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Aims Multivariable prediction models can be used to estimate risk of incident heart failure (HF) in the general population.
A systematic review and meta-analysis was performed to determine the performance of models.

Methods From inception to 3 November 2022 MEDLINE and EMBASE databases were searched for studies of multivariable

and results models derived, validated and/or augmented for HF prediction in community-based cohorts. Discrimination measures
for models with c-statistic data from >3 cohorts were pooled by Bayesian meta-analysis, with heterogeneity assessed
through a 95% prediction interval (Pl). Risk of bias was assessed using PROBAST. We included 36 studies with
59 prediction models. In meta-analysis, the Atherosclerosis Risk in Communities (ARIC) risk score (summary
c-statistic 0.802, 95% confidence interval [CI] 0.707-0.883), GRaph-based Attention Model (GRAM; 0.791, 95%
Cl 0.677-0.885), Pooled Cohort equations to Prevent Heart Failure (PCP-HF) white men model (0.820, 95% CI
0.792-0.843), PCP-HF white women model (0.852, 95% CI 0.804—0.895), and REverse Time AttentloN model
(RETAIN; 0.839, 95% CI 0.748—-0.916) had a statistically significant 95% Pl and excellent discrimination performance.
The ARIC risk score and PCP-HF models had significant summary discrimination among cohorts with a uniform
prediction window. 77% of model results were at high risk of bias, certainty of evidence was low, and no model had
a clinical impact study.

Conclusions Prediction models for estimating risk of incident HF in the community demonstrate excellent discrimination
performance. Their usefulness remains uncertain due to high risk of bias, low certainty of evidence, and absence
of clinical effectiveness research.
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Prediction models for risk of incident heart failure in the community demonstrated excellent prediction performance but their usefulness in clinical
practice remains uncertain. ARIC, Atherosclerosis Risk in Communities; Cl, confidence interval; GRAM, GRaph-based Attention Model; PCP-HF,
Pooled Cohort equations to Prevent Heart Failure; RETAIN, REverse Time AttentloN model.
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Introduction

Heart failure (HF) affects more than 64 million people worldwide,'
with its incidence and prevalence continuing to increase.? Patients
with HF are subject to reduced quality of life and premature mor-
tality,> and the global economic burden of HF already exceeds $100
billion.* Accordingly, interventions to prevent the progression from
stage A/B HF (at-risk/pre-HF) to stage C HF (symptomatic HF) are
advocated by international guidelines.>®

However, there is substantial heterogeneity of risk within HF
stage A/B, and specific groups are not included in current HF stag-
ing schema but are nonetheless at increased risk for symptomatic
HF’ To match the intensity of prevention efforts with the abso-
lute risk of the individual, an accurate quantification of future risk
for HF is needed. Incident HF may be predicted from multivari-
able risk prediction models, and the 2022 American Heart Asso-
ciation/American College of Cardiology/Heart Failure Society of
America (AHA/ACC/HFSA) guidelines for the management of HF
provide a 2a (level of evidence B, non-randomized) recommenda-
tion for their use in clinical practice.®

Previous reviews have summarized risk prediction models for
incident HE®® but have not considered whether those models
could be applied in a community setting, where it is most likely
they would be of use in routine clinical practice, and where the
majority of cases of HF locate. Such models should consist of vari-
ables commonly available from patient records an not require addi-
tional or specialist investigations. Furthermore, previous reviews
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have not provided a quantitative synthesis of model performance
across different cohorts, which limits understanding of model gen-
eralizability. They also predate the use of machine learning for risk
prediction for HF,'® and the prediction of HF phenotypes (HF with
reduced ejection fraction [HFrEF], and HF with preserved ejection
fraction [HFpEF])."" Thus, there is an incomplete understanding for
whether the use of multivariable risk prediction models for incident
HF in the general population could bring about clinical benefit.

We therefore performed a systematic review and meta-analysis
to provide an overview of HF risk prediction models that are appli-
cable and have been validated in community-based cohorts. We
synthesize the discriminatory abilities of included risk prediction
models and investigate the robustness of their development and
evaluation to determine which, if any, may be suitable for clinical
use.

Methods

Search strategy and inclusion criteria

We searched the MEDLINE and Embase databases through the Ovid
platform from inception through 3 November 2022. We used a
combination of keywords and subject headings related to HF and
prediction models based on previous literature, and the search was
limited to the English language (online supplementary material).®*1?
We completed forward and backward citation searching for included
studies and previous systematic reviews.%° Duplicates were removed
using Endnote’s duplicate identification strategy and then manually.
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Prediction models for heart failure

To be eligible for inclusion a study had to be an original study in
human adults (>18years of age), develop and/or validate a predic-
tion model(s) for incident HF based on multivariable analysis, and be
written in English. Articles were excluded if they included patients
with HF at baseline, only reported measures of association between
risk factors and incident HF rather than a full prediction model, stud-
ied only a subset of the general population (e.g. individuals diagnosed
with a particular morbidity), or incorporated variables that would not
be routinely available at point of care in the community (e.g. elec-
trocardiographic [ECG] parameters) (online supplementary material).
Models developed in clinical trials which were not subsequently vali-
dated in a community-setting were also excluded.® To be included in
meta-analysis a model had to have c-statistic data from >3 cohorts.

We uploaded records to a systematic review web application
(Rayyan, Qatar Computing Research Institute).’® Two investigators
(TY, ER) independently screened them for inclusion by title, abstract
and full text and supplemental materials. Disagreements were resolved
by consultation with a third investigator (RN). This review was reg-
istered on PROSPERO (CRD42022380892) and informed by the
PRISMA statement and CHecklist for critical Appraisal and data extrac-
tion for systematic Reviews of prediction Modelling Studies (CHARMS;

online supplementary material).'*15

Data extraction and quality assessment

Two investigators (TY, ER) independently extracted the data from the
included studies. All data came from the primary reference, unless
otherwise stated. Two investigators (KR, RN) assessed each model in
each study for risk of bias and applicability to our review question using
the Prediction model Risk Of Bias ASsessment Tool (PROBAST).'®
Discrepancies between reviewers were resolved through additional
review during group discussions.

To allow quantitative synthesis of the predictive performance of the
models we extracted measures of discrimination and calibration.!”” We
extracted data on the c-statistic or area under the receiver operating
characteristic curve (AUROC) and corresponding 95% confidence
interval (95% CI). When the 95% Cl was not reported, we calculated
it using methods described by Debray et al'” We extracted data
on the p-value of a goodness-of-fit test and the reported ratio for
observed to expected (O:E) events or calibration slope. When authors
performed augmentation of pre-existing models by adding variables
with an aim to enhance predictive value of models, we retrieved the
net reclassification improvement (NRI) index of the augmented model
compared with the original ‘simple’ model, as well as the augmented
model’s performance in terms of discrimination and calibration. We
included augmentation data only when the augmentation variables were
applicable to primary care settings as outlined previously. We did not
extract model performance data when it related to artificial/synthetic
data.’® We also checked for reporting of clinical utility of a model (net
benefit in the form of decision curve analysis or decision analytical
modelling, which can be used to integrate the benefits and harms of
using a model for clinical decision support) and conducted forward
citation searching for studies determining the impact (clinical and
cost-effectiveness) of using models in real-world clinical practice.

Data synthesis and statistical analysis

We reported continuous variables as means + standard deviation

and categorical variables as percentages. We evaluated statistical
significance in all analyses at the 0.05 level. In individual studies, we

assessed the c-statistic/ AUROC of a model, where a 95% CI containing
0.5 indicates insufficient discrimination. Calibration of a model was
deemed sufficient when authors reported a p-value of >0.05 and/or
an O:E ratio or calibration slope ranging between 0.95 and 1.05. In
assessing augmentation, we defined significant improvement as a posi-
tive NRI index with a reported 95% ClI that did not contain 0 or with
a p-value of <0.05. When a study reported on multiple cohorts, and
presented separate data for each cohort, we assessed model perfor-
mance separately for each cohort within that study. Funnel plots were
produced as a visual check for publication bias.®

We conducted a Bayesian meta-analysis of discrimination through
a summary measure of c-statistic and corresponding 95% Cl. We
calculated the 95% prediction interval (Pl) to depict the extent of
between-study heterogeneity and to indicate a possible range for
prediction model performance in a new validation.2’ When the 95% ClI
or Pl of the summary c-statistic included 0.5, we concluded that there
was insufficient evidence that the prediction model has statistically
significant discriminatory ability for incident HF in such populations
as included in the meta-analysis.2"?2 Summary c-statistics of <0.60,
0.60-0.70, 0.70—0.80, and >0.80 were defined a priori as inadequate,
adequate, acceptable and excellent based on prior publications.? We
conducted meta-analyses in R using the metafor and metamisc package
(R Foundation for Statistical Computing 3.6.3).24-2¢

Our primary analysis assessed overall discrimination for models that
had >3 cohorts with c-statistic data. In the secondary analysis we
performed a meta-analysis for each model with >3 cohorts reporting
c-statistic data while applying a uniform prediction window (e.g. 5
or 10years) since this is an important methodological consideration
when wanting to translate summary risk model performance to clinical
settings."> We performed sensitivity analyses in which we restricted
the primary analyses to only those studies where the participants
domain in PROBAST assessment was ‘low’ or ‘unclear’ risk of bias,
and to only those studies where the overall PROBAST assessment was
‘low’ or ‘unclear’ risk of bias.

The Grading of Recommendations, Assessment, Development and
Evaluation approach was used to assess the certainty of the evidence
(online supplementary material).” The certainty of the evidence was
graded as ‘high’, ‘moderate’, ‘low’ or ‘very low’. One investigator (RN)
rated the certainty of the evidence for the primary outcome and this
was checked by a second investigator (JW).

Results

Study selection

We identified 12297 unique records, reviewed 244 full-text
reports and included 36 studies (Figure 7). A list of excluded stud-
ies that met a number of the inclusion criteria is available in online
supplementary material.

Characteristics of included studies

The included studies were based on 34 different cohorts (15
prospective cohorts, 19 retrospective electronic health record
[EHR] datasets), of which 23 (68%) were located in the United
States (US) or Europe (Table 7, online supplementary Table S 7). The
number of participants ranged from 747 to 1904312, mean age
38-—78years, proportion of women 0—-62%, and mean follow-up
4 months to 23.7 years. In 13 studies, baseline characteristics were
not reported for the derivation and/or validation cohort.
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Identification of studies via databases and registers

Records identified from databases:
e Medline (n = 3263)

Records removed before screening:
* Duplicate records removed (n = 960)

* Embase (n = 9994)

Identification

)

Records screened

Records excluded

(n=12297)

Records sought for retrieval

[ (n=12051)

| Records not retrieved:

(n =246)

Screening

Records assessed for eligibility

e Full text not available (n = 2)

| Records excluded (n = 215):

(n=244)

&

* Non-original studies (n = 2)

¢ No risk model/prediction rule (n = 94)

* Wrong outcome measure (n = 39)

* Selected patients/at risk population (n = 36)

* Risk model not derived from multivariable
analysis (n = 16)

* Risk model not applicable in primary care
(n=22)

* HF not excluded at baseline (n = 6)

Studies identified via manual search of
references and citations

L

Included

Studies included in review
(n=36)

n=7)

Figure 1 The Preferred Reporting Items for Systematic Review and Meta-Analysis flow-chart of studies included in the meta-analysis. HF,

heart failure.

Characteristics of included prediction
models

The included studies represented data on 59 multivariable pre-

diction models. Eight models for predicting incident HF were

sex-specific,” 31 eight were sex- and race-specific,3>33 and three
were age-specific (online supplementary Tables S2 and $3).3° Two

models specifically predicted HFpEF3*% one specifically predicted

HFrEF*® with the rest predicting HF irrespective of ejection
fraction. Thirty-one models were developed in prospective com-
munity cohorts and 28 were derived in EHR datasets; prediction
horizons ranged from 3 months to 30years.3>3¢ Thirty-four mod-
els were derived using multivariable Cox or logistic regression,
and 25 by various machine learning methods including gradient
boosting, random forest and deep learning (online supplementary
Table S3).
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R. Nadarajah et al.

Table 1 (Continued)

Exclusion

DM (%) HTN IHD Outcome Outcome Enrolment

Female BMI

Age (years,

Study Cohort HF cases/total

Cohort

Study
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risk score, PCP-HF white men and white women models) and
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Prediction models for heart failure

Participants
Predictors
Outcome
Analysis

Overall

0% 20% 40%

H Low risk

Figure 2 Risk of bias across all included studies.

three deep learning models (GRAM [GRaph-based Attention
Model], RETAIN [REverse Time AttentloN model] and RETAINEX
[RETAIN with extra time dimensions and embedding matrices];
Figure 3). Despite high heterogeneity, five models had a statisti-
cally significant 95% Pl and excellent discriminative performance:
ARIC risk score, GRAM, PCP-HF white men and white women
models, and RETAIN. The international collaboration for heart
failure subtypes (ICHFS) HFpEF model showed acceptable sum-
mary discriminative performance for HFpEF prediction specifically
(Figure 4).

Only the ARIC risk score (10-year) and the PCP-HF white men
and white women models (5-year), had a statistically significant 95%
Pl among cohorts that had a uniform risk prediction window, and
discriminative performance remained excellent (Figure 5). In our
sensitivity analysis of restricting primary and secondary analyses
to studies with ‘low’ or ‘unclear’ risk of bias for the participants
domain of PROBAST, we found only the RETAIN and PCP-HF white
men and white women models had a statistically significant 95%
Pl (online supplementary Figure S3), and only the PCP-HF white
men and white women models at a uniform risk prediction window
(5 years; online supplementary Figure $4). When restricting primary
and secondary analysis to models with ‘low’ or ‘unclear’ risk of
bias for overall PROBAST assessment, no models met eligibility
for inclusion. Funnel plots were symmetrical but with additional
horizontal scatter (online supplementary Figure $5-S7), consistent
with the presence of between-study heterogeneity.

Certainty of evidence

The initial certainty level of the included prediction modelling stud-
ies was set at ‘high’ because the association between the predictors
and outcomes was considered irrespective of any causal connec-
tion.*® The overall certainty level was, however, downgraded to
‘moderate’, then ‘low’ because of inconsistent results given high
heterogeneity and the high overall risk of bias in included studies.

® High risk

60% 80% 100%

Unclear risk

The final overall certainty of evidence was ‘low’, implying that our
confidence in the effect estimates is limited and further research is
very likely to change the effect estimate.

Discussion

This systematic review and meta-analysis provides an overview of
59 models in the community setting for estimating subsequent risk
of incident HF in the general population. In the meta-analysis, five
models had excellent discriminative performance for HF incidence,
but only the ARIC risk score and PCP-HF models at a uniform
prediction window. However, no model met eligibility for inclusion
in meta-analysis if studies at overall high risk of bias were excluded,
certainty of evidence was low, and none of the models underwent
prospective investigation of clinical or cost-effectiveness, suggesting
that their clinical usefulness remains uncertain (Graphical Abstract).

Clinical relevance

Whilst there have been advances in the treatment of stage C
HF across the ejection fraction spectrum, prognosis still remains
poor,? emphasizing the need to shift upstream to prevent irre-
versible myocardial damage that heralds symptomatic HF** The
2022 AHA/ACC/HFSA HF guidelines recommend estimation of
risk of incident HF in the general population,® and specifically
example the Framingham Heart Failure risk score,® Health ABC
Heart Failure score,” ARIC risk score,*! and PCP-HF3? The Fram-
ingham Heart Failure risk score and Health ABC Heart Failure
score were not included in this study as they require ECG inter-
pretation for left ventricular hypertrophy, but ECGs are missing in
over three-quarters of routinely-collected community-based med-
ical records.?® Here, we found that both the ARIC risk score and
PCP-HF models, without ECG variables, showed excellent discrim-
ination performance in community-dwelling individuals and they are
both available as web-based tools to facilitate clinical application.

© 2023 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Summary estimate

0.881[0.713, 0.987]

Study (cohort) Events (n) Total (n) c-statistic [95% Cl]
ARIC Risk Score
Agarwal 2012 (ARIC) =] 1487 13 555 0.793 [0.780, 0.800]
Nowak 2020 (UK Biobank) fuq 1701 450 212 0.845 [0.830, 0.860]
Stenemo 2017 (PIVUS/ULSAM) f—a—o 170 1586 0.751[0.700, 0.800]
Summary estimate —— 0.802 [0.706, 0.889]
95% Prediction Interval —_— 0.802 [0.615, 0.959]
GRAM
Choi 2018 (Sutter PAMF) fmf 3408 30727 0.840 [0.830, 0.850]
Yin 2019 (Unspecified) —o— 425 1700 0.720 [0.690, 0.750]
Zhang 2019 (HF-I) L] 1228 37 312 0.800 [0.790, 0.810]
Summary estimate —_— 0.792 [0.679, 0.890]
95% Prediction Interval — 0.792 [0.566, 0.963]
PCP-HF White Men
Bavishi 2020 (NMEDW - NWBM) b 30 1670 0.800 [0.700, 0.900]
Bavishi 2020 (NMEDW - WM) —o— 161 10 834 0.820 [0.790, 0.860]
Bavishi 2020 (PC) = 515 4011 0.820 [0.790, 0.850]
Khan 2021 (ClalitHS) L] 8193 615 251 0.820 [0.810, 0.820]
Summary estimate - 0.820 [0.793, 0.844]
95% Prediction Interval —— 0.820 [0.765, 0.866]
PCP-HF White Women
Bavishi 2020 (NMEDW - NWBW) - 27 2148 0.900 [0.860, 0.950]
Bavishi 2020 (NMEDW - WW) ] 186 13319 0.820 [0.780, 0.870]
Bavishi 2020 (PC) j—-— 92 3206 0.830 [0.800, 0.870]
Khan 2021 (ClalitHS) L] 8158 779 160 0.860 [0.860, 0.870]
Summary estimate — 0.853 [0.805, 0.894]
95% Prediction Interval —_— 0.853 [0.757, 0.943]
RETAIN
Choi 2017 (Sutter PAMF) s 3884 32787 0.871[0.860, 0.880]
Kwon 2019 (HIRA-NPS) [ 4298 47 273 0.954 [0.950, 0.960]
Luo 2020 (Unspecified) L 3080 12320 0.690 [0.680, 0.700]
Ma 2018 (Unspecified) j 2403 7571 0.890 [0.880, 0.900]
Rasmy 2018 (Cerner HF) ] 152 790 1305 307 0.822[0.820, 0.824]
Yin 2019 (Unspecified) =] 425 1700 0.710 [0.680, 0.740]
Zhang 2019 (HF-I) jm—| 1228 37312 0.790 [0.780, 0.810]
Summary estimate —— 0.839[0.749, 0.918]
95% Prediction Interval ————— 0.839 [0.544, 0.992]
RETAINEX
Kwon 2019 (HIRA-NPS) fuf 1433 15758 0.954 [0.940, 0.960]
Luo 2020 (Unspecified) s 3080 12 320 0.690 [0.680, 0.700]
Rao 2022 (CPRD) L] 13 050 100 071 0.900 [0.890, 0.900]
e ——
e ——

95% Prediction Interval —

0.881[0.470, 1.000]

I T T T
0.4 0.5 0.6 0.7 0.8
c-statistic

T 1
0.9 1.0

Figure 3 Primary analysis: meta-analysis of c-statistics. ARIC, Atherosclerosis Risk in Communities; Cerner HF, Cerner Health Facts; Cl,
confidence interval; Clalit HS, Clalit Health Services; CPRD, clinical practice research datalink; GRAM, GRaph-based Attention Model; HF-I,
heart failure — I; HIRA-NPS, Health Insurance Review and Assessment Service National Patients Sample; NMEDW, Northwestern Medicine
Enterprise Data Warehouse; NWBM — non-white and non-black men; PC, pooled cohort; PCP-HF, Pooled Cohort equations to Prevent Heart
Failure; PIVUS, Prospective Investigation of the Vasculature in Uppsala Seniors; RETAIN, REverse Time AttentloN model; RETAINEX, RETAIN
with extra time dimensions and embedding matrices; Sutter PAMF, Palo Alto Medical Foundation; USLAM, Uppsala Longitudinal Study of Adult

Men; WM, white men.

Furthermore, though the PCP-HF white men and white women
models were derived as race-specific equations, they have also
shown excellent performance in non-white and non-black individ-
uals.

Nonetheless the feasibility of implementing the PCP-HF and
ARIC risk scores in routine clinical practice remains unknown.
They both include systolic blood pressure and body mass index,
but these may only be available for between a fifth and a third

of the population in European countries in routinely-collected
community-based medical records.>>>® Furthermore, PCP-HF
requires a complete dataset for glucose, total cholesterol and
HDL-cholesterol, which may not be routinely tested in a large
proportion of asymptomatic community-dwelling individuals.
Accordingly, the use of each model may require additional appoint-
ments or investigations, placing extra burden on both healthcare
professionals and patients.

© 2023 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Prediction models for heart failure

1

Study (cohort) Events (n) Total (n) c-statistic [95% Cl]
ICHFS HFpEF

Gaziano 2021 (VA-CDW-BM) =] 242 13911 0.780 [0.750, 0.810]
Gaziano 2021 (VA-CDW-BW) f—a—i{ 81 6074 0.730 [0.670, 0.780]
Gaziano 2021 (VA-CDW-WM) f 10 541 393 269 0.660 [0.650, 0.670]
Gaziano 2021 (VA-CDW-WW) ] 1968 73978 0.710 [0.700, 0.720]
Ho 2016 (FHS/CHS/PREVEND) =] 804 22 142 0.780 [0.750, 0.810]
Ho 2016 (MESA) f—= 114 6678 0.740 [0.690, 0.780]
Summary estimate — 0.733[0.681, 0.784]
95% Prediction Interval —_— 0.733 [0.595, 0.854]

I T T T T 1

0.4 0.5 0.6 0.7 0.8

c-statistic

0.9 1.0

Figure 4 Meta-analysis of c-statistics for models for incident heart failure with preserved ejection fraction (HFpEF). BM, black men; BW,
black women; CHS, Cardiovascular Health Study; ClI, confidence interval; FHS, Framingham Heart Study; ICHFS, international collaboration for
heart failure subtypes; MESA, Multi-Ethnic Study of Atherosclerosis; PREVEND, Prevention of Renal and Vascular End-stage Disease; VA-CDW,
Veterans Health Administration corporate data warehouse; WM, white men; WW, white women.

Multiple randomized controlled trials (RCTs) demonstrate
that incident HF can be reduced in hypertensive patients with
blood pressure control, and in type 2 diabetic patients with
sodium—glucose cotransporter 2 inhibitor treatment.>*~%¢ The
value of systematic screening and prevention for HF beyond
guideline-adherent therapy for these narrow subgroups is
unknown. The STOP-HF RCT demonstrated that BNP-guided
collaborative care in a broad community cohort reduced de novo
asymptomatic left ventricular systolic dysfunction and emergency
cardiovascular hospitalisation.”” Cost-effectiveness analysis of
this programme suggests that savings in cardiovascular hospital-
izations offsets increased outpatient and primary care costs.®®
However >85% of patients treated did not have a clinical event
over more than 4years of follow-up, and hospitalizations for HF
were not reduced by the intervention.’”>® Identifying a higher risk
cohort with a multivariable risk score may improve clinical and

cost-effectiveness of primary prevention for HE. However, there
has yet to be a study assessing the scale to which HF risk scores
can be implemented into clinical practice, whether interventions
based on predicted risk reduce the later occurrence of HF, and
whether this reduces costs at a health system level. Overall, pri-
mary prevention programmes for HF have yet to become routine
practice, in contrast to prevention of vascular disease,” and the
usefulness of risk prediction models for HF to improve patient
outcomes and cost-effectiveness of care remains uncertain.

Previous work

In concordance with previous reviews we observed sub-optimal
conduct in model development,” and a failure to progress risk
scores to impact studies.® We provide a number of further
advances. Previously summaries exclusively referenced models

© 2023 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Summary estimate

0.881[0.713, 0.987]

Study (cohort) Events (n) Total (n) c-statistic [95% ClI]
ARIC Risk Score - 10-years
Agarwal 2012 (ARIC) fuf 1487 13 555 0.793 [0.780, 0.800]
Nowak 2020 (UK Biobank) fa 1701 450 212 0.845 [0.830, 0.860]
Stenemo 2017 (PIVUS/ULSAM) —a— 170 1586 0.751[0.700, 0.800]
Summary estimate —_— 0.802 [0.706, 0.889]
95% Prediction Interval — 0.802 [0.615, 0.959]
PCP-HF White Men - 5-years
Bavishi 2020 (NMEDW - NWBM) [ ——_——— 30 1670 0.800 [0.700, 0.900]
Bavishi 2020 (NMEDW - WM) ! 161 10 834 0.820 [0.790, 0.860]
Bavishi 2020 (PC) - 515 4011 0.820 [0.790, 0.850]
Khan 2021 (ClalitHS) L 8193 615 251 0.820[0.810, 0.820]
Summary estimate -> 0.820 [0.793, 0.844]
95% Prediction Interval i 0.820 [0.765, 0.866]
PCP-HF White Women - 5-years
Bavishi 2020 (NMEDW - NWBW) e 27 2148 0.900 [0.860, 0.950]
Bavishi 2020 (NMEDW - WW) e 186 13319 0.820 [0.780, 0.870]
Bavishi 2020 (PC) -] 92 3206 0.830 [0.800, 0.870]
Khan 2021 (ClalitHS) L] 8158 779 160 0.860 [0.860, 0.870]
Summary estimate — 0.853 [0.805, 0.894]
95% Prediction Interval e — 0.853 [0.757, 0.943]
RETAIN - 0.5-years
Kwon 2019 (HIRA-NPS) ] 4298 47 273 0.954 [0.950, 0.960]
Luo 2020 (Unspecified) | 3080 12 320 0.690 [0.680, 0.700]
Zhang 2019 (HF-I) ] 1228 37312 0.790 [0.780, 0.810]
Summary estimate —— T 0.848 [0.642, 0.981]
95% Prediction Interval B 0.848 [0.387, 1.000]
RETAINEX - 0.5-years
Kwon 2019 (HIRA-NPS) fuf 1433 15758 0.954 [0.940, 0.960]
Luo 2020 (Unspecified) m] 3080 12320 0.690 [0.680, 0.700]
Rao 2022 (CPRD) L] 13 050 100 071 0.900 [0.890, 0.900]
—_—
EE ——————

95% Prediction Interval —

0.881[0.470, 1.000]

r T T T
0.4 0.5 0.6 0.7 0.8

c-statistic

T 1
0.9 1.0

Figure 5 Secondary analysis: meta-analysis of C-statistics grouped according to application of a uniform prediction window within a model.
ARIC, Atherosclerosis Risk in Communities; Cl, confidence interval; Clalit HS, Clalit Health Services; CPRD, clinical practice research datalink;
HF-I, heart failure — I; HIRA-NPS, Health Insurance Review and Assessment Service National Patients Sample; NMEDW, Northwestern
Medicine Enterprise Data Warehouse; NWBM — non-white and non-black men; PC, pooled cohort; PCP-HF, Pooled Cohort equations to
Prevent Heart Failure; PIVUS, Prospective Investigation of the Vasculature in Uppsala Seniors; RETAIN, REverse Time AttentloN model;
RETAINEX, RETAIN with extra time dimensions and embedding matrices; USLAM, Uppsala Longitudinal Study of Adult Men; WM, white men.

derived by regression, but more than 40% of the included models
here were derived though machine learning approaches, high-
lighting the trend towards data-driven computational modelling
for prediction in cardiovascular disease.’ We observed a pro-
liferation of models that were sex- and/or race-specific, demon-
strating the increasing understanding of different epidemiology,
clinical characteristics and pathophysiology of HF between men
and women and across different racial groups.®®" Additionally, we
provide a quantitative synthesis which demonstrates how models
may perform when applied to a new population.

Machine learning for prediction of heart
failure risk

We found that unsupervised deep learning models had equally
excellent discriminative performance as the ARIC risk score and
PCP-HF, though barriers exist for such models to be imple-
mented.®? Deep learning studies summarized here also frequently
provided insufficient detail of the training and test cohorts, and
there was an absence of calibration reporting, meaning the appli-
cability of the results remains uncertain. Adherence to reporting

© 2023 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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guidelines designed specifically for risk prediction machine learning
studies, currently under development,®3 would improve the quality
of reporting and increase confidence in the translatability of these

models to clinical practice.®?

Predicting specific heart failure
phenotypes

We observed a transition in recent years for investigators to
test performance of HF prediction models for HFpEF and HFrEF
phenotypes,® and to develop phenotype-specific models.3#3564
On meta-analysis the discriminatory performance for HFpEF was
inferior to overall HF. This may be due to challenges in defining and
identifying HFpEF cases (online supplementary Table S2), but also
suggests that HFpEF prediction is more difficult and may require

additional variables.

Strengths and limitations

We had a comprehensive search strategy, thorough analysis
approach, diverse domain expertise amongst the reviewers, and
only included models that had been tested in the general popu-
lation, which ensures the applicability of our results for primary
prevention in a primary care setting. However, we acknowledge
limitations in our study. Meta-analysis of model calibration perfor-
mance was prohibited by the lack of reporting of such analyses.
We restricted our search to studies written in English, though this
has not been found to lead to significant bias.®* We also did not
present meta-regression or subgroup meta-analysis to investigate
heterogeneity between studies based on study-level characteris-
tics or subgroups in the absence of available individual patient data
given that such analyses would be prone to ecological bias,*® and
are inferior to subgroup results derived from individual partici-
pant data (IPD)."”” An IPD meta-analysis, however, was not the
scope of the current study. Between-study heterogeneity can occur
due to differences in study characteristics, differences in study
quality, or differences between studied populations. We included
both prospective and retrospective cohort studies, which may have
introduced bias as mildly symptomatic patients may be less likely
to undergo cardiac testing in routine practice. Study populations
varied in mean age, proportion who were women, comorbidity
burden, and percentage of observed HF cases. More than three
quarters of included studies were at high risk bias, predominantly
related to improper handling of missing data. This is a commonly
observed shortfall in prediction modelling research,®’ even in mod-

els recommended for use in healthcare.®

Conclusion

This systematic review and meta-analysis identified 59 risk pre-
diction models for incident HF applicable in the community. We
observed that machine learning and specification by sex, race and
HF phenotype are increasingly common in HF risk prediction mod-
elling. Prediction models showed excellent prediction performance
for incident HE. However high risk of bias, missingness of requisite

variables in routinely collected data, low certainty of evidence, and
a lack of impact studies means that the usefulness of integrating HF
prediction models into clinical practice remains uncertain.

Supplementary Information

Additional supporting information may be found online in the
Supporting Information section at the end of the article.
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