitted
by [18]:

min
ω,b

1
2∥ω∥

2
+C

Nt∑
i=1

ei

subject toyi
(
ωT ·φ (xi)+ b

)
⩾ 1− ei

ei ⩾ 0

(2)

where ω and b are the coefficient vector and the interception
term, respectively; yi is the ith training sample’s category label
(yi ∈ {−1, 1}); φ (xi) is the feature vector for the ith train-
ing sample; C

∑Nt
i=1 ei denotes the regularization index for

reducing the generalization error, where C denotes the pen-
alty coefficient; Nt gives the total number of training samples;
ei is the outlier-induced infringement. The SVM is described
comprehensively in [18].

Supposing there are two categories of input data and the
feature data also have two dimensions, the example of SVM
classification is presented in figure 6.

In figure 6, the blue and red points represent two classes.
The results show that the two classes are successfully separ-
ated by the grey solid line, i.e. the hyperplane derived by SVM
with the largest separating margin, as compared with other
separating hyperplanes (dash lines of different colors).
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3.2. Processing the input time-series voltage data

Taken the measured time-series voltage data throughout a
given timespan from the experiment, detailed in section 2, the
input voltage data for any coil is given and scaled by:

Vms,c, i = [Vms,c,i,1,Vms,c,i,2, · · ·Vms,c,i,t] (3)

Vinput,c,i = {Vinput,c,i,t}= [Vinput,c,i,1,Vinput,c,i,2, · · ·Vinput,c,i,t]
(4)

Vinput,c,i,t =
Vms,c,i,t

max
t
Vms,c,i

(5)

where Vms,c,i is the measured time-series voltage data through-
out the time from 0 to t for the ith coil in condition c; c ∈
{faulty, healthy}; Vinput,c,i denotes the scaled input voltage
data throughout the time from 0 to t for the ith coil in
condition c.

3.3. Performing the voltage signal decomposition on the
frequency domain and time-series domain data

This section utilizes DFT and ICA to decompose the input
time-series voltage signal on the frequency domain and time-
series domain, respectively.

The reason for using DFT is that (1) in this study, the meas-
ured voltage signal is on stationary condition; and (2) DFT
is a typical and widely-used method for frequency analysis
where the input signal is on stationary status [17, 26]; (3) tak-
ing the extracted frequency information/data as the input fea-
ture to train the classification increase the prediction accuracy
by 100%.

The reason for using ICA is that (1) ICA is a classic and
widely used method in time-series data decomposition, so
make it easier to be implemented in any industrial application
in future; (2) utilizing ICA to derive the time-series feature
improves the final fault detection accuracy by 30% compared
to using DFT only; (3) utilizing ICA achieves the greatest
fault detection accuracy, compared to other classic time-series
decomposition methods.

3.3.1. Utilizing DFT to derive the features on the frequency
domain The derived frequency domain signals are, there-
fore, given by [17]:

FCc,i = [FC0,c,i,FC1,c,i, · · ·FCt−1,c,i] (6)

where

FCk,c,i =
t−1∑
t=0

Vinput,c,i,t

[
cos

(
2π
nt
kt

)
− isin

(
2π
nt
kt

)]
(7)

FCc,i denotes the DFT functions for the ith coil in condi-
tion c; c ∈ {faulty, healthy}; FCk,c,i denotes the derived kth

elements on the frequency domain for the ith coil in condition

c; k ∈ {1,2, · · · t− 1}; t is defined in (1); nt is the total number
of sampling voltage data from time 0 to t.

Given that: (1) the measured voltage signals of supercon-
ducting coils are a combination of sinusoidal signals and
unknown harmonics: and (2) ‘the DFT of a real sinusoidal sig-
nal (odd signal) only has imaginary part’ [17]. This indicates
that excluding the unknown harmonics, the DFT of the meas-
ured voltage signals from healthy and faulty coils should be
the same. To separate healthy and faulty coils by analyzing
the voltage signals, the harmonic or the cosinusoidal part of
the DFT is the linchpin. Therefore, this paper only extracts the
real part, the cosinusoidal part, of the DFT function, for train-
ing the classificationmodels. The real part of the DFT function
is given by:

Fc,i = {Fk,c,i}=

{
t−1∑
t=0

Vinput,c,i,t

[
cos

(
2π
nt
kt

)]}
(8)

where Fc,i contains only the real part of of FCc,i (given by (4))
for the ith coil in condition c; c ∈ {faulty, healthy}.

3.3.2. Utilizing ICA to derive the features on the time-series
domain Given the feature vectors in equation (6), this
section utilizes the ICA to extract source signals and their
weights in the original signal [16]. ICA belongs to the cat-
egory of blind source separation, which aims to extract source
signals from mixed signals. Blind source separation is widely
applied in a number of engineering fields [16, 27].

To derive the components signals within the voltage signals
obtained, the model is given by:

Vinput,c =
n∑

j=1

ac,i,jsc,i,j (9)

where Vinput,c denotes the scaled input voltage data in condi-
tion c, Vinput,c is a matrix with ith column and tth rows; i is the
number of coils; t is the number of time slots for the collected
voltage data; sc,i,j gives the independent components for the
ith coil under the condition c, c ∈ {faulty, healthy}; ac,j is the
weight forsc,i,j.

To find out the weight and components signals, minimiz-
ation of mutual information is commonly adopted. The solu-
tion for using minimization of mutual information is detailed
in [16].

3.4. Training the SVM classifier

After deriving the frequency domain signals, the input feature
vector fv and response vector rinput for both measured healthy
and faulty coils are given by:

fv =

[
(Ffaulty,1, afaulty,1), · · ·(Ffaulty,i,afaulty,i),
(Fhealth,1,ahealthy,1) · · ·(Fhealthy,i, ahealthy,i)

]T
(10)

rinput = [“faulty”, · · ·“faulty”,“healthy”, · · ·“healthy”]T (11)
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where Fc,i is defined in (6); c ∈ {faulty, healthy}; “faulty”
is a string feature, indicating this measured coil has a fault;
“healthy” is a string feature, indicating this measured coil is
healthy. It should be stressed that (1) the element within the
same location of finput and rinput refers to the same coil; (2)
finput and rinput are in the same size.

Given the derived feature vector and response vector, this
paper trains a binary SVM model with the radial basis func-
tion (RBF) kernel for the classification. The reason for using
the SVM model and RBF kernel is that (1) SVM is a classic
classification method, which prevails over the other model for
the majority of scenarios [18, 28]; (2) the combination of RBF
kernel and SVM delivers the highest classification accuracy,
compared to other traditional classification methods. Section 4
presents a comprehensive comparison study of classification
accuracy delivered by different traditional classification meth-
ods for this paper.

Before training SVM, the linear kernel has been applied to
map the original feature to a higher dimensional Hilbert space.
Having a higher dimensional feature space implies the SVM
could find a more distinct hyperplane to the two categories.
The linear kernel is given by:

φ (xi) = [k(fv,i,1, fv,i,1) ,k(fv,i,1, fv,i,2) · · ·k(fv,i,p, fv,i,q)]
where k(fv,i,p, fv,i,q) = fv,i,p · fv,i,q (12)

where fv,i,p and fv,i,q are the pth and qth elements in the ith row
of the feature vector fv (as defined in (9)), respectively; σ is a
free parameter. The details of the RBF kernel are described in
[18].

Then, equation (2) takes the derived feature matrix φ (xi)
and the response vector rinput to train the SVM classifier.

To perform fault detection for any superconducting coils
under unknown conditions, the two steps are given as follows:

(1) Taking equations (3)–(10) to derive these coils’ feature
data;

(2) Utilizing the trained SVM classifier to determine whether
these coils are under healthy or faulty conditions according
to their features.

3.5. Validation

This paper selects the k-fold (k = 10 in this paper) cross-
validation method [29] to validate the results. The k-fold
cross-validationmethod is well-recognized andwidely applied
in AI research and applications to validate the classification
method [29]. This method delivers more credible validation
results than standard hold-out validation. The k-fold cross-
validation method validates every sample from the training
dataset, while the hold-out validation only validates a given
number of samples. The k-fold cross-validation method is
briefed in figure 7 as follows:

Figure 7. Simple illustration of the K-fold cross-validation method.

(1) It divides the collected data into ten equal-sized groups.
In this paper, the collected data are the collected voltage
signals from healthy and faulty coils.

(2) The validation process repeats ten times, where each time
one of the groups is held out as the validation samples, and
the other nine groups remain the training samples.
For each time:
• SVM fits a hyperplane according to data from the
training samples.

• Given the derived hyperplane and the validation samples,
the trained SVM allocates a category for each of the
validation samples.

• It, therefore, produces a classification error, as given by:

enk =
nmc
nvs

· 100% (13)

where nk denotes the nkth repeat the time of the validation
process, nk ∈ {1,2,3, · · · ,10}; nmc denotes the number of
misclassified samples; nvs is the total number of validation
samples.

(3) After repeating 10 times, it derives an overall classification
error for the validation, as given by:

ev =

∑k
nk=1 enk
k

(14)

where k= 10 in this paper.

4. Case studies

This section presents the results: (1) section 4.1 justifies the
utilization of DFT and ICA decomposition; (2) section 4.2
makes discussions on insights into industrial implementation.

The measured voltage signals are described in section 2. In
this section, 27 Hz and 54 Hz voltage signals are studied for
fault detection.

This paper uses Spyder with Python 3.10 compounded.
Classification models are selected from Scikit-learn packages.
The simulation is applied on a computer with a CPU of i9-
13900HX. The training time lasted no more than 3 s for the
selected linear SVM model.

In sections 4.1 and 4.2, the measured voltage signals cover
one fundamental frequency cycle. For the 27 Hz scenario, we

7
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Figure 8. Fault detection accuracy comparison if only DFT is
applied to voltage signals.

Figure 9. Fault detection accuracy comparison if only ICA is
applied to voltage signals.

measured 234 and 231 voltage signals from the faulty coil
and the healthy coil, respectively. Each signal collects 369
data points. For the 57 Hz scenario, we measure 477 and
476 voltage signals from the faulty coil and the healthy coil,
respectively. Each signal collects 185 data points.

4.1. Justification of using DFT and ICA decomposition

Through experiment, the time-domain voltage signals from
healthy and faulty coils do not perform apparent differences
for 27 Hz, and 54 Hz. Using the measured time-domain
voltage signals to train the classification model incurs drastic-
ally high prediction errors.

Therefore, decomposite the raw voltage signal by consid-
ering both the frequency and time-series domain could extract
distinguishable features for both faulty and healthy coils.

In this study, only the first 5 frequency information from
DFT is used. The extracted component by ICA is set to 6. The
reasons for these selections are presented in section 4.2.

Figure 8 presents the fault detection accuracy by applying
DFT only.

Figure 9 presents the fault detection accuracy by applying
ICA only.

Results shown in figures 8 and 9 justify that adopting DFT
and ICA finds distinguishable features from voltage signals of
faulty and healthy coils. Therefore, we can claim that prom-
ising fault detection accuracies are achieved.

By combining the extracted features from DFT and
ICA, figure 10 presents the comparison results between the

Figure 10. Accuracy results in comparison among the
frequency-temporal-based SVM and other typical classification
methods.

frequency-temporal-based SVM and other typical classifica-
tion methods. The prediction accuracy comparison is presen-
ted below.

In figure 10, F-SVM and Adaboost [30] deliver almost the
same prediction accuracy, which prevails over the other typical
method, such as ANN, linear-SVM, Logistic [31] and KNN. It
should be stressed that although ANN delivers slightly higher
accuracy than Linear-SVM, we still recommend Linear-SVM
in industry applications. This is because:

1. It does not require complicated progress for tuning the para-
meters of SVM when training it.

2. Boosting algorithm is very sensitive to data qualities [30].
If data quality is poor in real applications, such as in elec-
tric aircraft or other electric transportation applications, the
fault detection accuracy would be compromised.

3. Further, training and deploying SVM do not require vast
computation capacity. A lower computation capability chip
can operate SVM. Comparatively, training Adaboost would
be time-consuming. To achieve the same training speed
as SVM, applying boosting requires a better computa-
tion platform which performs lower stability and relatively
higher power consumption. If the superconducting coils are
deployed on an electric aircraft, the stability of the predic-
tion system should be considered.

Therefore, SVM prevails over ANN in this study because
of its application simplicity and platform stability.

4.2. Discussions on insights for practical industrial
implementation

4.2.1. Discussions on raw data analysis for voltage signals
from uncategorized coils. This section discusses the implic-
ation of feature selection to fault detection accuracy, i.e. the
optimal combination of set ICA components information and
extracted DFT information would achieve the greatest fault
detection accuracy.

In figure 11, the greatest fault detection accuracy is 99.2%.
This is achieved when (1) setting the ICA components to 6–
10 and selecting 1st–5th DFT information as the features, or

8
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Figure 11. Prediction accuracy matrix for different numbers of ICA components and DFT information features.

Table 3. Fault prediction comparisons by directly using time-series voltage signals of 27 Hz.

Method KNN Logistic Adaboost ANN Linear-SVM

Accuracy 87.10% 94.70% 96.30% 65.40% 95.2%

(2) setting the ICA components to 5–10 and selecting 1st–6th
DFT information as the features.

In the industry application, it suggests two combinations
for simplifying the implementation: (1) setting the ICA com-
ponents to 6 and selecting 1st–5th DFT information as the
features; (2) setting the ICA components to 5 and selecting
1st–6th DFT information as the features. Both combinations
would generate a feature vector of 11 dimensions, the minimal
number of dimensions in the feature combinations to achieve
99.2% accuracy.

Table 3 presents the fault prediction results if directly using
the time-series voltage signals as the input data to train the
Classification model.

Figure 11 and table 3 present that having the DFT and ICA
methods could improve the fault prediction accuracy by more
than 4%.

4.2.2. Discussions on DFT results and their impacts to fault
detection accuracy. This paper only extracts the DFT func-
tion’s real part (the cosinusoidal part) as the input data for
training the classification model. This is because (1) excluding
the unknown combination of harmonics, the measured voltage
signals of superconducting coils are sinusoidal and (2) ‘the
DFT of a real sinusoidal signal (odd signal) only has the ima-
ginary part (the sinusoidal part)’. Therefore, in this study, the
harmonics, i.e. the real part of the DFT function, is the linchpin
to separate healthy and faulty coils.

Figure 12 presents the prediction accuracy if the amplitude
of the DFT function is considered, i.e. both the cosinusoidal
part and the sinusoidal part of theDFT function are considered.

Comparing figures 10 and 12, it proves that considering the
imaginary part of the DFT functions reduces the classification
accuracy. This, in turn, justifies this paper’s selection, only tak-
ing the real part of the DFT function as the feature data.

4.2.3. Discussions on raw data collection. In the case stud-
ies, the input data for detecting the superconductor’s operating
condition only covers one fundamental frequency cycle. The
developed frequency-temporal classification model delivers

Figure 12. Accuracy results in comparison when using the
amplitude data of DFT as the features.

over 99.2% fault prediction accuracy by having this minimal
data only.

This implies that the developed method is absolutely data-
efficient and can locate the fault scenarios quickly. This
advantage is significant in industry applications. For example,
if one of the superconducting coils goes faulty in propulsion
machine of an electric aircraft, every millisecond counts.

Increasing the covered period of input data does increase
the classification accuracy. For example, extending the input
data to two fundamental frequency cycles increase the predic-
tion accuracy from 99.2% to 99.4%. When implementing this
fault detection technique, the industrial operators and manu-
facturers should consider and make a trade-off whether it is
worth doubling the measurement time for a 0.2% accuracy
increase.

4.2.4. Discussions on future extensions and applications.
The fundamental methodology of frequency-temporal classi-
fication could be applied to another application field for super-
conductors. However, based on the no-free-lunch theory in
machine learning, there is no one-size fits all solution. This
means the structure could be kept as it is but the techniques
used could be different from data to data. In future applica-
tions on other superconducting systems, it should be noted that
the feature extraction techniques should be re-selected in both
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frequency and time-series domains, alongside re-selecting the
classification methods. For the feature extraction techniques,
there are alternative techniques that could be used. In select-
ing feature extraction techniques, one principle should be fol-
lowed. If the technique could extract the most discriminative
feature, that is utilizing the extracted feature could generate
the highest prediction accuracy, that feature extraction method
will be selected. This principle also applies in selecting the
classification techniques.

5. Conclusion

It is very critical to achieve faster and more intelligent fault
detection approaches with the possibility to become fully
autonomous and real-time for superconducting coils andwind-
ings, especially for those operating in large-scale power
devices in sensitive applications such as in future cryo-electric
aircraft, or in the fusion industry, as the first and most import-
ant step for protection systems to act. Up to now, there are
limited reports or studies in this area.

In this work, we have developed an intelligent fault detec-
tion technique for finding a faulty superconducting coil, named
the frequency-temporal classification method. The new tech-
nique was developed based on fully experimental testing
results from two superconducting coils, one faulty and one
healthy. This method firstly utilizes the DFT and ICA to con-
vert measurement signals of the healthy and faulty coils from
(1) the time-series domain to the frequency domain; and (2)
into time-series source signals; Then trains the SVM using the
derived frequency-components. This trained model is used for
making fault detection for other superconducting coils with
voltage signal data.

An intelligent fault detection technique for superconduct-
ing coils and windings has been introduced in this paper based
on signal processing and machine learning. This new tech-
nique is capable of discriminating faulty coils from healthy
ones with an accuracy of above 99.2%. The results of the pro-
posed method in this paper have been compared with some
other techniques to prove the effectiveness.

This paper, for the first time, develops a frequency-
temporal classification method to detect faulty supercon-
ductor coils. This frequency-temporal classification method
only requires the measurement for one fundamental fre-
quency cycle, thus offering advantages in terms of being data-
efficient, cost-efficient, and practical in any future industrial
applications, especially for cryo-electric aircraft applications.
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