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Abstract—Steerable arrays are often developed based on com-
plex phased arrays or lossy beamforming networks, making
them unsuitable for pervasive wireless power transmission (WPT)
applications. Here we propose the first sub-6 GHz quasi-optical
beam-steering WPT dielectric lens-based system. The lens has
an area of 16.6λ2

0 with a height of 0.83λ0, achieving an aperture
efficiency of 44.7% and a gain improvement of 10 to 14 dB from
5.2 to 6.5 GHz. A ±60◦ beam-scanning angle is achieved with
linear feed displacements, resulting in a 1 Steradian half-power
beamwidth. The proposed design could enable switchable and
multi-beam transmitters, with broad-beam high-gain rectennas.

I. INTRODUCTION

Long-range wireless power transmission (WPT) is of great
significance for powering remote maintenance-free sensors [1].
The channel losses represent the efficiency bottle-neck [2]
leading to an increased demand for directional and steerable
antennas, to reduce the path-loss of beamed power.

High-gain transmitters allow the power to be focused over
meters-range [3]. For example, a quasi-optic power focusing
setup recently demonstrated a 63.7% beam efficiency at a
distance of 7.6 m at 5.8 GHz [4]. However, bulky parabolic
reflectors were required. Furthermore, while phased arrays
continue to attach interest in large-scale WPT arrays [5], off-
the-shelf shifters have a high insertion loss (typically >2
dB) and complex feeding networks are still required. On the
receiver side, large-area RF power collectors have been widely
explored including broadband a [6] and flexible electrically-
small surfaces [7]. Multi-beam rectennas have been reported
using 3D arrays beamforming networks [8], but with increased
power-combining losses [9].

In this paper, we present a 5.8 GHz WPT system based on
a 3D-printable Fresnel lens for license-free WPT applications.
When fed with a 7-8 dBi source, the lens can increase the gain
by up 14 dB with a 60◦ half-power beamwidth.

II. LENS DESIGN AND ANALYSIS

While planar beamforming lenses [10] and beamforming
networks [8] have been reported in rectennas, they incur addi-
tional losses and only provide an improved angular coverage
on a single spherical cut as opposed to a solid 3D angle. The
proposed system is based on a grooved Fresnel lens, shown
in Fig. 1. The radius of each section R is calculated using

Ri =

√
2Fi(λ0/P ) + (i

λ0

P
)2 i = 2, 3, ...P (1)
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Fig. 1. (a) Layout and dimensions of the grooved Fresnel lens. (b) simulated
E-field distribution showing the multi-beam-steering capability.

where P is the phase correcting index, λ0 is the free-space
wavelength (for 5.8 GHz), and F is the focal length [11].
The lens is designed based on an ABS-based 3D-printable
PREPERM TP20280 filament, with ϵr=4.4 and tanδ=0.004.
The permittivity is not graded as the phase transformation is
achieved using the height of the rings, with the inner ring
having ϵr=1 and therefore left as air.

To evaluate the beam-scanning performance of the lens for
a directional WPT transmitter, the lens was simulated in CST
Microwave Studio with a waveguide port. Fig. 1(b) shows the
simulated E-field response at 5.6 and 6.0 GHz. The lens was
fed by a source at x = y =0 mm, x=48 mm, and x=96 mm for
main-lobe at θ=0◦, 13.2◦, and 30◦, respectively. The far-field
response is shown in Fig. 2, where the beam-scanning can
be observed in Fig. 2(a). The advancement over prior planar
lens-based WPT implementations can be seen in Fig. 2(b)-
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Fig. 2. Simulated far-field gain of the lens-based transmitter: (a) polar
plot over the E-plane for varying feeding points (radius scaled to 5 dBi per
division); (b) normalized 2D far-field gain for a bore-sight source; (c), (d),
off-center beam-steering for a source at x = y = 96 and x = y = −96 mm,
respectively.
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Fig. 3. Simulated gain with and without the grooved lens over the 5.8 GHz
band for θ = 0◦ (bore sight) and θ ≈ 30◦.

(d), where the power can be transmitted or harvested across
approximately 1 Steradian with a −3 dB coverage. The gain
improvement by the lens is shown in Fig. 2, over the 5.2
to 6.5 GHz bandwidth. The peak gain is observed for both
a boresight transmitter at θ = 0◦, and at θ ≈ 30◦ for a
transmitter with an x displacement of 96 mm.

III. WPT RECTENNA PERFORMANCE

A microstrip voltage doubler rectifier is designed based on
a RO4051b substrate and a Bat15-04R Schottky diode. The
rectifier is matched using a series capacitor with distributed
harmonic termination at the output. Fig. 4 shows the rectifier’s
RF-DC power conversion efficiency (PCE) over frequency and
power, in the 5.8 GHz band, matching the bandwidth of the
lens observed in Fig. 3.

In a WPT system with 8 dBi Yagi-Uda feeding antennas,
over 1 mW DC power can be delivered over a range of 10 m
with 1 Steradian angular coverage, representing over 20×
improvement in the DC output compared to a system operating
at 915 MHz [7]. This can be achieved using a 1 W source and
the proposed rectifier based on the free-space path loss when
using transmitting and receiving lenses.

IV. CONCLUSIONS

We presented a lens-based WPT system operating at
5.8 GHz for long-range license-free applications, featuring a
10–14 dB gain improvement from 5.2 to 6.5 GHz with a 1
Steradian coverage. It is shown that a 3D-printable lens could
enable a steerable WPT transmitter without phase-shifting
mechanisms, or to enable a passive rectenna to maintain a 1
Steradian beam without a lossy feeding network. Experimental
results will be presented at the conference.
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Fig. 4. Harmonic balance simulated RF-DC performance of the 5.8 GHz
rectifier for a 1 kΩ load: (a) rectifier’s S11 and PCE over frequency at 10
dBm input power, and (b) DC output and PCE over power at 5.8 GHz.
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