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1. INTRODUCTION

Cognitive neuroscience is primarily a laboratory-based 
endeavour. Although lab-based neuroimaging experi-
ments are often limited in terms of the ecological validity 
of the behaviours that are studied (Ladouce et al., 2017), 
studying participants within the lab offers numerous ben-
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efits to the researcher in terms of experimental control. 

For example, environmental and physiological artifact 

can be minimised when recording brain activity using 

electroencephalography (EEG), thereby enhancing the 

signal-to-noise ratio of the data that are collected. Lab-

based studies can also facilitate the application of  
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higher-density electrode arrays, and the completion of 
long, time-consuming experiments involving many hun-
dreds, if not thousands, of trials. At a logistical level, much 
of the hardware used in cognitive neuroscience is also 
expensive, fragile, and not portable, and thus researchers 
may have little choice but to require participants to visit 
the lab to answer specific scientific questions.

However, lab-testing is slower, particularly in the case 
of testing specific populations, e.g., children, older peo-
ple, or those with certain clinical diagnoses. As a result, 
the average sample size in EEG experiments is generally 
small: Clayson et al. (2019) identified an average sample 
size of only 21 participants across a random selection of 
ERP papers in 5 high-impact cognitive neuroscience jour-
nals. This under-recruitment is counterproductive, since 
small effect sizes are common in cognitive neuroscience 
and large numbers of participants are needed to detect 
them (Ioannidis, 2005). As a result, Button et  al. (2013) 
estimate that the average statistical power of studies in 
neuroscience is very low, leading to poor reliability and 
reproducibility of the reported findings. Many researchers 
rely on recruiting from the locally available pool of under-
graduate students, who have low diversity of age, educa-
tional attainment, socio-economic status, race, and 
ethnicity (Dotson & Duarte, 2020; Henrich et  al., 2010). 
Furthermore, people with disabilities, neurodiversity, men-
tal health issues, and even left-hand dominance are often 
excluded as “atypical,” thereby exacerbating the poor 
representativeness of the research sample relative to the 
wider population (Falk et  al., 2013). Although many 
researchers have recently moved towards collecting data 
in an online context—either as a conscious choice to 
improve sample size and diversity, or as a necessary 
response to COVID-19 restrictions—this approach is 
clearly not a feasible alternative for neuroimaging studies.

Several initiatives have been implemented over recent 
years to increase sample size and to improve the rigour, 
reproducibility, and representativeness of EEG research. 
Open databases, such as the NEMAR gateway (Delorme 
et  al., 2022) and the Healthy Brain Network (Alexander 
et al., 2017), provide access to large, ready-made collec-
tions of EEG data that can be re-analysed, thereby reduc-
ing or eliminating the need to record additional data 
locally. Many journals also now mandate that datasets 
are made openly available after a manuscript has been 
accepted for publication (see White et al., 2020, for a dis-
cussion of the benefits and challenges of data sharing in 
neuroimaging research). Secondly, large-scale collabora-
tion networks such as the #EEGManyLabs initiative  
(Pavlov et al., 2021) and ENIGMA-EEG (Smit et al., 2021) 

provide frameworks for multiple, geographically distrib-
uted labs to pool participants to answer scientific ques-
tions, including multi-lab replications of seminal studies. 
Finally, recent technological advancements in mobile 
EEG systems have also made it easier to record high- 
quality electrophysiological data in more ecologically 
valid environments (Gramann et al., 2011). These mobile 
systems should be seen as an important step forward in 
bringing cognitive neuroscience out of the lab and into 
the community, with the potential to also foster improved 
participant diversity in the data that are collected.

One lesser-explored method of collecting large num-
bers of EEG datasets within the community is via public 
engagement and outreach events. In the appropriate envi-
ronment, a public engagement stall can engage a consid-
erable number and breadth of people from diverse and 
often poorly-engaged groups. The National Co-ordinating 
Centre for Public Engagement defines public engage-
ment as “the myriad of ways in which the activity and 
benefits of higher education and research can be shared 
with the public.” In doing so, they rightly emphasise that 
the main beneficiaries of public engagement activities are 
the members of the public and non-researchers who 
engage with outreach activities. However, the two-way 
nature of public engagement is also emphasised in their 
description: “engagement is by definition a two-way pro-
cess, involving interaction and listening, with the goal of 
generating mutual benefit.” One way that people can 
engage deeply with research is by being offered the 
opportunity to take part in real science experiments. In a 
commentary in Journal of Neuroscience, Heagerty (2015) 
discusses the “why, when and how” of engaging with the 
public as (cognitive) neuroscientists and emphasises the 
importance of sparking dialogue between researchers 
and non-researchers, rather than seeing the events purely 
as knowledge dissemination opportunities. With careful 
planning, it is possible to achieve both remits: by engag-
ing the public in discussion with active research scien-
tists, whilst also capitalising on the opportunity to collect 
data for scientific projects.

Here, we present a case study of a recent public 
engagement project (“Rhythms of the Brain”), where we 
aimed to disseminate knowledge about neural oscilla-
tions whilst also collecting EEG data to investigate 
age-related changes in the individual alpha frequency 
(IAF) and its possible link to fatigue.

In the healthy brain, groups of neurons fire together 
rhythmically (“oscillations”), and these oscillations can be 
detected using EEG electrodes attached to the scalp. 
Specific types of oscillations, such as the alpha rhythm (in 
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the 8-12 Hz range), are strongly associated with vision and 
attention (Thut et al., 2012). Both its prominence and rela-
tive ease of detection makes the alpha rhythm an ideal 
candidate explore in public engagement contexts. Across 
the general population, the typical alpha frequency range 
is around 8-12 Hz, although the peak alpha frequency (i.e., 
the frequency with the highest power) tends to vary across 
individuals. Regardless of a large variation across partici-
pants, individual alpha frequency (IAF) has been shown in 
both cross-sectional and longitudinal studies to gradually 
change throughout the lifespan (Aurlien et al., 2004; Cellier 
et al., 2021; Chiang et al., 2011; Cragg et al., 2011; Duffy 
et al., 1984, 1993; Freschl et al., 2022; Grandy et al., 2013; 
Klimesch, 1999; Knyazeva et  al., 2018; Marshall et  al., 
2002). Peak occipital alpha frequency is typically slower in 
young children, at around 6 Hz, and peaks at around 10 Hz 
in older children and adults (Marshall et al., 2002). The total 
power of this peak alpha oscillation has also been shown 
across many studies to decrease with advancing age, 
both during childhood (Tröndle et al., 2022) and into older 
adulthood (Whitford et al., 2007). This may reflect a change 
in white matter integrity and/or loss of grey matter volume 
throughout the lifespan (Grandy et al., 2013). However, a 
more recent analytic approach, of dissociating the periodic 
from aperiodic EEG signal, has shown that older adults 
may simply experience more broadband 1/f “noise” in their 
visual systems (Voytek et al., 2015), which may have con-
founded previous analyses of IAF. In an analysis of 2529 
people aged 5-22  years old, Tröndle et  al. (2022) found 
that, after correcting for aperiodic signal, alpha power 
may, in fact, increase rather than decrease during child-
hood and adolescence, and decrease between 60-79 years 
old (Cesnaite et al., 2023). Here, we address these ques-
tions in a large sample of participants.

The second aim of this study was to investigate whether 
individual alpha frequency and alpha power are linked to 
self-reported measures of fatigue. It is well established 
that occipital alpha power increases dynamically during 
experiments that involve prolonged time- 
on-task, probably reflective of reduced cortical excitability 
due to the onset of fatigue (Benwell et  al., 2019; Craig 
et al., 2012; Kasten et al., 2016). Identifying an increased 
alpha power can also be used as a method of detecting 
(and alerting individuals to) the onset of transient fatigue in 
high-risk situations, e.g., when driving (Schier, 2000). At 
present, it remains unclear whether alpha power and indi-
vidual alpha frequency are associated with more long-
term, tonic reports of subjective fatigue. To explore this 
question, we administered the Multidimensional Fatigue 
Inventory (MFI; Smets et al., 1995) to participants as they 

waited to take part in the EEG experiment. The MFI ques-
tionnaire is used to quantify the subjective ratings of 5 dif-
ferent fatigue subtypes (general, physical, mental, reduced 
activity, and reduced motivation) over the preceding few 
days, and was analysed by inter-correlating each of the 
subscales against the EEG outcome measures.

In summary, the overarching aim of this study was to 
replicate well-established findings of age-related changes 
in occipital alpha frequency and power during the lifes-
pan within a novel, public engagement context. Specifi-
cally, we aimed to 1) identify whether individual alpha 
frequency and power change throughout the lifespan, 2) 
identify whether individual alpha frequency and power 
are linked to subjective ratings of fatigue, and 3) assess 
the overall feasibility of collecting good-quality data for a 
simple EEG experiment within a public engagement set-
ting. An exploratory analysis of the periodic and aperiodic 
signal was performed post hoc, based on the Fitting 
Oscillations and One-Over-F (FOOOF) algorithm, which 
was only available after our first wave of data collection 
had been completed (Donoghue et al., 2020).

2. METHODS

2.1. Participants

A total of 346 participants were recruited (189 females, 
156 males, 1 preferred not to say; Fig. 1). The mean age 
was 29.9 years old (range 6-76 years). We aimed to recruit 
as many participants as possible using convenience 
sampling, but an a priori sample size calculation esti-
mated that a minimum sample size of n  =  191 would 
allow a small Pearson’s correlation of r = .2 to be detected 
between the participant’s age and their individual alpha 
frequency, with power = .8 and alpha = .05.

Data collection took place over 6  days, totalling 
29 hours, as part of 2 organised public engagement fes-
tivals: Explorathon 2019 and Glasgow Science Festival 
2022. Four of the 6  days were spent at the Riverside 
Museum, and 2  days at Kelvingrove Art Gallery and 
Museum in Glasgow, Scotland. Data collection was 
expected to be completed in 2020 but was interrupted by 
the pandemic. The only inclusion criterion was a mini-
mum age of 6 years old, with no specific exclusion crite-
ria. The study was approved by the College of Science & 
Engineering, and the Medicine, Veterinary and Life Sci-
ences ethics committees at the University of Glasgow. All 
participants formally consented using an electronic tick-
box questionnaire, and consent was provided by par-
ents/guardians of children aged under 16 years old.
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2.2. Procedure

Participants approached our public engagement stall 
(“Rhythms of the Brain”; see photos in Supplementary 
Materials), which aimed to engage and educate members 
of the public on the subject of neural oscillations. They 
were also invited to “donate their brain waves” as part of 
a scientific study investigating age-related changes in 
brain activity and consented to having their signal 
recorded. If agreed, the EEG electrodes were placed, and 
they were shown their continuous EEG signal on the lap-
top screen, then allowed to explore common artifact, 
e.g., eye blinks, and, finally, shown how their alpha 
rhythms change in size when their eyes are closed com-
pared to when they are open. Each participant was 
assigned a unique code, and the data were recorded 
anonymously, with only age and gender recorded. At the 
end of the session, a debrief form was provided with 
details of how to withdraw their data if they desired.

2.3. Electroencephalography

Two identical BrainVision MR EEG systems were set up, at 
either end of a table. A single recording electrode was 
placed on the scalp at the occipital midline. This was identi-
fied visually, as being approximately 1 cm above the inion, 

located between electrode locations Iz (inion) and Oz (occip-
ital midline). SignaGel was used to achieve conductivity 
between the electrode and the scalp, and the electrode was 
held in place using an elasticated fabric headband. The 
ground and reference electrodes were attached to the cen-
tre midline of the forehead, approximately 2 cm apart, and 
held in place using surgical tape. Participants were blind-
folded and asked to sit at rest with their eyes closed while 
the data were recorded for 30 seconds at a 500 Hz sam-
pling rate with an online filter of .3-100 Hz.

The EEG data were analysed offline using MNE-Python. 
Since the EEG datasets were of varying lengths, the con-
tinuous EEG of all datasets that exceeded 40  seconds 
were first visually inspected and trimmed to isolate the 
cleanest 30  second periods (we had aimed to record 
around 30 seconds of eyes-closed data, but some were 
longer, and these tended to include time periods where the 
participants were purposefully eliciting eye blinks etc). The 
datasets that were between 30-40  seconds were not 
trimmed prior to preprocessing. The resultant signals were 
bandpass filtered between 4-40 Hz and then segmented 
into 1 second epochs. Epochs where the signal exceeded 
±200 µV were removed, and the remaining epochs were 
recombined into a continuous waveform. The spectra of 
the recombined epochs were calculated using the welch 

Fig. 1. Age and gender distribution of all 346 participants. EEG data were collected from 156 males (indicated by cyan 
bars) and 189 females (indicated by purple bars) with an average age of 29.9 years.
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function in sciPy (v1.9.3) with a resolution of .25 Hz and  
the following parameters: fs  = 500, window  =  “hann,” 
nperseg = 500, nfft = 2000, detrend = false, return_one-
sided = true, scaling = “spectrum,” and average = “mean.” 
The spectra were then decomposed into periodic and 
aperiodic components using the FOOOF algorithm 
(Donoghue et al., 2020). The FOOOF algorithm uses a pro-
cess to fit aperiodic and periodic components to mea-
sured power spectra by first flattening the spectra with an 
initial aperiodic fit, and then identifying peaks in the flat-
tened spectra. The algorithm then uses an iterative 
approach to refine the aperiodic and periodic fits to create 
a full model that represents these components separately. 
The parameters that are used by the algorithm to fit the 
aperiodic component and identify peaks are set to the fol-
lowing values: peak width limits = [.5, 12], max number of 
peaks =  infinite, minimum peak height = 0, peak thresh-
old = 2 standard deviations above the mean, and aperiodic 
mode  =  “fixed.” A detailed explanation of how each of 
these parameters is used by the algorithm, and a more 
comprehensive overview of how the FOOOF algorithm 
works can be found on the algorithm’s documentation 
website (https://fooof - tools . github . io / fooof / index . html). 
Alpha peaks were extracted from the range of 6-15 Hz, 
due to the anticipated slower peak frequency in young 
children (Freschl et al., 2022). The total periodic and aperi-
odic power was obtained by extracting the log(power) 
value from the welch-derived spectrum, at the peak alpha 
frequency that was obtained using the FOOOF algorithm.

EEG data were recorded from a total of 329 people 
(n = 147 in 2019, and n = 182 in 2022). The remaining 17 
people who were recruited only completed the MFI ques-
tionnaire. Forty participants (12.2%) were excluded post 
hoc for one of two reasons: 1) 30 participants (9.1%) had 
an excessively noisy signal, where more than 80% of 
their segments exceeded 200 µV, and 2) 10 participants 
(3.04%) had no visible peaks in the 6-15 Hz range. A total 
of 289 participants (151 females, mean age  =  30.1, 
range = 6-76  years old) were included in the final EEG 
analysis.

2.4. Multidimensional Fatigue Inventory (MFI)

During the first 2 data collection days, participants were 
also asked to complete the Multidimensional Fatigue 
Inventory (MFI; Smets et  al., 1995), which is a 20-point 
questionnaire, taking approximately 5  minutes to com-
plete. Each of the 5 subscales is scored between 4-20 
points, with higher scores indicating higher levels of 
fatigue. We were interested in correlating trait fatigue lev-

els, as measured by the MFI, with EEG measures. The MFI 
was not recorded during the final 4 days of data collection 
in order to concentrate our resources around collecting 
EEG. A total of 101 people (56 females, mean age = 34.91, 
range = 7-69) completed both the MFI questionnaire and 
EEG recording, and a further 17 people completed only 
the MFI. Of note, only 3 under 10-year-olds completed the 
MFI, during which their parents relayed the questions and 
confirmed that they were able to understand what was 
being asked.

3. RESULTS

All of the raw EEG data and analysis scripts that are used 
in this article are openly available at https://osf . io / ct2xw/. 
No withdrawal requests were made following data  
collection.

3.1. Electroencephalography

The mean individual alpha frequency was 9.88  Hz 
(SD = 1.39, range = 6.08-14.97 Hz). There was no linear 
correlation between age and IAF (r = -.018, 95% CI = [-.1, 
.13], p = .77; Fig. 2A), but the data were better explained 
by a loess function which was fit to the data. The peak of 
the loess curve occurred at 28.1 years old with an IAF of 
10.28  Hz. There was a negative linear relationship 
between the total (unadjusted) alpha power and age, with 
younger people generally having a higher total alpha 
power than older people (Pearson’s r = -.4, 95% CI = [-.49, 
-.3], p < .0001; Fig. 2B). However, there was no correla-
tion between age and aperiodic-adjusted alpha power 
(r = -.07, 95% CI = [-.18, .04], p = .23; Fig. 2C). Both the 
aperiodic intercept (r  =  -.52, 95% CI  =  [-.61, -.44], 
p <  .0001; Fig. 2D) and aperiodic slope (r =  -.39, 95% 
CI = [-.48, -.28], p < .0001; Fig. 2E) were strongly nega-
tively correlated with age. There were no differences 
between male and female participants for any of these 5 
measures (all p-values > .078).

The participants were then sorted by age and divided 
into three bins, each comprising approximately one third 
of the total number of participants: age 6-21 (n = 94), age 
22-36 (n = 101), and age 37-76 (n = 94) (Fig. 3). Splitting 
the data into three separate bins allows for further com-
parisons to be made between the age groups, beyond 
the correlations. Specifically, this allows for a direct  
comparison of the periodic and aperiodic parameters in 
the youngest and oldest participants, and mirrors the 
analysis performed in Tröndle et al. (2022). Of note, the 
age range of the youngest group in our dataset (ages 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00001/2154711/imag_a_00001.pdf by University of Glasgow user on 22 August 2023

https://fooof-tools.github.io/fooof/index.html
https://osf.io/ct2xw/


6

C. Turner, S. Baylan, M. Bracco et al. Imaging Neuroscience, Volume 1, 2023

6-21) is almost identical to the dataset in Tröndle et al. 
(2022) (5.04-21.9 years old).

Five one-way ANOVAs were then performed, compar-
ing the following 5 EEG outcome measures across the 
three age bins:

 1)  Peak alpha frequency: There was a main effect of 
age, F(2,286) = 5.85, p =  .003. Follow-up t-tests 
identified that the middle group (22-36 years old) 
had a higher peak frequency than both the young-
est group (6-21 years old; t(190) = 3.27, p = .0013, 
d  =  .47) and the oldest group (37-76  years old; 
t(189) = 2.54, p = .012, d = .37).

 2)  Total (unadjusted) alpha power: There was a main 
effect of age, F(2,286) = 27.2, p < .0001. The young-
est group had a higher total alpha power than both 
the middle group, t(190) = 5.69, p < .0001, d = .81 
and the older adults, t(163)  =  7.1, p  <  .0001, 
d  =  1.04. The middle group also had a higher  

power than the older group, t(180) = 2.07, p = .04, 
d = .3.

 3)  Aperiodic-adjusted alpha power: There was no 
effect of age on aperiodic-adjusted alpha power, 
F(2,286) = 1.42, p = .24.

 4)  Aperiodic slope: There was a large main effect of 
age on the aperiodic slope, F(2,286)  =  48.3, 
p < .0001. The youngest group had a steeper slope 
than the middle, t(181) = 8.51, p < .0001, d = 1.23 
and the older group, t(185)  =  8.14, p  <  .0001, 
d  =  1.19, but there was no difference in slopes 
between the middle and older groups, t(186) = .2, 
p = .84, d = .03.

 5)  Aperiodic intercept: There was a large main effect 
of age on the aperiodic intercept, F(2,286) = 96.5, 
p < .0001. The youngest group had a larger inter-
cept than the middle group, t(180)  =  11.8, 
p < .0001, d = 1.7 and the older group, t(186) = 11.9, 
p < .0001, d = 1.73, but there was no difference in 

Fig. 2. (A) Individual alpha peak frequency, (B) Total unadjusted alpha power, (C) Aperiodic-adjusted alpha power,  
(D) Intercept of the aperiodic slope, (E) Slope of the aperiodic exponent. The shaded bands represent the standard error.
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intercepts between the middle and older groups, 
t(178) = 1.48, p = .14, d = .21.

3.2. Multidimensional Fatigue Inventory

The mean score for each of the 5 subscales (where no 
fatigue = 4 and a high degree of fatigue = 20) was: gen-
eral fatigue  =  11.26, physical fatigue  =  9.26, reduced 
activity  =  8.81, reduced motivation  =  8.72, and mental 
fatigue = 10.46. There were no differences between men 
and women for any subscale (all t-values < 1.8, p > .074). 
All 5 subscales were positively correlated with each other, 
with coefficients ranging between r = .67 (between gen-
eral fatigue and physical fatigue) and r  =  .41 (general 
fatigue and reduced activity) (Fig. 4). Age was positively 
correlated only with the physical fatigue subtest (r = .22, 
p  =  .016), but was not correlated with mental fatigue 
(r  =  -.07, p  =  .45), reduced activity (r  =  -.01, p  =  .94), 
reduced motivation (r = .18, p = .054), or general fatigue 
(r = .12, p = .18). Neither aperiodic-adjusted peak alpha 
power nor IAF was correlated with any of the 5 subscales 
(all r-values < .14 and r < .06, respectively). Five separate 
linear regressions were then performed to assess any 

interactions between age and IAF, with one of the five MFI 
sub-scales as the dependent variable in each model, but 
no interaction was identified (minimum p = .35).

4. DISCUSSION

We document here our experiences of collecting EEG 
data, together with questionnaires, within the context of 
public engagement events. This approach of bringing 
cognitive neuroscience research equipment out of the 
lab-based environment and into the community enabled 
us to recruit a large sample of participants (n  =  346), 
across a wide range of ages (6-76 years old) in a remark-
ably short period of time (29 hours of testing over 6 days). 
We confirmed the feasibility of collecting good-quality 
EEG signals outside of the lab, with data from relatively 
few participants removed from the final analysis due to 
excessive artifact. Importantly, we successfully replicated 
previous lab-based findings of a non-linear change in 
peak individual alpha frequency throughout the lifespan 
(Aurlien et  al., 2004; Chiang et  al., 2011; Cragg et  al., 
2011; Duffy et  al., 1984, 1993; Grandy et  al., 2013;  
Klimesch, 1999; Knyazeva et  al., 2018; Marshall et  al., 

Fig. 3. Age-related differences in (a) the (aperiodic-adjusted) periodic power spectrum, (b) the total measured  
power spectrum, and (c) the aperiodic signal. The dataset was divided into 3 bins, representing the youngest 
participants in blue (aged 6-21, n = 94), young adults in orange (aged 22-36, n = 101), and older adults in green  
(aged 37-76, n = 94). Solid lines represent the mean of each age bin, and shaded areas represent the 95% 
confidence intervals.
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2002). We found that individual alpha frequency reached 
a peak at 28.1 years old (10.28 Hz) and was significantly 
slower in children and in older adults. The power of the 
peak individual alpha frequency also appeared to reduce 
linearly from childhood into older adulthood. However, 
this correlation was driven by stronger aperiodic signals 
in children, and there was no observed relationship 
between age and aperiodic-adjusted alpha power. We 
did not identify any correlations between the aperiod-
ic-adjusted alpha power and subjective fatigue scores, 
as measured by the 5 Multidimensional Fatigue Inventory 
subtests, nor any correlation between the MFI subtests 
and individual alpha frequency (performed in a subset of 
n = 101 participants).

By decomposing the EEG signal into periodic and 
aperiodic components (Donoghue et al., 2020), we were 
able to dissociate the rhythmic brain activity at the alpha 
frequency from broad-band non-rhythmic activity within 
the brain. This is an important distinction, because 
unadjusted alpha power (i.e., including aperiodic sig-
nals) is likely to reflect a mixture of different physiologi-
cal processes and may be misleading when used to link 
alpha rhythms to specific cognitive states. For example, 

we were able to replicate previous findings of a 
decreased aperiodic slope and intercept with increasing 
age (Cellier et al., 2021; Cesnaite et al., 2023; Hill et al., 
2022; Tröndle et al., 2022). The markedly steeper slope 
in our 6-21 years old (see Fig. 3C) relative to both the 
22-36 and 37-76 years old may reflect a higher preva-
lence of low-, relative to high-frequency activity in the 
youngest participants, increased neural “noise” in older 
age (McIntosh et  al., 2010), and/or developmental 
changes in skull thickness. Similarly, the decrease in the 
aperiodic intercept during the lifespan may also reflect a 
generalised reduction in neural activity in older people, 
although it is important to note that our dataset rep-
resents a cross-sectional snapshot of the population, 
rather than tracking longitudinal changes at the partici-
pant level. We cannot exclude the possibility that these 
differences in the slope and intercept may be spurious 
and related to differences in drifting eye movements 
between the groups. We were unable to quantify whether 
eye movements were present in our datasets due to the 
lack of EOG channels, and a measurement of eye move-
ments should be an important quality control to include 
in future studies.

Fig. 4. Correlation matrix of the Pearson’s r coefficients between age, individual alpha frequency, aperiodic-adjusted 
alpha power, and the 5 MFI subtests. Correlations where p < .05 are marked with an asterisk. The colour spectrum  
spans from deep blue, representing a strong negative correlation of -1, to deep red, representing a strong positive 
correlation of 1.
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These aperiodic changes in the EEG signal are appar-
ently distinct from the age-related non-linear increase, 
then decrease, of the peak individual alpha frequency that 
we observed. The peak alpha frequency could reflect the 
speed of sampling of the visual environment (or “temporal 
resolution”): Samaha and Postle (2015) found that individ-
uals with higher occipital alpha frequencies were better 
able to identify two flashes, presented with short inter- 
stimulus intervals, as distinct visual stimuli compared to 
people with slower individual alpha frequencies. Cecere 
et  al. (2015) present similar results in the audio-visual 
domain. It may, therefore, be that the group-level peak 
alpha frequency identified at 28.1 years old reflects an opti-
mal functioning of the visual system (although see Buergers 
& Noppeney, 2022, for evidence against the influence of 
trait alpha frequency on perceptual sensitivity). Further, in 
the absence of repeated, longitudinal recordings to track 
any shifts in alpha frequency at an individual level during 
the lifespan, this hypothesis remains an open issue.

Our analyses failed to identify a relationship between 
alpha power and subjective measures of fatigue. How-
ever, this may be related to our choice of questionnaire 
rather than a lack of relationship between alpha and 
fatigue per se. When completing the Multidimensional 
Fatigue Inventory, participants were asked to rate their 
fatigue levels over the preceding few days. In contrast, 
studies that show a gradual increase in alpha power 
during the course of an experiment, by way of reduced 
alertness and increased fatigue with prolonged time-on-
task, assess changes in arousal on a more granular scale 
within the order of minutes (Benwell et al., 2019; Craig 
et al., 2012; Kasten et al., 2016). The MFI may, therefore, 
be an insensitive measure with which to quantify the type 
of fatigue that is typically associated with fluctuations in 
alpha power, and a measure that is more sensitive to 
faster fluctuations in alertness may better reflect the 
physiological relationship between alpha power and 
fatigue. Secondly, the overarching concept of “fatigue” 
encompasses a range of different physiological states, 
from physical and mental sluggishness to a desire to fall 
asleep. Given its role in alertness and arousal, we antici-
pated that any relationship with alpha power would be 
strongest in the mental fatigue subscale of the MFI 
(although this was found to be r = -.07, p = .45), but we 
also aimed to explore any relationships between alpha 
power and the other subscales (general, physical, 
reduced motivation and reduced activity). We found no 
correlations between any of these, with the largest 
(although small) effect size of r = .18, p = .054 associated 
with reduced motivation.

Given that the recording sessions took place in loud 
and busy museum environments, we anticipated that the 
data would exhibit substantially more noise and artifact 
than an equivalent dataset recorded in the lab. However, 
only a relatively small number of participants were 
excluded for this reason. To ensure good-quality data, we 
excluded the participants’ full datasets where the num-
ber of noisy segments exceeded 20% of their total 
recording and only 30/329 participants (9.1%) were 
excluded for this reason. Although this number of exclu-
sions might seem large indeed within the range of the 
number of the participants who are typically tested within 
a lab-based experiment (Clayson et  al., 2019), in this 
context where a large sample was tested over a short 
period of time, it was proportionally relatively few. We 
have also shown that it is possible to collect question-
naire data during public engagement events, alongside 
electrophysiological data, to investigate relationships 
between brain-based measures and self-reported out-
comes. However, the experimental design must be care-
fully considered to fully leverage the oppor tunities for 
large-scale data collection that community-based EEG 
recording can offer. With restricted time windows for data 
collection per participant, and an additional focus on sci-
ence communication, experiments must be fast, straight-
forward, and simple, possibly using portable or fully 
mobile EEG systems.

In terms of participant recruitment, we used a conve-
nience sampling process for this study, by inviting every-
one who approached our stall to take part. Although we 
aimed to recruit a representative cross-section of the 
population aged 6 years and upwards, there were distinct 
clusters of participants in the 5-12- and 25-35-year-old 
age ranges, which tended to represent children, accom-
panied by their parents. Our stall location within local 
museums may have contributed to the low number of 
teenagers taking part (compared to, e.g., within a shop-
ping centre or park), and hosting the stall during the 
week, rather than the weekends, might have increased 
the recruitment of older adults aged 70+. Due to the con-
straint of having to sit still with a blindfold for 30 seconds 
during EEG recording, the minimum age was set to 
6 years old, as it was anticipated that children younger 
than this would not be able to meet this requirement. 
However, a modified experimental design may have 
enabled us to collect data from even younger children, 
assuming that approvals for this had been granted by our 
local ethics committee. This would have provided a bet-
ter estimation of the developmental trajectory of alpha 
rhythms in the very youngest children.
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BOX. RECOMMENDATIONS FOR COMMUNITY-BASED EEG RECORDINGS

 1.  Remember the purpose of public engagement: Good public engagement is as much about the people, 
place, methods, aims, and impact, as it is about disseminating the results. Its main aim is not purely to 
disseminate research findings, nor only to collect data, but is a two-way dialogue between researchers and 
non-researchers. Your activity should primarily focus on engaging your audience, preferably with hands-on 
tasks (e.g., show them eye blink and muscle artifact from their EEG signal), and data can be collected 
around this as a secondary objective. Well-planned activities can successfully achieve all of these remits. 
During this study, participants enjoyed seeing their own brain activity, especially when they could control 
what appeared on the screen. This generated further questions and allowed them to connect with our 
research at a deeper level.

 2.  Ethical approvals and consent: Formal ethical approvals must be granted by a research ethics commit-
tee prior to collecting data from human participants. This extra workload should be factored into the 
planning stages of your activity. Each ethics board will provide tailored advice regarding the level of 
consent that is required. This may be minimal, depending on the type of data that will be collected; e.g., 
The British Psychological Society’s Code of Human Research Ethics states that “For de-identified-at-source, 
non-sensitive data, consent may usually be considered to have been given by the act of participation or by 
ticking a box” (The British Psychological Society, 2021). Specific care around the issue of informed consent 
must be taken when collecting data from children and individuals with communication and/or learning 
difficulties. Debrief letters can be distributed after the activity, including the contact details of the research-
ers, so that the participant’s data can be rescinded if requested. If any photographs or quotes are recorded 
from individuals taking part in the activity, ensure that written consent is obtained and clearly state for what 
purpose and where these will be used (e.g., social media, presentations, newsletters etc).

 3.  Where and when will you hold your activity: The time and location of your activity might be identified by 
you, or allocated, e.g., at a stall during a science fair or festival. These factors are vital in guiding the activ-
ity that you will deliver: Who is your audience at this location? Might there be a different audience at the 
weekend compared to weekdays, and in the morning versus the evening? Is the location loud? Do you 
have sufficient physical space? Do you need access to power sockets, chairs, washing facilities to clean 
electrodes? Might it be so busy that you need extra staff? You may also be required to carry out a risk 
assessment of your activity in advance to identify potential hazards and how you will mitigate them. If 
working in partnership with a festival, speak with the event organisers early in their planning cycle about 

For the sake of simplicity, and to facilitate testing of a 
large number of people very quickly, we also decided not 
to collect additional demographic or clinical information 
from the participants, other than their age and gender. 
There was no indication that peak alpha frequency or 
power differed between male and female participants in 
our dataset, although differences between groups in one, 
or both, of these measures have been described in previ-
ous studies (Cragg et al., 2011; Tröndle et al., 2022). Due 
to the open nature of our recruitment process, we may 
have included participants, by design, whose alpha oscil-
lations may be classed as “atypical” relative to the healthy 
population. For example, there are reports of reduced 
resting alpha power, resulting in cortical hyperarousal, in 
people with attention-deficit hyperactivity disorder, schizo-
phrenia, and obsessive-compulsive disorder (Newson & 

Thiagarajan, 2019). Assuming that the appropriate ethical 
approvals are obtained, more detailed self-reported clini-
cal information about the individual could be collected 
within public engagement settings to quantify these dif-
ferences and, based on our collection of n = 118 Multidi-
mensional Fatigue Inventory questionnaires in 2 days of 
testing, other surveys could be administered to isolate 
other characteristics of the participants, such as person-
ality or other mental states.

Finally, given our experience of collecting data within 
the community, we have several recommendations and 
considerations for researchers who wish to use this 
approach (see Box):

In conclusion, collecting EEG data during public 
engagement and outreach events can represent a deep 
way of engaging non-scientists by providing an opportunity  
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your target audience. Guidance on the delivery at appropriate events, venues and time slots, should 
improve the likelihood of engaging with that group. Data collection over an extended period of time would 
allow for the identification of under-represented groups and targeting of future activities.

 4.  What is your research question and activity: Simplicity is paramount. Some research questions clearly 
cannot be answered by collecting data outside of the lab, but others can be addressed with a few modifi-
cations to the experimental design and setup. Your task should be quick to set up and to complete, aiming 
for no more than 5-10 minutes per person, or potentially longer if the activity is run as a workshop-style 
event. Apply the minimum number of electrodes, and record for the fewest number of trials and the short-
est duration needed to inform your research question. At the same time, bear in mind that reducing the 
number of electrodes may mean that more care is needed when planning scalp electrode locations and 
the location of the ground and reference. With a single electrode setup, topographical reconstructions are 
not possible, and eye movement recordings can be a good compromise to reach a cleaner signal offline. 
It is best to assume that your participants have little to no background knowledge of your research spe-
cialty and therefore the instructions for the task must be easy for your audience to understand, with no 
scientific jargon. Expect your data to have substantially more noise and artifact than an equivalent lab-
based setup, so ensure that you have an objective method of quantifying the quality of the data and be 
prepared to exclude some participants from analysis. However, the increased availability of participants 
and the resultant larger sample size can counteract this.

 5.  What equipment do you need: New-generation mobile recording devices are portable by design and are 
well suited for public engagement events. However, standard EEG systems are also often portable and can 
be used with care. Research-grade hardware is expensive and fragile, so ensure that it is secure during trans-
portation, storage and during data collection. Older systems that have been retired from the lab are ideal for 
this reason. It is hard to underestimate the impact of bringing real scientific equipment into a public space as 
part of the main focus of your activity. People enjoy “playing” with the equipment that researchers use, since 
most people have limited (or no) access to such equipment after leaving school. Therefore, remember to 
provide a plentiful supply of consumables, e.g., electrodes, connectors, conductive paste, tape, blindfolds 
etc.

 6.  Who is on your delivery team: Aim to recruit more staff members than you think you need. On a busy day, 
capacity can soon be overwhelmed when whole families or groups want to take part. You may need an 
additional, fun activity prepared to entertain those who are waiting in the queue, and someone with good 
rapport with children can go a long way to easing the pressure. Prior to the activity, ensure that all team 
members understand the key messages, they can answer simple questions about the theme, and/or a 
team member with more specialist knowledge is available to continue conversations with interested par-
ties. This is also an excellent opportunity for skill development and improving employability for students 
and early career researchers who may not want to remain in academia.

 7.  Diversity and inclusion: One of the main benefits of bringing cognitive neuroscience out of the lab and 
into the “real world” is that it is an opportunity to improve the diversity and representativeness of your 
research. Consequently, it is important to ensure that your activity is accessible to as many people as 
possible who wish to take part. Consider whether you would be forced to turn away people wearing a 
head covering, who use a wheelchair, who have vision or hearing impairments, who speak a different 
language, or who are accompanied by small children and take proactive steps to include everyone who 
wishes to be involved in your activity. Researchers should be prepared to demonstrate the activity on 
another member of the team in these cases, and should be prepared to provide information in alternative, 
accessible formats. Demographic data could also be collected to quantify the improved diversity of your 
sample.

 8.  Closing the loop: The results of the data collection should be fed back to the participants in some mean-
ingful way to let them know how their data have been used. This can be done directly, using a lay summary, 
if their contact details are retained, indirectly using a social media hashtag or a dedicated event website, 
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to become involved in real science experiments, and  
to meet researchers who are active in their fields. We 
have shown that it is feasible to collect good-quality 
cross-sectional data, with outcomes that are similar to 
those found in lab-based studies, and that a large num-
ber of people can be tested within a short period of time. 
We provide recommendations for other researchers who 
wish to incorporate EEG data collection into outreach 
events regarding the planning and delivery aspects of 
their public engagement activity.

DATA AND CODE AVAILABILITY

The raw EEG data and analysis scripts are available at 
https://osf . io / ct2xw/.
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