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Abstract: We derive the governing equations for the overall behaviour of linear viscoelastic compos-
ites comprising two families of elastic inclusions, subphases and/or fibres, and an incompressible
Newtonian fluid interacting with the solid phases at the microscale. We assume that the distance
between each of the subphases is very small in comparison to the length of the whole material
(the macroscale). We can exploit this sharp scale separation and apply the asymptotic (periodic)
homogenization method (AHM) which decouples spatial scales and leads to the derivation of the
new homogenised model. It does this via upscaling the fluid–structure interaction problem that
arises between the multiple elastic phases and the fluid. As we do not assume that the fluid flow is
characterised by a parabolic profile, the new macroscale model, which consists of partial differential
equations, is of Kelvin–Voigt viscoelastic type (rather than poroelastic). The novel model has coeffi-
cients that encode the properties of the microstructure and are to be computed by solving a single
local differential fluid–structure interaction (FSI) problem where the solid and the fluid phases are all
present and described by the one problem. The model reduces to the case described by Burridge and
Keller (1981) when there is only one elastic phase in contact with the fluid. This model is applicable
when the distance between adjacent phases is smaller than the average radius of the fluid flowing in
the pores, which can be the case for various highly heterogeneous systems encountered in real-world
(e.g., biological, or geological) scenarios of interest.

Keywords: homogenization; viscoelasticity; fluid–structure interaction

1. Introduction

Materials can be described and classified in a number of ways. For example, viscous
materials have a time-dependent deformation when subjected to a strain and also resist
shear flow. Another example is elastic materials that will strain when a load is applied but
will returned to the same unstressed state when the load is removed. Viscoelastic materials
are characterised by having both an elastic and a viscous response under deformation, and
therefore can be described as exhibiting time-dependent strain [1,2].

There are a large variety of physical settings where we have materials that exhibit a
viscoelastic response. For example, in the human spine, under normal body weight, the
disks get shorter with time, which means people are shorter in the evening, and lying down
(removing the body weight) allows the disks to return to normal length by morning [3,4].
Human skin can also be described as viscoelastic and can be useful in diagnostic techniques
and scar modelling [5–7]. The theory of viscoelasticity has also been used to consider
materials that have a composite-like structure. Some examples of this are found in several
biological contexts such as cortical and trabecular bone [8,9]. Viscoelastic composites
including fibres have been very useful in engineering and manufacturing processes due to
the fact that the properties can be optimised [10].

These viscoelastic systems are usually characterised by multiple physical scales of
interest. They possess a fine scale structure and this is where the various solid and fluid
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interactions are clearly visible (the microscale). This scale is considerably smaller than the
length associated with the complete viscoelastic material (the macroscale).

Viscoelastic composites have recently been addressed by a multiscale modelling ap-
proach. In [11–13], a variety of different methods have been used to incorporate the different
microstructural information in an computationally feasible manner. The effective response
of a material that is based upon the properties of the individual constituents can be de-
scribed by micromechanical models. These properties can be the viscoelastic moduli or
geometrical arrangement and volume fraction of the different microstructural constituents.

When addressing a multiscale system, there are a variety of approaches that can be
taken to transform a fluid–structure interaction (FSI) problem into a complete macroscale
governing system. These types of procedures can be categorised as homogenization tech-
niques. Examples of such techniques are mixture theory, effective medium theory, volume
averaging and asymptotic homogenization. The choice as to which method will be suitable
for the system under study should be made depending on the application of the model and
the information you wish to be encoded or available from the macroscale model; however,
each approach has its own benefits.

The techniques including mixture theory and effective medium theory are microme-
chanical approaches. These are useful when it is desirable to obtain estimates of the
poroelastic coefficients for particular pore geometries. These specific geometries include
spherical, ellipsoidal, or penny-shaped or in the case of diluted pores. This was considered
in [14]. Volume averaging techniques can be used when the goal is to derive the functional
form of the equations governing the macroscale. When using this approach, the macroscale
model coefficients are in general not encoding the microstructure of the material and re-
quire further data such as experimental results to obtain them. For a further summary and
comparison of homogenization techniques, the reader is directed to [15,16].

Previously, the asymptotic homogenization method has been a popular approach to
study poroelastic materials such as in [17–19]. This theory was then extended to consider
the case of an inviscid fluid [20]. The method has also been employed to study elastic
composites [21–24] and electroactive materials [25–28]. The technique has also previously
been exploited to address problems in viscoelasticity. For example, the technique allowed
for analytical closed form expressions for the effective coefficients of fibrous viscoelastic
composites to be found in [29–31]. In [32], the authors study the homogenized properties
of linear viscoelastic composite materials in three dimensions by means of a semi-analytical
approach combining the asymptotic homogenization method (AHM) with numerical
computations performed by finite element simulations. The work by [33] addresses the
calculation of the effective properties of non-aging linear viscoelastic composite materials
and investigates the effective creep and relaxation behaviour for a variety of fibre and
inclusion reinforced structures.

In this manuscript, we apply the asymptotic homogenization method to upscale the
FSI problem between two families of solid obstacles and a Newtonian fluid phase. In
this case, the medium could not be considered a porous material. Both families of elastic
subphases are in contact with the fluid and each other. We assume that the length scale
at which the different solid phases and the fluid are clearly resolved can be compared
with the distance between each of the phases which we call the microscale. We make
the assumption that this scale is much smaller than the macroscale. We then carry out
an upscaling on a system of equations that describe the behaviour of each phase and is
closed by the continuity of stresses and displacements on the solid–solid interfaces, and
the continuity of stresses and velocities on the fluid–solid interfaces. The application
of the asymptotic homogenization method leads to a set of viscoelastic-type equations,
which are a generalization of linear elastic composites [22] and those found in [17] in which
the authors discussed the emergence of a viscoelastic model through the homogenization
process of a composite material comprising a single solid phase and the fluid.

The novel model derived in this manuscript has coefficients that encode the properties
of the microstructure and are to be computed by solving a single local differential FSI
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problem where the solid and the fluid phases are all present and described by the one
problem. The new model has a key difference from formulations of previous viscoelastic
models. That is, our model encodes multiple different elastic phases interacting with the
fluid and each other, in comparison to some previous viscoelastic formulations such as [17]
where there is only one fluid and one solid phase, or indeed in the case where the interac-
tions between a solid viscoelastic phase and a fluid are considered [34,35]. The addition
of the extra interactions between multiple phases to the model is particularly beneficial
to physical applications such as in the bones [8,9] where there are a variety of different
microscale constituents, such as collagen and minerals, and in articular cartilage [36,37].
The coefficients capture the differences in elastic and mechanical properties between the
phases, as well as the discrepancies in the elastic properties at different points in the mi-
crostructure. The model can also be compared with that of poroelastic composites [38]
where we see the important difference that the scaling of the fluid viscosity has. The
macroscale model coefficients capture the geometry, elastic properties and interactions of
the microscale constituents and are determined by solving a local differential FSI problem
where the solid and the fluid phases are all present and described by the one problem.

We organise this paper in the following manner. Section 2 sees the introduction of
the fluid–structure interaction problem describing the interactions occurring between the
two families of elastic subphases and the fluid phase. We continue the development of the
work by performing a multiple scales analysis of the FSI problem in Section 3. This leads
to the derivation of the macroscale governing equations for the homogenized effective
mechanical behaviour of viscoelastic composites. In Section 4, we present the macroscale
model and compare the results here with previously known models in the literature such
as [17,38]. In Section 5, the work concludes with discussions surrounding the limitations of
the current model and further directions for future development.

2. The Fluid–Structure Interaction Problem

Our problem begins with a set Ω ∈ R3, where Ω comprises two families of N disjoint
solid subphases Ωa and Ωb and an interconnected fluid domain Ωf. We have that

Ωa =
N⋃

δ=1

Ωδ, (1a)

Ωb =
N⋃

β=1

Ωβ. (1b)

We can write that the domain is Ω̄ = Ω̄a ∪ Ω̄b ∪ Ω̄f. To illustrate this structure, we
have provided Figure 1, which is a two-dimensional schematic of the domain Ω.

Before describing the equations that govern each of the domains in our structure we
first wish to clarify the notation that will be used throughout this manuscript.

Remark 1 (Notation). We use the following for a generic field. For a scalar we use ordinary
lowercase letters, e.g., v, for a vector we use boldface, e.g., v , and monospace font V is used for
second rank tensor. We use uppercase calligraphic letters for third rank tensors, for instance V , and
finally blackboard bold font V is used for fourth rank tensors.

We first require a balance equation in each of the solid domains Ωδ and Ωβ. We choose
to neglect volume forces and inertia, so we can write for all δ = 1, . . . , N, and β = 1, . . . , N

∇ · Tδ = 0 in Ωδ, (2a)

∇ · Tβ = 0 in Ωβ. (2b)
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Figure 1. A 2D slice showing the different components of the 3D domain Ω. We indicate the fluid in
white, and the two distinct families of subphases for all δ = 1, . . . , N, and β = 1, . . . , N are shown in
red and blue. We see that the fluid surrounds all the elastic phases and each elastic phases can either
interact with other elastic phases or just the fluid.

We use Tδ and Tβ as the solid stress tensors for each of the subphases Ωδ and Ωβ,
respectively. We make the choice that both families of subphases are general linear elastic
solids. This means we can write the Cauchy stress tensors for Tδ and Tβ as

Tδ =Cδ∇uδ, (3a)

Tβ =Cβ∇uβ, (3b)

where we have that uδ and uβ denote the elastic displacement of each of the individual
subphases from each family. The tensors Cδ and Cβ appearing in (3a)–(3b) are the fourth
rank elasticity tensors in each subphase. These can be written in components as Cδ

pqrs and

Cβ
pqrs, for p, q, r, s = 1, 2, 3. Each tensor Cδ and Cβ has right minor and major symmetries,

these are

Cδ
pqrs = Cδ

pqsr; Cβ
pqrs = Cβ

pqsr, (4a)

Cδ
pqrs = Cδ

rspq; Cβ
pqrs = Cβ

rspq, (4b)

and the left minor symmetries can be obtain by combining (4a) and (4b). We can use the
left minor symmetries to rewrite constitutive Equations (3a) and (3b) as

Tδ = Cδξ(uδ), (5a)

Tβ = Cβξ(uβ), (5b)

where we define

ξ(•) :=
∇(•) + (∇(•))T

2
(6)

as the symmetric part of the gradient operator.
We also require a fluid balance equation, we can write

∇ · Tf = 0 in Ωf, (7)

with the stress tensor for the fluid, Tf . Our fluid can be described as incompressible and
Newtonian, so therefore the constitutive law is

Tf = −pI+ 2µξ(v), (8)
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where we represent the viscosity fluid by µ the fluid velocity by v , and where p is the
pressure. Since we have an incompressible fluid we require

∇ · v = 0. in Ωf, (9)

Using the fluid constitutive law (8) in the fluid balance Equation (7) and together with
the incompressibility constraint (9), this leads to the Stokes’ problem

µ∇2v = ∇p in Ωf. (10)

To have a complete FSI problem, we close it with appropriate interface conditions. These
conditions are placed to describe the interactions between the fluid and the solid phases.
The interfaces can be defined as follows: between the fluid and the δ-th inclusion/fibre/
subphase we have Γδ := ∂Ωδ ∩ ∂Ωf; and between the fluid phase and the β inclusion/fibre/
subphase as Γβ := ∂Ωβ ∩ ∂Ωf. Across each Γδ and Γβ we then enforce continuity of
velocities and stresses, i.e.,

u̇δ = v on Γδ, (11a)

Tfnδ = Tδnδ on Γδ, (11b)

u̇β = v on Γβ, (11c)

Tfnβ = Tβnβ on Γβ, (11d)

for all δ = 1, ..., N, and β = 1, ..., N. We have used the notation u̇δ and u̇β to describe
the solid velocities in each inclusion/fibre/subphase Ωδ and Ωβ, respectively. We must
also note that nδ and nβ are the unit outward vectors that are normal to the interfaces Γδ

and Γβ. That is, these normals point into the fluid domain Ωf.

Remark 2 (Frequency Domain). In this work, we embrace the approach of [17], which means
that we consider time harmonic motion. As such, a time dependent field, say ϕ(x, t), can be
decomposed in a solely spatially varying component and a harmonic time variation, i.e., we assume
that ϕ(x, t) = ϕ0(x) exp(iωt). For instance, this then means that ∂ϕ

∂t = iωt. In the remainder of
this work, we will identify each field with their spatially varying component and omit the subscript
0 for the sake of simplicity of notation. This approach can be carried out without loss of generality as
in principle the problem could be formulated in the frequency domain and so, in other words, every
sufficiently smooth time dependency could be taken into account by spanning over the frequency
domain by means of the Fourier transform operator.

As such, assuming continuity of velocities at the interfaces, by means of Remark 2,
we have

iωuδ = v on Γδ, (12a)

iωuβ = v on Γβ. (12b)

We also have the boundary between each of the different solid phases, which we write
as Γδβ := ∂Ωδ ∩ ∂Ωb. We then impose continuity of stresses and displacements, which can
be written as

Tδnδβ = Tβnδβ on Γδβ. (13a)

uδ = uβ on Γδβ, (13b)

for all δ = 1...N, and β = 1, ..., N. The unit vector nδβ appearing in (13a) is normal to
the interface Γδβ and is pointing into the inclusion Ωδ.

We have now introduced all the equations necessary to carry out a multiple scales
analysis. We do this by first non-dimensionalising the fluid–structure interaction problem
we have just formed. This is done by introducing two distinct length scales. We use
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this sharp scale separation and apply the asymptotic homogenization method to the non-
dimensionalised FSI problem. This leads to the derivation of the effective macroscale
governing equations that describe the viscoelastic material.

3. Multiple Scales Analysis

We can now summarise the FSI problem we introduced in the previous section. We
note that the fields in each of the equations here are all defined in the time domain and
where the appearance of a time derivative is shown by the multiplication of the field by iω.
We have

∇ · Tδ = 0 in Ωδ, (14a)

∇ · Tβ = 0 in Ωβ, (14b)

∇ · Tf = 0 in Ωf, (14c)

∇ · v = 0 in Ωf, (14d)

iωuδ = v on Γδ, (14e)

iωuβ = v on Γβ, (14f)

Tfnδ = Tδnδ on Γδ, (14g)

Tfnβ = Tβnβ on Γβ, (14h)

Tδnδβ = Tβnδβ on Γδβ, (14i)

uδ = uβ on Γδβ. (14j)

We can then use the constitutive relationships (5a), (5b), and (8), and the incompress-
ibility constraint (14d), to rewrite the balance Equations (14a)–(14c) as

∇ · (Cδξ(uδ)) = 0 in Ωδ (15a)

∇ · (Cβξ(uβ)) = 0 in Ωβ (15b)

µ∇2v = ∇p in Ωf, (15c)

for all δ = 1...N, and β = 1, ..., N. To close the problem (14a)–(14j), we place appropriate
external boundary conditions on ∂Ω.

3.1. Non-Dimensionalisation of the FSI Equations

As the system we are considering is multiscale, we identify two typical length scales.
We first associate L with the size of the whole material Ω (the macroscale). The second
scale of interest we denote with d and this refers to the microscale, which we assume can
be compared to the distance between each of the subphases and the fluid. In order to
clearly see the distinction between the scales, we carry out a non-dimensionalisation of the
system (14a)–(14j). To perform the non-dimensional analysis, we assume that the system is
characterised by a reference pressure gradient C, as well as the length scales to obtain

x = Lx′, Cδ = CLC′δ, Cβ = CLC′β,

uδ = Lu′δ, uβ = Lu′β, v =
CL2

µ
v′, p = CLp′.

(16)

It is possible to choose different scalings for the fluid velocity and these account for
the effective behaviour of fluid flow in porous media [17,19,38,39].

We are able to use (16), and noticing that we can write

∇ =
1
L
∇′, (17)
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we obtain the non-dimensionalised fluid–structure interaction problem (14a)–(14j),

∇ · Tδ = 0 in Ωδ (18a)

∇ · Tβ = 0 in Ωβ (18b)

∇ · Tf = 0 in Ωf (18c)

∇ · v = 0 in Ωf (18d)

iωuδ = v on Γδ (18e)

iωuβ = v on Γβ (18f)

Tfnδ = Tδnδ on Γδ (18g)

Tfnβ = Tβnβ on Γb (18h)

Tδnδβ = Tβnδβ on Γδβ (18i)

uδ = uβ on Γδβ (18j)

For all δ = 1, . . . , N, and β = 1, . . . , N, the primes have been removed to simplify
the notation. The non-dimensionalised constitutive laws (5a), (5b), and (8) are

Tf = −pI + ξ(v) (19a)

Tδ = Cδξ(uδ) (19b)

Tβ = Cβξ(uβ), (19c)

and using these in the balance Equations (15a)–(15c) gives

∇2v = ∇p in Ωf (20a)

∇ · (Cδξ(uδ)) = 0 in Ωδ (20b)

∇ · (Cβξ(uβ)) = 0 in Ωb. (20c)

We are now ready to introduce the asymptotic homogenization method that will
upscale the non-dimensional FSI problem (18a)–(20c) to macroscale governing equations
by making the assumption that the two scales (micro and macro) are well separated.

3.2. The Asymptotic Homogenization Method

We now introduce the rules and assumptions associated with the asymptotic homoge-
nization method which are then used to obtain the macroscale model from the FSI problem
(18a)–(20c). We begin by making the assumption that the microscale length, which we
denote by d, is much smaller than the average size of the viscoelastic material which has
length L. That is,

ε =
d
L
� 1. (21)

We require a microscale spatial variable which will describe how each field varies on
the microscale, that is

y =
x
ε

. (22)

We have two spatial variables x and y and it is assumed that these are formally
independent, with x representing the macroscale and y the microscale. We have that the
gradient operator will also transform

∇ → ∇x +
1
ε
∇y. (23)
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We require that all the fields in (18a)–(20c) are functions of both spatial variables and
have a power series in ε representation, i.e.,

ϕε(x, y, t) =
∞

∑
l=0

ϕ(l)(x, y, t)εl , (24)

where ϕ is a generic field occurring in our analysis.

Remark 3 (Microscale periodicity). To simplify the analysis in this work, we restrict our attention
to a single subset of the domain which we call the periodic cell. This periodic cell may have a variety
of different subphases, each of which can have a different geometry and elastic properties, this is
depicted in Figure 2. For this to be possible, we make the assumption that every field ϕ(l) arising
in (18a)–(20c) is y-periodic. By making this assumption, we can solve the microscale differential
problems arising from using the asymptotic homogenization method on just a finite subset of the
material. This assumption need not be made and the analysis can be carried using a less strict
assumption, i.e., the local boundedness of fields. This approach, however, only allows us to determine
the functional form of the macroscale equations and the model coefficients are to be obtained by
solving microscale problems on the whole microstructure of the material. This makes solving the
model very computationally expensive when using the local boundedness of fields approach in
comparison to microscale periodicity. Some examples of this are found in [17,40,41].

Remark 4 (Macroscopic uniformity). It is clear that the microscale geometry can differ depending
on the macroscale point considered. This dependence is in general neglected in most works. We will
make the assumption that the viscoelastic material is macroscopically uniform. That is, we assume
the microscale geometry does not change with macroscale variable x. By making this assumption,
we have the following ∫

Ω
∇x · (•)dy = ∇x ·

∫
Ω
(•)dy. (25)

In the case that Ω = Ω(x), then Equation (25) does not hold. This leads to an application of the
generalized Reynolds’ transport theorem which can give rise to additional contributions on the
macroscale; see, e.g., [39,40,42].

Remark 5 (Local Geometry). In the set up of the problem so far, we have considered a fluid
with many embedded subphases that are interacting. For the sake of clarity, we assume that each
family provides only one subphase for each periodic cell, as shown in Figure 3. This assumption
does not affect the generality of the properties of the model. If a particular application requires a
variety of subphases in the periodic cell, then this can easily be extended, as in [21]. Therefore, the
indexes δ and β are not necessary and we can amend the notation. We identify the domain Ω with
the corresponding periodic cell which comprises two solid subphases (one from each family) and
fluid, with each of the phases denoted by Ωa, Ωb, and Ωf, respectively. We can also simplify the
notation used for the interfaces between the different phases, so we have Γa := ∂Ωa ∩ ∂Ωf between
the fluid and the inclusion a, Γb := ∂Ωb ∩ ∂Ωf is the interface between the fluid and the inclusion
b, and Γab := ∂Ωa ∩ ∂Ωb, is the interface between the two solid phases. These interfaces have
corresponding unit normal vectors na, nb, and nab.
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Figure 2. A 2D schematic highlighting a single periodic cell that creates our viscoelastic material.
This is exactly a small piece of the the entire domain Ω. We have the fluid surrounding the solid
phases is shown in white and the two different families of subphases are shown in red and blue. We
see that each of the subphases Ωδ and Ωβ for δ = 1, . . . , N, β = 1, . . . , N, can be in contact with
each other and the fluid or completely surrounded by fluid.

Figure 3. A 2D schematic of the periodic cell for our material. We are focusing on the geometry
described in case 2 from Figure 2 where there are the two subphases (depicted in blue and red) in
contact with each other and the fluid surrounding them which is shown in white. Here we also
include the interfaces in our sketch. We have Γa shown in grey between the inclusion a and the fluid,
Γb between the inclusion b and the fluid and Γab shown in green is the solid–solid interface.

3.3. Deriving the Macroscale Model

We now apply the assumptions of the asymptotic homogenization method,
i.e., (23) and (24), to Equations (18a)–(18j), accounting also for periodicity, to obtain

∇y · Tε
a + ε∇x · Tε

a = 0 in Ωa (26a)

∇y · Tε
b + ε∇x · Tε

b = 0 in Ωb (26b)

∇y · Tf
ε + ε∇x · Tf

ε = 0 in Ωf (26c)

∇y · vε + ε∇x · vε = 0 in Ωf (26d)

iωuε
a = vε on Γa (26e)

iωuε
b = vε on Γb (26f)

Tf
εna = Tε

a na on Γa (26g)
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Tf
εnb = Tε

b nb on Γb (26h)

Tε
a nab = Tε

b nab on Γab (26i)

uε
a = uε

b on Γab. (26j)

The constitutive equations for the fluid and solid stress tensors under these assump-
tions are

εTf
ε = −εpεI + ξy(vε) + εξx(vε) (27a)

εTε
a = Caξy(uε

a ) + εCaξx(uε
a ) (27b)

εTε
b = Cbξy(uε

b) + εCbξx(uε
b), (27c)

and the balance equations are

∇y · (Caξy(uε
a )) + ε∇y · (Caξx(uε

a )) + ε∇x · (Caξy(uε
a )) + ε2∇x · (Caξx(uε

a ))

= 0 in Ωa (28a)

∇y · (Cbξy(uε
b)) + ε∇y · (Cbξx(uε

b)) + ε∇x · (Cbξy(uε
b)) + ε2∇x · (Cbξx(uε

b))

= 0 in Ωb (28b)

ε2∇2
xvε + ε∇x · (∇yvε) + ε∇y · (∇xvε) +∇2

yvε

= ε∇y pε + ε2∇x pε in Ωf (28c)

Since all the fields can be written in terms of a power series of the type (24)
in (26a)–(28c), we can equate the coefficients of εl for l = 0, 1, . . .. These obtained equa-
tions are then used to derive the macroscale model for the material. The model will be
expressed in terms of relevant leading order fields. For any terms in the model that retain a
dependence on the microscale variable y, we apply the integral average. This average is
defined as

〈ϕ〉i :=
1
|Ω|

∫
Ωi

ϕ(x, y, t)dy i = f , a, b (29)

where ϕ is a generic field and |Ω| is the volume of the domain and we note that |Ω| =
|Ωf| + |Ωa| + |Ωb|. Due to the assumption of y-periodicity, the integral average can be
performed over one representative cell. Therefore, we can say that (29) represents a
cell average.

We begin by equating coefficients of ε0 in (26a)–(26j) to obtain

∇y · T(0)
a = 0 in Ωa, (30a)

∇y · T(0)
b = 0 in Ωb, (30b)

∇y · Tf
(0) = 0 in Ωf, (30c)

∇y · v(0) = 0 in Ωf, (30d)

iωu(0)
a = v(0) on Γa, (30e)

iωu(0)
b = v(0) on Γb, (30f)

Tf
(0)na = T(0)

a na on Γa, (30g)

Tf
(0)nb = T

(0)
b nb on Γb, (30h)

T(0)
a nab = T

(0)
b nab on Γab, (30i)

u(0)
a = u(0)

b on Γab. (30j)
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The ε0 coefficients of the constitutive Equations (27a)–(27c) read

ξy(v(0)) = 0 in Ωf, (31a)

Caξy(u(0)
a ) = 0 in Ωa, (31b)

Cbξy(u
(0)
b ) = 0 in Ωb, (31c)

and the balance Equations (28a)–(28c) have coefficients of ε0

∇y · (Ca∇y(u(0)
a )) = 0 in Ωa, (32a)

∇y · (Cb∇y(u
(0)
b )) = 0 in Ωb, (32b)

∇2
yv(0) = 0 in Ωf. (32c)

We now similarly consider the coefficients of ε1 in (26a)–(26j) which leads to

∇y · T(1)
a +∇x · T(0)

a = 0 in Ωa, (33a)

∇y · T(1)
b +∇x · T(0)

b = 0 in Ωb, (33b)

∇y · Tf
(1) +∇x · Tf

(0) = 0 in Ωf, (33c)

∇y · v(1) +∇x · v(0) = 0 in Ωf, (33d)

iωu(1)
a = v(1) on Γa, (33e)

iωu(1)
b = v(1) on Γb, (33f)

Tf
(1)na = T(1)

a na on Γa, (33g)

Tf
(1)nb = T

(1)
b nb on Γb, (33h)

T(1)
a nab = T

(1)
b nab on Γab, (33i)

u(1)
a = u(1)

b on Γab. (33j)

Then, the constitutive Equations (27a)–(27c) have coefficients of ε1 given by

Tf
(0) = −p(0)I + ξy(v(1)) + ξx(v(0)) in Ωf, (34a)

T(0)
a = Caξy(u(1)

a ) +Caξx(u(0)
a ) in Ωa, (34b)

T
(0)
b = Cbξy(u

(1)
b ) +Cbξx(u

(0)
b ) in Ωb, (34c)

and finally the balance Equations (28a)–(28c) have coefficients of ε1 given by

∇y · (Caξy(u(1)
a )) +∇y · (Caξx(u(0)

a )) +∇x · (Caξy(u(0)
a )) = 0 in Ωa, (35a)

∇y · (Cbξy(u
(1)
b )) +∇y · (Cbξx(u

(0)
b )) +∇x · (Cbξy(u

(0)
b )) = 0 in Ωb, (35b)

∇2
yv(1) +∇x · (∇yv(0)) +∇y · (∇xv(0)) = ∇y p(0) in Ωf. (35c)

We have from (31b), (31c), (32a) and (32b) and the periodicity conditions that u(0)
a and

u(0)
b (the leading order solid displacements ) are independent of the microscale variable y.

We can also then describe these as rigid body motions and therefore we can write

u(0)
a =u(0)

a (x) (36a)

u(0)
b =u(0)

b (x). (36b)
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Due to the continuity of elastic displacements u(0)
a = u(0)

b on Γab given by (30j), we can
write

u(0) = u(0)
a = u(0)

b , (37)

and we use this in the remainder of this manuscript. We can also see from (30e) and (30f)
that

iωu(0)
a = v(0), (38a)

iωu(0)
b = v(0), (38b)

this means that
v(0) = v(0)(x), (39)

and then using (37), we have that

v(0) = iωu(0). (40)

3.4. Microscale Problem

We now wish to form a problem from the equations that we have just derived
in the previous section. We will use conditions (36a), (36b), (37) and (39) and we can
take balance Equations (35a)–(35c), we have incompressibility constraint (33d), continu-
ities of velocities (33e), (33f), continuity of stresses (30g)–(30i), with leading order stresses
from (34a)–(34c) and continuity of displacements (33j), to form the problem the problem

∇2
yv(1) −∇y p(0) = 0 in Ωf (41a)

∇y · v(1) +∇x · v(0) = 0 in Ωf (41b)

v(1) = iωu(1)
a on Γa (41c)

v(1) = iωu(1)
b on Γb (41d)

∇y · (Caξy(u(1)
a )) +∇y · (Caξx(u(0))) = 0 in Ωa (41e)

∇y · (Cbξy(u
(1)
b )) +∇y · (Cbξx(u(0))) = 0 in Ωb (41f)

(Caξy(u(1)
a ) +Caξx(u(0)

a ))na = (−p(0)I + ξx(v(0)) + ξy(v(1)))na on Γa (41g)

(Cbξy(u
(1)
b ) +Cbξx(u

(0)
b ))nb = (−p(0)I + ξx(v(0)) + ξy(v(1)))nb on Γb (41h)

Caξy(u(1)
a )nab −Cbξy(u

(1)
b )nab = (Cb −Ca)ξx(u(0))nab on Γab (41i)

u(1)
a = u(1)

b on Γab (41j)

Since we have condition (40), we can replace the v(0) terms in Equations (41b), (41g)
and (41h) with iωu(0). That is,

∇2
yv(1) −∇y p(0) = 0 in Ωf (42a)

∇y · v(1) + iω∇x · u(0) = 0 in Ωf (42b)

v(1) = iωu(1)
a on Γa (42c)

v(1) = iωu(1)
b on Γb (42d)

∇y · (Caξy(u(1)
a )) +∇y · (Caξx(u(0))) = 0 in Ωa (42e)

∇y · (Cbξy(u
(1)
b )) +∇y · (Cbξx(u(0))) = 0 in Ωb (42f)

(Caξy(u(1)
a ) +Caξx(u(0)

a ))na = (−p(0)I + iωξx(u(0)) + ξy(v(1)))na on Γa (42g)

(Cbξy(u
(1)
b ) +Cbξx(u

(0)
b ))nb = (−p(0)I + iωξx(u(0)) + ξy(v(1)))nb on Γb (42h)

Caξy(u(1)
a )nab −Cbξy(u

(1)
b )nab = (Cb −Ca)ξx(u(0))nab on Γab (42i)
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u(1)
a = u(1)

b on Γab (42j)

We now can exploit the linearity of the system (41a)–(41j) to write the following ansatz

v(1) = iωAξxu(0), (43a)

u(1)
a = Baξxu(0), (43b)

u(1)
b = Bbξxu(0), (43c)

p(0) = iωP : ξxu(0) = Tr(iωPξxu(0)), (43d)

where A, Ba and Bb are third rank tensors and P is a second rank tensor. The auxiliary
fields A, Ba, Bb and P solve the following cell problem

∇2
yA−∇yP = 0 (44a)

∇y · AT + I = 0 (44b)

A = Ba (44c)

A = Bb (44d)

∇y · (Caξy(Ba)) +∇y ·Ca = 0 (44e)

∇y · (Cbξy(Bb)) +∇y ·Cb = 0 (44f)

(Caξy(Ba) +Ca)na = (−iωI⊗ P+ iωI+ iωξyA)na (44g)

(Cbξy(Bb) +Cb)na = (−iωI⊗ P+ iωI+ iωξyA)nb (44h)

(Caξy(Ba)−Cbξy(Bb))nab = (Cb −Ca)nab (44i)

Ba = Bb (44j)

where we can define I = δijδkl as a fourth rank identity tensor.
Problem (44a)–(44j) is to be solved on the periodic cell and will also require periodic

conditions on the external boundaries of Ω. In order to obtain a unique solution, we place
one further condition on the auxiliary variables A, Ba, Bb and P, that is

〈A〉f = 0, 〈Ba〉a = 0, 〈Bb〉b = 0, 〈P〉f = 0 (45)

3.5. Balance Equation on the Macroscale

We must derive the macroscale balance equation. We apply the integral averages to
Equations (33a)–(33c) and sum up to obtain∫

Ωa
∇y · T(1)

a dy +
∫

Ωb

∇y · T(1)
b dy +

∫
Ωf

∇y · Tf
(1)dy+∫

Ωa
∇x · T(0)

a dy +
∫

Ωb

∇x · T(0)
b dy +

∫
Ωf

∇x · Tf
(0)dy = 0. (46)

The divergence theorem can be applied to the first three integrals and we can use
macroscopic uniformity condition (25) to rearrange the last three integrals so that we obtain∫

∂Ωa\Γa∪Γab

T(1)
a nΩa\Γa∪Γab

dS +
∫

Γa
T(1)

a nadS−
∫

Γab

T(1)
a nabdS+∫

∂Ωb\Γb∪Γab

T
(1)
b nΩb\Γb∪Γab

dS +
∫

Γb

T
(1)
b nbdS +

∫
Γab

T
(1)
b nabdS+∫

∂Ωf\Γa∪Γb

Tf
(1)nΩf\Γa∪Γb

dS−
∫

Γb

Tf
(1)nbdS−

∫
Γa
Tf

(1)nadS+

∇x ·
∫

Ωa
T(0)

a dy +∇x ·
∫

Ωb

T
(0)
b dy +∇x ·

∫
Ωf

Tf
(0)dy = 0, (47)
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where the vectors na, nb, nab, nΩI\Γa∪Γab
, nΩb\Γb∪Γab

and nΩf\Γa∪Γb
are the unit normals to

the interfaces Γa, Γb, Γab, ∂Ωa \ Γa ∪ Γab, ∂Ωb \ Γb ∪ Γab and ∂Ωf \ Γa ∪ Γb. Due to y-periodicity,
we can cancel the terms that arise on the external boundaries of the phases Ωa, Ωb and Ωf.
This gives ∫

Γa
T(1)

a nadS +
∫

Γb

T
(1)
b nbdS−

∫
Γa
Tf

(1)nadS−∫
Γb

Tf
(1)nbdS−

∫
Γab

T(1)
a nabdS +

∫
Γab

T
(1)
b nabdS+

∇x ·
∫

ΩI

T(0)
a dy +∇x ·

∫
Ωb

T
(0)
b dy +∇x ·

∫
Ωf

Tf
(0)dy = 0. (48)

The continuity of stresses interface conditions, Equations (33g)–(33i), can be used to
cancel out the first six integrals in (48). This means that the remaining terms can be written
as

∇x · (〈T(0)
a 〉a + 〈T

(0)
b 〉b + 〈T

(0)
f 〉f) = 0. (49)

Our balance equation comprises the zero-th order solid stress tensors. Using
Equations (34b) and (34c), we know that u(1)

a and u(1)
b appear in T

(0)
a and T

(0)
b , respectively.

Therefore, we write the leading order solid stresses as

T(0)
a = CaMaξx(u(0)) +Caξx(u(0)) (50)

and
T
(0)
b = CbMbξx(u(0)) +Cbξx(u(0)) (51)

making use of the notation

Ma := ξy(Ba), Mb := ξy(Bb). (52)

We also want to write down the zero-th order fluid stress (34a) since we have an
expression for v(1)

Tf
(0) = −p(0)I + iω(L+ I)ξxu(0), (53)

or equivalently
Tf

(0) = −p(0)I + (L+ I)ξxv(0), (54)

where we have defined
L := ξyA. (55)

Adding (50), (51) and (53) and applying the integral average over each of the domains
gives

〈T(0)
a 〉a + 〈T

(0)
b 〉b + 〈T

(0)
f 〉f =

(
〈CaMa +Ca〉a + 〈CbMb +Cb〉b

)
ξx(u(0))

+ 〈(L+ I− (TrP)I)〉fξx(v(0)) (56)

From (49) we know that
∇x · TEff = 0 (57)

with
TEff = 〈T(0)

a 〉a + 〈T
(0)
b 〉b + 〈T

(0)
f 〉f (58)

We are able to describe (57) and (58) as the averaged force balance equation for our
material.
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4. The Macroscale Governing Equations and Limit Cases

We now have derived the equations necessary to write the macroscale governing
equations for a linear viscoelastic composite material. That is

∇x · TEff = 0, (59a)

TEff =

(
〈CaMa +Ca〉a + 〈CbMb +Cb〉b

)
ξx(u(0)) + 〈(L+ I− (TrP)I)〉fξx(v(0)), (59b)

where u(0) is the leading order solid displacement, v(0) is the leading order fluid velocity
and p(0) is the leading order pressure. Equation (59a) is the balance equation with the new
constitutive law for viscoelastic composites given by (59b). We can see that the viscoelastic
constitutive law takes exactly the form that is expected of a Kelvin–Voigt viscoelastic
material comprising first the elastic constitutive relationship and the the second part is the
viscous part of the relation as in Kelvin–Voigt materials. The addition of the multiple elastic
phases being encoded in our model influences the elastic part of our constitutive law.

The new model we derive has an important difference from previous formulations of
standard viscoelastic materials. Our model has the ability to incorporate multiple elastic
phases all interplaying with the fluid and each other, whereas previous viscoelastic formula-
tions of this kind, such as [17], only consider one fluid and one solid phase. These additional
interactions between the multiple phases can be extremely useful in physical systems where
the solid component is rarely homogeneous. The ability to model heterogeneous materials
comes from the fact that discrepancies in the elastic and mechanical properties of each
phase are accounted for by the multiple elasticity tensors Ca and Cb as well as the tensors
Ma and Mb which account for the differences in the elastic properties at different points in
the microstructure. In this work, we propose the novel cell problem (44a)–(44j), this is the
problem from which the model coefficients are determined. The cell problem is an extension
to the problem found for viscoelastic materials in [17] and comprises some of the elastic
problem associated with poroelastic composites [38]. This cell problem comprises both the
fluid and solid equations in one problem and therefore we do not have the decoupling of
the different phases as seen in poroelastic-type cell problems. The model as it stands can
be described as a comprehensive framework for Kelvin–Voigt viscoelastic materials that
comprise various elastic phases.

We now wish to understand how our macroscale model for viscoelastic compos-
ites (59a)–(59b) compares and can reduce to previous models in the literature. We consider
the viscoelastic model derived via asymptotic homogenization in [17] which considers
only one elastic phase and the fluid, and we consider the model for poroelastic composites
by [38] which addresses the interaction of a porous matrix and and elastic phase where
fluid flows in the pores which are also comparable in size to the distance between the
inclusions.

Remark 6 (Comparison with Burridge and Keller [17]). We now wish to compare the model
we derived with the results of the [17] in the remark of effective viscoelasticity. There, the authors
consider one elastic phase and one fluid phase and the interactions between them. We begin the
comparison by rewriting the fluid stress Tf

(0), from (53), using both the expression for v(1) and
p(0). That is,

Tf
(0) = iω(L+ I− (TrP)I)ξxu(0). (60)

We can now use this version of the fluid stress in (56) to obtain

〈T(0)
a 〉a + 〈T

(0)
b 〉b + 〈T

(0)
f 〉f =

(
〈CaMa +Ca〉a + 〈CbMb +Cb〉b

+ 〈iω(L+ I− (TrP)I)〉f
)

ξx(u(0)). (61)
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This is still the constitutive law of our model, it had just been presented in a different form. We
then rewrite the macroscale model (59a)–(59b) as

∇x · TEff = 0, (62a)

TEff =

(
〈CaMa +Ca〉a + 〈CbMb +Cb〉b + 〈iω(L+ I− (TrP)I)〉f

)
ξx(u(0)). (62b)

The constitutive equation comprises the average of the stresses in both the solid domains I and
II and fluid domain of the material. In [17], the constitutive law is written as the sum of the leading
order stress in the solid and the leading order stress in the fluid. If we assumed we had indeed only
one solid phase, our constitutive law will match that of [17]. That is,

TEff =

(
〈CaMa +Ca〉a + 〈iω(L+ I− (TrP)I)〉f

)
ξx(u(0)), (63)

and we can identify TEff = 〈T
(0)
a 〉a + 〈T(0)

f 〉f with the notation τ̄ = τ̄0 + σ̄0 which has been used
in [17]. In this work, we find explicit forms of the leading order stresses by proposing a solution to
the problem (41a)–(41j). In [17], the suggested equations to form a linear dissipative problem are
the same as those we have in (41a)–(41j), with the exception that we have two solid elastic phases
and they consider only one. In their work, they do not explicitly solve this problem, but propose that
the leading order stresses in the solid and fluid are proportional to the macroscale gradient of the
leading order solid displacement u(0) as we have done here.

Remark 7 (Comparison with Poroelastic Composites [38]). We now can consider each of the
differences between this model and that of [38] for poroelastic composites. In the work of [38], the
authors consider a porous matrix with embedded elastic subphases that are in contact with the
matrix and the fluid that flows in connected cylindrical pores. Due to the profile of the fluid flowing
in the pores, [38] have that the fluid velocity scales by v = Cd2

µ v′, where d is the radius of the pores,
which is the standard scaling for Stokes’ flow in porous media. In this current work we have that the
pores are much larger and therefore scale by v = CL2

µ v′. These two different choices relate to the
observed microstructure and result in the appearance of an ε2 coefficient in the fluid stress tensor
and in the Stokes equation in porous media, but not in the case of viscoelastic media. This means
that when applying the asymptotic homogenization method, the Stokes-type equation and the fluid
stress tensor will have different orders and terms than those that we equate in this work. That is, the
Stokes equation in [38] reads

∇2
yv(0) −∇y p(1) = ∇x p(0), (64)

we can see that the orders of ∇2
yv and ∇y p are switched when compared with (41a) and [38] has

the additional macroscale gradient of the pressure. The fluid stress of [38] is also different

T(0) = −p(0)I, (65)

when compared with (34a), and we see that there are no micro or macroscale gradients of the fluid
velocity v.

Equations (42e), (42f), (42i) and (42j) appearing in the problem we derive are analogous to
those that form part of the elastic problem in [38]. However, the difference in the scaling of the
fluid stress leads to different continuity of stresses across the fluid–solid interfaces (42g) and (42h).
That is, in [38], we have the continuity of stresses using (65), (34b) and (34c) instead of that found
in (34a).

These small changes in the orders of the terms lead to the formation of only one linear dissipative
problem in this work with no decoupling of the phases, rather than being able to separate the problem
into a fluid problem and an elastic problem as in [38].
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5. Conclusions

In this work, we have presented a system of PDEs governing the effective mechanical
behaviour of viscoelastic composites. Our constitutive law takes the form of that of a
Kelvin–Voigt material, where we have the effective elasticity tensor applied to the strain
plus the viscosity applied to the time derivative of the strain. Our structure comprises
multiple solid fibres/subphases and a fluid phase, all of which are in contact with each
other. This structure is widely applicable to many real world scenarios including modelling
of human bones [3,4,8,9] and skin [5–7], as well as in many engineering and manufacturing
problems such as biomimetic materials [43] and polymers [44,45].

We begin our analysis by formulating the quasi-static fluid–structure interaction prob-
lem describing the behaviour of two families of linear elastic inclusions/fibres interacting
with an incompressible Newtonian fluid. We then have made the assumption that both
the fluid and the elastic fibres/inclusions/subphases are clearly visible and distinct on the
microscale, and also assumed that the macroscale represents the average size of material
we are modelling. These two scales are distinct, and their ratio leads to a very small scale
separation parameter. We then enforce this distinction in length scales to upscale the
non-dimensionalised FSI problem via asymptotic homogenization. The new model derived
in this way retains the important properties of the microstructure such as geometry and
stiffness in its coefficients, which are determined via solving the presented novel periodic
cell problem.

The new model that we derive comprises a balance equation and constitutive law. The
viscoelastic constitutive law takes exactly the form that is expected of a viscoelastic material
by comprising first the elastic constitutive relationship and second the viscous part of the
relation. The addition of the multiple elastic phases in our model influences the elastic part
of our constitutive law which reads like that of an elastic composite.

Our new model has an important distinction from formulations of previous viscoelastic
models. That is, our model encodes multiple different elastic phases interplaying with
each other and the fluid in comparison with some previous viscoelastic formulations
where there is only one fluid and solid phase. Accounting for these additional interactions
between the multiple phases can be of particular benefit to physical applications. The
differences in elastic and mechanical properties between the phases are accounted for by
the multiple elasticity tensors. The latter appear in the constitutive law and are accompanied
by tensors accounting for the discrepancies in the elastic properties at different points in
the microstructure. In this work, we propose the novel cell problem (44a)–(44j) from which
the model coefficients are calculated. The cell problem is an extension to the problem
found for viscoelastic materials in [17] and comprises the elastic problem associated with
poroelastic composites. This cell problem comprises both the fluid and solid equations in
one problem and therefore we do not have the decoupling of the different phases as seen in
poroelastic-type cell problems.

The addition of linearised inertia and compressibility of fluid to our model would
be straightforward. In this case, we would have a system similar to that found in [17].
These additions would also result in corresponding changes to the macroscale model.
The effective balance equation that we present in our macroscale model would have the
addition of linearised leading order inertia. The compressibility of the fluid would have an
influence on the cell problem with the fluid bulk modulus appearing in the Stokes-type
problem component.

The current model assumes that both families of elastic phases are anisotropic linear
elastic materials. We could, however, extend the model to assume that these phases
exhibit hyperelastic behaviour. To do this, we would use a method similar to that found
in [31,46–48]. By having hyperelastic phases, we dramatically increase the complexity of
the numerical simulations that are to be carried out to compute the model coefficients and
finally the macroscale model solution. The additional complexity is due to the fact that the
two length scales (macro and micro) remain coupled. In the literature, methods to address
the remaining coupling of the scales are emerging, see [49,50]. We also note that the
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present work can be extended for soft hyperelastic electro-active [51] and magneto-active
composites [52]. This extension could provide many interesting and exciting applications
in modern actuators, soft robotics and biomedicine.

There are many future directions in which this work could be developed. A first
step could be to consider the cell problems using the Fourier transform method and then
applying the inverse transform to obtaining a formulation in the time domain, see, e.g.,
ref. [53]. This would lead to cell problems that are computationally feasible to solve that
have been parameterised based on real-world data which could be from, for example,
biological tissues. Numerical computations performed by finite element simulations have
been used in [32] to study the homogenized properties of linear viscoelastic composite
materials in three dimensions by means of a semi-analytical approach combined with the
asymptotic homogenization method. Finally, our formulation only accounts for Kelvin–
Voigt viscoelastic materials at the macroscale. An interesting development of the theory
resides in considering more complex constitutive relationships for the individual phases in
order to obtain a more general framework for more general viscoelastic behaviours, such
as those described in [54].
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