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Abstract. We theoretically propose a ring-shaped, two-dimensional atomic Bose-Einstein
condensate as analog model to investigate back-reaction effects during the pre-heating of the
early universe. We study the out-of-equilibrium dynamics by which the inflaton field decays
by parametrically exciting the vacuum fluctuations that initially populate the matter fields.
By working at the level of the truncated Wigner approximation, our numerical simulations
show how a signature of back-reaction beyond the semiclassical level is encoded in the effective
friction experienced by the analog of the inflaton field, as well as in the spatial de-phasing of its
oscillations and in the entanglement between the inflaton and matter fields degrees-of-freedoms.

1. Introduction
Analog models of gravity are a powerful platform where a wide range of effects of quantum
fields in curved spacetime can be studied from first principles and potentially find experimental
confirmation [1]. The past few decades have seen remarkable advances in the field, resulting
in a surge of both theoretical and experimental works investigating different phenomena
with a multitude of analog configurations (see topical reviews [2, 3], and references therein).
Experimentally, exceptional results have been achieved leading to the pioneering observation of
the Hawking radiation [4, 5] emanating from a sonic black hole [6, 7, 8] implemented in trans-
sonically flowing Bose-Einstein condensates (BECs) of ultra-cold atoms [9, 10], as well as to
the observation of cosmological particle creation both in a BEC [11] and in quantum fluids of
light [12], and the detection of superradiant scattering induced by a rotating sonic black holes,
implemented in a water tank exhibiting a draining vortex flow configuration [13].

The next challenge that stands in front of the analog gravity community is to extend these
investigations to the so-called back-reaction effect [14], thus widening the objectives of the field
beyond the standard test-field level of quantum fields in curved spacetime and address the role
of the mutual, that is two-way, interaction between spacetime and quantum fields. Clarifying
this interplay is of fundamental importance in gravity to gain a deeper understanding of those
physical configurations characterized by strong gravitational interactions, in which quantum
effects are important. Pioneering studies have in fact anticipated that quantum effects may
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have had a profound influence in driving the evolution of the early universe towards the present
stage [15, 16, 17, 18, 19]. Related to this, black holes are expected to evaporate and eventually
disappear due to the emitted Hawking radiation [4, 5]. Despite the amount of work carried out
since the 1970’s (see for example [20]), a clear picture of the physical processes involved in the
back-reaction are still far from being clearly understood. The main reason is that a detailed
understanding of the microscopic dynamics of spacetime is missing and only alternative top-down
approaches, which attempt to include quantum fluctuations starting from the macroscopic level
of the classical theory of general relativity, can be pursued [21].

To circumvent this fundamental difficulty, toy models characterized by a lower number of
degrees-of-freedom have been extensively exploited in the literature, with the aim of capturing at
least the main qualitative features of the back-reaction. For example, by using a zero-dimensional
model for a black hole and by pursuing a fully quantum treatment of the problem, the deviation
from thermal spectrum of the (analog of) Hawking radiation has been predicted [22, 23].
Similarly, in optomechanics, theoretical studies have anticipated a radiative friction experienced
by an accelerated mirror in response to the dynamical Casimir emission (DCE) [24, 25, 26],
and hinted at an important role of quantum fluctuations in determining the evolution of the
quantum state of the mirror itself [27, 28, 29, 30].

Analog systems represent a promising platform where back-reaction effects can be investigated
in the framework of quantum fields interacting with an effective background spacetime, thus
retaining the full multi-mode character of the problem [31, 32]. On the one side, these
systems bring the unprecedented capability to perform table-top experiments where these effects
manifest in observable physical systems. On the other side, the in depth knowledge of the
microscopic dynamics of these systems permits, at least in principle, the development of a self-
consistent theoretical description of the problem starting from first principles. Even though the
microscopic dynamics of analog systems is expected to be different from the (still unknown)
physics of spacetime at the Planck scale, crucially, the mesoscopic observable effects of the back-
reaction such as fluctuation, dissipation and decoherence are expected to be universal, since they
result from a coarse-graining process, and are thus ultimately insensitive to the details of the
microscopic physics. The basic mechanisms that drive the back-action of quantum fields are thus
qualitatively the same, independently whether the underlying spacetime is physical (in the case
of gravity) or effective (in the case of analogue systems). This assumption is well-established
and is at the basis of effective field theories [33].

In this paper we study the back-reaction by considering an analog model of the pre-heating
of the early Universe [34] inspired to the proposal in [35]. Our work substantially extends the
short presentation recently appeared in [36]. According to the inflationary model, pre-heating is
the last stage of cosmic inflation, when the inflaton field that drives the primordial exponential
expansion of the universe reaches the end of its potential plateau and starts oscillating around
the minimum of the potential well. Matter is thus created in the still empty universe out of
the zero-point fluctuations of the matter fields, due to the parametric processes induced by the
inflaton oscillations. In our analog model, we simulate this mechanism by using an elongated
BEC as a platform, that we take as two-dimensional for numerical ease. Specifically, we identify
the inflaton degrees-of-freedom with the relatively high energy transverse modes of the system,
and the matter degrees-of-freedom with the lower energy longitudinal modes. We simulate the
inflaton oscillations around its potential minimum by exciting the breathing mode of the system
in the transverse direction and study the mechanism that leads to the parametric excitation of
vacuum fluctuations in the longitudinal modes. By working with this quantum simulator, we
aim to clarify key non-equilibrium processes by which energy is transferred from the transverse
modes into the longitudinal modes, focusing on back-reaction effects. In the spirit of analog
simulators and by working within the analogy described above, we expect that our results reveal
the key qualitative features of the corresponding processes taking place in an actual cosmological
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scenario.

2. Bogoliubov theory
We perform our analog simulations by considering a dilute two-dimensional Bose gas of mass m
atoms at zero temperature, whose many-body Hamiltonian reads [37]:

Ĥ =

∫
dr

[
Ψ̂†(r)ĥΨ̂(r) +

U

2
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

]
. (1)

Here, ĥ ≡ −(ℏ2/2m)∇2+Vext(r) is the quantum mechanical single particle Hamiltonian, where

∇ ≡ d/dr the standard nabla operator, Vext(r) is an external potential, and Ψ̂(r) is the bosonic

many-body field operator which obeys the equal time commutation rule: [ψ̂(r), ψ̂†(r′)] = δ(r−r′).
The last terms in Eq. (1) accounts for a zero-range collisional interaction between atoms, whose

strength we indicated by U . The Heisenberg equation for the field operator Ψ̂(r, t) is readily
obtained in the form:

iℏ
∂Ψ̂

∂t
= [Ψ̂, Ĥ] =

(
ĥ+ gΨ̂†Ψ̂

)
Ψ̂. (2)

By following the number conserving Bogoliubov formalism developed in [38, 39], we split the field

operator Ψ̂(r, t) into the condensed component describing atoms occupying the single particle
ground state, and the non-condensed component that accounts for the population of the excited
single-particle states:

Ψ̂(r, t) = ϕ0(r, t)â0 + δΨ̂(r, t). (3)

Here the operator â0 annihilates a particle from the condensate mode ϕ0(r, t), while δΨ̂(r, t)
annihilates a non-condensed particle at position r. In the weakly-interacting regime, identified
by the limit of large number of particles N → ∞, and vanishing coupling constant U → 0 (with
the mean field interaction strength UN ≡ UN kept constant), a perturbative description for the
system can be pursued [38] with respect to the parameter δN/

√
N , with

δN ≡
∫
dr

〈
δΨ̂†(r)δΨ̂(r)

〉
(4)

the number of particles in the excited single-particles states outside the condensate. The value
of δN is set by the mean field interaction strength UN and is of order δN ∼ O(1), while N is
macroscopic in the limit discussed above. Upon substitution of Eq. (3) into Eq. (2), the leading
term of order O(

√
N) gives the Gross-Pitaevskii equation (GPE), that governs the dynamics of

the order parameter ϕ0(r, t). This reads:

iℏ
∂ϕ0
∂t

=
(
ĥ+ |ϕ0|2

)
ϕ0 ≡ ĤGPϕ0. (5)

The term of order O(1) in Eq. (2), that is linear in the quantum fluctuations describes the non-
interacting dynamics of the elementary excitations in the system. Such excitations are described

by the operator Λ̂(x) ≡ 1√
N
â†0 δΦ̂(x) that transfers a particle from the non-condensed into the

condensate component, and obeys the Bogoliubov-de Gennes equations [38]:

iℏ
d

dt

(
Λ̂

Λ̂†

)
= LBdG[ϕ0, ϕ

∗
0]

(
Λ̂

Λ̂†

)
, (6)

where the Bogoliubov operator is defined as:

LBdG[ϕ0, ϕ
∗
0] =

(
LQQ LQQ∗

−LQ∗Q −LQQ

)(
Λ̂

Λ̂†

)
(7)
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with (operator-valued) components:

LQQ =
[
ĤGP + UN Q|ϕ0(x, t)|2Q− µ

]
, (8a)

LQQ∗ = Ng1DQϕ
2
0(x, t)Q

∗, (8b)

LQ∗Q = (LQQ∗)∗ . (8c)

Here ĤGP is the Gross-Pitaevskii Hamiltonian defined in Eq. (5), while the operator Q ≡
I − |ϕ0⟩⟨ϕ0| is the projector onto the non-condensed component, that is onto the Hilbert sub-
space spanned by all single particle excited states.

The higher order [cubic O(1/
√
N) and quartic O(1/N)] terms in the quantum fluctuations, in

the Hamiltonian Eq. (1), describe the self-interaction and scattering between Bogoliubov quasi-
particles, and are responsible for back-reaction and thermalization processes. We will account
for these term, and thus for the full nonlinear dynamics of the problem, by using the so-called
truncated Wigner approximation which we introduce in Sec. 4.

3. Physical system
We consider a dilute two-dimensional Bose gas homogeneous along the longitudinal x direction
with periodic boundary conditions and trapped in the transverse y direction by an external
potential Vext(r) = Vext(y). For numerical convenience, this is taken as harmonic of frequency
ω0 at small y with a hard-wall at y = ±Ly/2 on both sides. At zero temperature, most of the
atoms in the system are condensed in the ground state, whose wave function φ0(r) is given by
solving the stationary GPE, obtained from Eq. (5) by posing ϕ0(r, t) = φ0(r) exp(−iµt/ℏ) [37]:

ĤGPφ0(r) = µφ0(r), (9)

with µ the chemical potential of the cloud.
The spectrum {ωr

n} of the collective Bogoliubov modes on top of the ground-state and the
corresponding eigenfunctions {urn, vrn} are calculated by diagonalizing the Bogoliubov operator:

LBdG[φ0, φ
∗
0]

(
urn
vrn

)
= ωr

n

(
urn
vrn

)
. (10)

For each mode, the integer-valued subscript n and the superscript r = g, d, b, ... respectively
identify the longitudinal wave vector k = 2πn/Lx and the different excitation branches, labelled
by the number of transverse nodes in the wavefunction (g = Goldstone – 0 nodes; d = dipole –
1 node; b = breathing – 2 nodes). In Fig. 1(a), we show the three lowest excitation bands for
the two set of system parameters used throughout this work. The transverse profiles of the real
part of the ur0(y) functions of the k = 0 modes of the three r = g, d, b branches are displayed in
Fig. 1(b). Along the longitudinal x direction, thanks to translational invariance, each mode has
a plane-wave shape.

As an explicit check of our numerical calculations, throughout this work we compare the
predictions relative to a system composed by N = 106 atoms, of longitudinal(transverse) length
Lx = 140ℓ0 (Ly = 3.54ℓ0) (with ℓ0 ≡

√
ℏ/2mω0 the transverse harmonic oscillator length)

and number of grid points in the longitudinal(transverse) direction Nx = 512 (Ny = 12), with
the corresponding results obtained for a system composed by N = 750, 000 atoms, of equal
transverse size but of longitudinal length Lx = 105ℓ0 and corresponding number of grid points
Nx = 384. We used a different number of longitudinal grid-points in order keep constant the
grid spacing δl, to the value δl ≈ 0.4ξ, where ξ = ℏ/

√
2mµ is the healing length. In order to

reproduce the same physical conditions and show that the results reported in the following are



Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics
Journal of Physics: Conference Series 2533 (2023) 012031

IOP Publishing
doi:10.1088/1742-6596/2533/1/012031

5

Figure 1. (a) Bogoliubov spectrum of collective excitations on top of the ground state of the
system. Coloured markers provide the solution for a gas of N = 106 atoms in an integration box
of size Lx,y/ℓ0 = 140, 3.54 in units of the transverse harmonic oscillator length ℓ0 =

√
ℏ/2mω0,

with Nx,y = 512, 12 grid points. The solid red lines display the solution calculated for a gas of
N = 7.5×105 atoms, of equal transverse size but different longitudinal length: Lx/ℓ0 = 105, with
Nx = 384 grid points. Physical parameters have been chosen so that the equilibrium chemical
potential is the same for the two configuration and equal to µ/ℏω0 = 2.38. As expected,
the spectra relative to these two configurations are the same. The three curves correspond to
modes with zero (Goldstone, black), one (dipole, blue) and two (breathing, green) nodes in the
transverse direction. The transverse profile of these modes is reported in panel (b). In panel
(a), the light green cross highlights the transverse breathing mode that is excited at early times
to simulate the inflaton oscillations; the light blue and grey crosses respectively highlight the
dipole and Goldstone modes of opposite momenta that are resonantly excited by the parametric
processes indicated by the arrows.

insensitive to the physical dimensions of the system, we adjusted the number of particles in such
a way that the density of the system is the same in the two cases (the GPE Hamiltonian defined
in Eq. (5) is invariant under the transformation ψ → ψ/

√
λ, N → λN). The spectrum of

the system in these two configurations is the same, as expected, except for a difference in the
density of eigenstates, due to the different longitudinal lengths (we do not show this feature in
Fig. 1(a) as it would be difficult to visualize). Such a different density of eigenstates will result
in minor deviation in the results obtained with these two configurations.

4. Numerical method
We model the nonlinear dynamics of the system beyond the Bogoliubov theory by using the
truncated Wigner approximation (TWA) [40]. This technique has been used extensively in the
literature for studying quantum field effects at the test-field level such as the (analog of the)
Hawking radiation emanated from a sonic horizon [10], and even beyond [35, 41, 42]. Within
such a semiclassical theory, quantum noise is only encoded in the initial condition of the system
while the following evolution is classical and described by the GPE in Eq. (5). The quantum
field operator is thus modelled as a classical field ψ(r), whose initial configuration is sampled
according to the Wigner quasi-probability distribution that describes the quantum state of the
system at the initial time. Formally, the TWA results from neglecting a third-order derivative
term from the Fokker-Plank-like equation for the Wigner distribution of the system, that cannot
be mapped into a stochastic, classical equation of motion [40].

In our calculations, we take the Bogoliubov vacuum as the initial state of the dynamics.
Within the TWA [43], such a state is constructed as the superposition of two contributions:
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Figure 2. Time evolution of the density profile of
a gas of N = 106 atoms, confined within a box of
size Lx,y/ℓ0 = 140, 3.54 and Nx,y = 512, 12 grid
points with periodic boundary conditions along x. We
report the result obtained by propagating in time a
single realization of the quantum noise that populates
the initial state of the system. (a) Initial condition
of the simulation. (b-d) Evolution of the system
soon after the initial modulation of the transverse
trapping frequency. The resulting transverse breathing
oscillations of the cloud are visible. (e) Density profile
of the cloud at the time instant when the exponential
growth of the population in the resonant dipole and
Goldstone modes saturates. Such a profile reveals the
macroscopic excitation of the dominant resonant dipole
mode. (f) Self-interaction and scattering processes
result in a final chaotic state of the system.

one is the order parameter φ0(r) of the condensate at equilibrium, the other is a stochastic
component that accounts for the zero-point fluctuations that populate the Bogoliubov vacuum:

ψ (r, t = 0) = φ0(r) +
∑
r

n∈ (+)

(βrnu
r
n(r) + βrn

∗vrn
∗(r)) (11)

where the sum is restricted to positive norm modes only. The amplitudes βrn are independent,
zero-mean, Gaussian random variables, that mimic the zero-point fluctuations in each mode
according to the semiclassical Wigner representation for the state of a quantum system [44].
These satisfy the following correlation properties:

〈
β2k

〉
=

〈
(β∗k)

2 〉 = 0,
〈
|βk|2

〉
= 1/2. Quantum

expectation values of equal time correlators, symmetrically ordered respect to the field operators
Ψ̂ and Ψ̂†, are obtained as stochastic averages over an ensemble of samples for ψ(r, t), each
relative to a different realization of the initial noise and evolved in time according to the GPE
in Eq. (5).

Specifically, we simulate the inflaton oscillations around the bottom of its potential well by
exciting the transverse breathing mode of the condensate with zero longitudinal momentum
(this is marked in light green in Fig. 1(a)). To this end, we impart an impulsive modulation to
the trapping frequency, centred at the time t0, having the Gaussian form:

ω0(t)/ω0 = 1 +Ae−(t−t0)2/2σ2
t . (12)

Here, A is the magnitude of the modulation while σt = 1/ωb
0 is its duration. In the next

section, we study the non-equilibrium dynamics of the condensate after this initial kick. We
will investigate the physical processes by which the energy injected in the transverse modes is
redistributed into the longitudinal modes, focusing on the early dynamics in order to elucidate
the ensuing back-reaction effects.

5. Numerical results for the back-reaction effects
5.1. Parametric amplification and effective friction
We start at t = 0 with the system prepared in the Bogoliubov vacuum. In this state, modes
are only populated by zero-point fluctuations. An example of the density profile in this
configuration is shown in Fig. 2(a). We then give an impulsive modulation to the frequency
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Figure 3. Numerical results of the TWA simulations. Stochastic averages are based on a
sample of Nr = 1000 independent realizations. Panels (a1-c1): Momentum distribution of the
population in the breathing (a1), dipole (b1) and Goldstone (c1) excitation branches, at time
ωb
0t/2π = 48 when the saturation of the parametric processes occurs (solid line), and at the

intermediate time ωb
0t/2π = 24 (dashed line). Solid and dashed lines show results obtained

for the system of longitudinal length Lx = 140ℓ0 and Nx = 512 grid points. Markers show
the corresponding solution calculated for the system with Lx = 105ℓ0 and Nx = 384. Panels
(a2-c2): Time-evolution of the integrated population in the breathing (a2), dipole (b2), and
Goldstone (c2) branches, over the regions indicated by the shading in the upper panels (the
same color code is used in both the upper and lower figures). In (a2), the violet dotted line and
markers show the time evolution of the population in the single breathing mode at k = 0.

of the transverse trapping potential, of magnitude A = 10 and centred at the time ω0t0/2π = 2,
with the result of setting the system in oscillation in the transverse breathing mode with zero
longitudinal momentum. These oscillations are visible in Figs. 2(b-d), where we show the
evolution of the density profile soon after the transverse kick. The nonlinear coupling between the
Bogoliubov modes, engendered by the interatomic interaction, makes the vacuum fluctuations in
the Goldstone and dipole modes parametrically excited by these breathing oscillations. Because
of the ring configuration here considered, longitudinal momentum is conserved and parametric
down-conversion process involves pairs of particles with opposite momenta as indicated by arrows
in Fig. 1(a). Energy conservation makes the parametric processes to be most effective into

the Goldstone and dipole modes of frequency ωg,d
res = ωb

0/2 for which the parametric emission
is resonant with the breathing mode oscillations at ωb

0. Clear evidence of the excitation of
the resonant longitudinal modes, in particular the dipole one, is visible in Fig. 2(e). Given
the bosonic nature of the Bogoliubov modes, the parametric emission starts from zero-point
quantum fluctuations but then gets self-stimulated as the population in the modes increases,
leading to a characteristic exponential growth. This amplification process gets distorted when
nonlinear effects become relevant, that is when the population in the resonant g, d modes has
grown to sizable values, comparable to the population of the driving b mode. This leads to



Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics
Journal of Physics: Conference Series 2533 (2023) 012031

IOP Publishing
doi:10.1088/1742-6596/2533/1/012031

8

the saturation of the parametric amplification, as well as to self-interaction, scattering and
thermalization processes within the Goldstone and dipole branches, that eventually drive the
system into a chaotic thermal state (see Fig. 2(f)).

These dynamics are visible in Fig. 3(a1-c1), where we report a snapshot of the population

in the different Bogoliubov modes, nrn(t) + 1/2 ≡
〈
(b̂rn)

† b̂rn + b̂rn (b̂
r
n)

† 〉/2 =
〈
|βrn(t)|2

〉
W

at the
time when the saturation occurs, and at an intermediate time. We notice the appearance of
resonant peaks in both the dipole (b1) and Goldstone (c1) branches, at the values of momenta
expected from the analysis of the Bogoliubov spectrum in Fig. 1(a), as well as the emergence
at later times of harmonic peaks due to nonlinear processes, at values of momenta fixed by the
momentum conservation constrain [35, 45, 46]. The same nonlinear effects are also responsible
for the widening of the all visible peaks with time.

The initial exponential growth of the population in the resonant Goldstone and dipole modes
is visible in Fig. 3(b2,c2), where we report the evolution of the population integrated within
the regions indicated by the shaded areas in Fig. 3(b1,c1). This growth saturates as soon
as the populations in the g, d modes have grown to a value comparable to the b mode and
nonlinearities have started playing a sizeable effect. When this happens, we see a marked drop
in the population in the breathing b branch, as shown in Fig. 3(a2), that is a signal of effective
friction experienced by the breathing mode, due to back-reaction effects. Interestingly, such
a damping is not purely monotonic, but energy gets at least partially exchanged between the
transverse and longitudinal modes. This intermediate-time damped-oscillatory phenomenology
is qualitatitively similar to the one predicted in [25, 29] for the back-reaction onto a moving
mirror induced by the dynamical Casimir emission, where we demonstrated that a full exchange
of energy between the optical field and the mirror is suppressed by purely quantum effects, but,
as we are going to see in the next Sections, also displays interesting new features stemming from
the many-mode nature of our system.

Finally, it is important to note how Fig. 3 shows results obtained for the two different sizes of
the system given in Sec. 3. As expected, such results closely resemble each another, except for
minor deviations that we ascribe to the different modes densities and thus resonances pertaining
to the two configurations.

5.2. Local observables and de-phasing
The mode-wise analysis developed in the previous section highlighted many interesting
dynamical effects: At the early time of the simulation, when the breathing mode is highly
excited, we observed the parametric amplification of the vacuum fluctuations in the Goldstone
and dipole modes and the simultaneous decay of the population in the transverse breathing
mode with an approximately constant damping rate. During this stage of the evolution, the
state of the breathing mode closely resembles a classical state and the dynamics is expected to
be accurately modelled by approximating the breathing mode with its mean-field component.
At later time instead, when the populations in the resonant modes have grown to a value
comparable to the breathing mode, nonlinear effects result in the saturation of the parametric
processes, generation of harmonic excitations, widening of peaks in the momentum spectrum
and, remarkably, in a drastic modification of the qualitative features of the effective damping
experienced by the breathing mode.

In this Section, we complement the momentum-space analysis by looking at spatially local
quantities which have a direct connection to fluctuations in the system, thus explicitly showing
the crucial role of the quantum effects in the back-reaction dynamics. Specifically, we study the
spatial correlation function Cw(X; t) of the transverse fluctuations of the cloud, whose transverse
size we define as:

w(x, t) ≡
∫ Ly

0 dy|ψ(r, t)|2y2∫ Ly

0 dy|ψ(r, t)|2
. (13)
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Figure 4. Left panel: Time-evolution of the spatial correlation function Cw(X; t) of the
transverse size of the cloud, calculated for the system of longitudinal length Lx = 140ℓ0 and
N = 106 atoms. Middle panel: Cuts of the correlation function at the different times indicated
by the horizontal dashed lines in the left panel. Right panel: Time evolution of the spatial
correlation function for coincident Cw(0; t) and opposite Cw(L/2; t) points around the ring:
the former gives information on the total oscillation intensity, while the latter indicates the
spatial coherence of the oscillations. As in the previous Figures, lines and markers show the
results obtained for the system of longitudinal length Lx = 140ℓ0 (N = 106) and Lx = 105ℓ0
(N = 7.5× 105), respectively.

Indicating by δw(x, t) = w(x, t) − w̄(0) the x -dependent variation of the transverse size of the

cloud respect to the initial spatial average w̄ ≡ L−1
x

∫ Lx

0 dxw(x, t = 0), we define:

Cw(X; t) ≡
〈δw(x, t)δw(x+X, t)

w̄2

〉
W
. (14)

The full time evolution of Cw(X; t) is illustrated in Fig. 4(a). Right after the initial kick around
ωb
0t = 2, the system oscillates coherently with a uniform amplitude, so that the correlation

function is large and uniform in space. At later time instead, the overall magnitude of Cw

decreases as a signature of back-reaction-induced damping, and becomes sharply peaked at
X = 0 at an even faster rate, which is a clear signal of loss of spatial coherence of the transverse
oscillations. Such a de-phasing is a direct effect of the fluctuations in the system: the enhanced
fluctuations of the two-mode-squeezed-like state of the emitted g, d fields directly transfer into a
analogous fluctuations of the back-reaction-induced friction force. A more quantitative insight
into the evolution of the spatial correlation function can be drawn from Fig. 4(b), where we
report cuts of Fig. 4(a) at different times. From these plots, we clearly notice that the b mode
loses spatial coherence at a much quicker rate compared to the much longer time scale of the
decays of the oscillation intensity. A momentum-space signature of this effect was already visible
in Fig. 3(a1), as a broadening of the population peak close to zero-momentum in the breathing
branch, whose large momentum-width corresponds to the short real-space coherence length. Also
for these quantities, we have checked in the Figures that the numerical results are qualitatively
identical for systems of different sizes.

The results of this section explicitly demonstrates that fluctuations have dramatic
consequences in determining the dynamics of a spatially-extended multi-mode system as the
one here considered. In particular, our calculations confirm the outcome of previous studies
carried out with simpler optomechanical configurations [29], and prove that mean-field models
are expected to fail in accurately describing the physics of the back-reaction.
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Figure 5. Panels (a-f): Phase space Wigner distribution for the transverse breathing mode
at zero longitudinal momentum, at the time instants (a) ωb

0t/2π = 0, (b) ωb
0t/2π = 10, (c)

ωb
0t/2π = 20, (d) ωb

0t/2π = 30, (e) ωb
0t/2π = 40 ,(f) ωb

0t/2π = 50. The Wigner function at
each time has been reconstructed from the Nr = 1000 samples of the stochastic simulations.
We discretized the relevant portion of the phase space by using the number of grid points:

NR
b = N I

b = N 1/4
r ≈ 6 along both the real and imaginary axes. Panel (g): Time evolution of

the linear entanglement entropy Sb
0 of the breathing mode as defined in the text. At the early

time, when the system can be treated semiclassically, the value of the entropy is close to one.
At later time instead we observe a drastic decrease of the value of the entropy, which signals
entanglement of the breathing mode with the resonant Goldstone and dipole modes.

5.3. Entanglement signatures
In this last section, we further comment on the validity of the TWA that we use to solve
for the dynamics of our analog system. The physical significance of the TWA has been long
debated within the quantum optics community (see for example [47]), but the implications of
this approximation on the dynamics of a quantum system are still not completely understood.
Specifically, as detailed in Sec. 4, the TWA is based on a classical evolution of an initial quantum
state and it is thus natural to wonder to what extent this formalism is able to capture quantum
features of the dynamics of a physical system. While an in-depth study of the physical meaning
of the TWA and of its precise limits is an important issue that needs still to be addressed in full
detail, we give further evidence in this last section on the capabilities of the TWA to capture at
least some features of the quantum dynamics of the system at hand.

To start with, we note that a positive initial Wigner distribution (like the one modelling the
Bogoliubov vacuum) remains positive under classical evolution. This entails that quantum states
characterized by negative Wigner functions cannot be modelled by the TWA. However, strictly
quantum states exist that are described by positive Wigner distributions, such as squeezed states.
This means that it is possible in principle that certain quantum features of the dynamics can be
captured by working with the TWA. The results presented in the previous sections support this
statement, but we give in this section further evidence by studying the entanglement between
the zero-momentum transverse breathing mode and the resonant Goldstone and dipole modes.
To this end, we use the data from our numerical simulations to construct the Wigner function
W b

0 (β, β
∗) for the breathing mode at different time instants (see Fig. 5)(a-f). As entanglement

witness, we study the linear entanglement entropy Sb
0 of this mode, which is readily evaluated

in terms of the corresponding Wigner distribution, as:

Sb
0 ≡ Tr(ρ̂2b,0) = π

∫
d2βW 2

b,0(β, β
∗).

In this equation, the integral is performed over the complex phase space of the breathing mode.
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In the case of a pure state Sb,0 = Tr(ρ̂2b,0) = Tr(ρ̂b,0) = 1, while Sb,0 < 1 in case the state is
mixed. This latter condition would be a signal of entanglement of the b mode with the resonant
g, d modes. At the initial time, the system is in the Bogoliubov vacuum and Sb,0 = 1. We expect
that Sb,0 ≈ 1 after the transverse kick, as the state of breathing mode can be approximated as
a highly excited coherent state with a Gaussian-shaped Wigner distribution (see Fig. 5(b)). At
later time instead, when the effect of the back-reaction becomes sizable, the Gaussian shape
gets distorted and the Wigner distribution gets broadened [(see ]Fig. 5(c-f)], so the value of Sb

0

should drop below one, indicating entanglement. Indeed, this is the behaviour we observe for
the linear entropy of the breathing mode, as shown in Fig. 5(g).

These results were obtained by evaluating Sb
0 from the Wigner function of the breathing mode

that we reconstructed from our simulations according to Eq.(5.3). The number Nr = 1000 of
our samples limits the number Nb of bins we can use to discretize the complex phase space of
the mode: Nb =

√
Nr =

√
1000 ≈ 32. As closest approximation, we used NR

b = N I
b = 6 to

discretize W b
0 (β, β

∗) along the real and imaginary directions. Such a rough grid introduces an
error in the result of the numerical integration, which is evident for example in the value of Sb

0

evaluated t = 0 in Fig. 5, which deviates from Sb
0 = 1 by approximately 0.1. Increasing the

precision of the numerical grid by a factor n means increasing the number of numerical samples
by a factor n4, which is out of our numerical capabilities. Despite this error, we clearly see a
transition from Sb

0 ≈ 1 at early time, to Sb
0 ≪ 1 at later time, as expected.

This result shows that entanglement between the b at k = 0 and the g and d resonant modes
can be predicted by working within the TWA. Although a clear understanding of the limits of
this approximation is still missing, our results demonstrate that the TWA allows to capture
features of physics beyond the semiclassical level.

6. Conclusions
In this paper, we give an extended discussion of an analog model of the pre-heating of the early
Universe first proposed in Ref.[36]. In our proposal, we make use of a two-dimensional Bose-
Einstein condensate of ultra-cold atoms as simulation platform. By working at the level of the
truncated Wigner approximation, our numerical results highlight the crucial role of quantum
fluctuations in the back-reaction effect of particle production onto the (analog) inflaton field.
We observe how the breathing oscillations of the system (which simulate the inflaton degrees-
of-freedom) experience an effective damping induced by the parametric emission of excitations
in the dipole and Golstone modes (that simulate the matter fields). We highlighted non-trivial
dynamical effects beyond the semiclassical level: In particular, we observed a quick fluctuations
induced decoherence of the initially in-phase breathing excitation, as well as signature of
miltimode entanglement. The generality of the microscopic processes underlying our numerically
observed results suggests the importance of going beyond semiclassical approaches [48, 49]
and including quantum fluctuation features in the description of back-reaction phenomena in
gravitation and cosmology.
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[12] Steinhauer J, Abuzarli M, Aladjidi T, Bienaimè T amd Piekarski C, Liu W, Giacobino E, Bramati A and

Glorieux Q 2022 Nat. Commun. 13 2890
[13] Torres T, Patrick S, Coutant A, Richartz M, Tedford E and Weinfurtner S 2017 Nat. Phys. 13 833–836
[14] Schander S and Thiemann T 2021 Front. Astron. Space Sci. 8 692198
[15] Fischetti M V, Hartle J B and Hu B L 1979 Phys. Rev. D 20 1757–1771
[16] Hartle J B and Hu B L 1979 Phys. Rev. D 20 1772–1782
[17] Hartle J B and Hu B L 1980 Phys. Rev. D 21 2756–2769
[18] Hartle J B 1980 Phys. Rev. D 22 2091–2095
[19] Hartle J B 1981 Phys. Rev. D 23 2121–2128
[20] Hu B L and Verdaguer E 2020 Semiclassical and Stochastic Gravity: Quantum Field Effects on Curved

Spacetime Cambridge Monographs on Mathematical Physics (Cambridge University Press)
[21] Hu B 2005 Int. J. Theor. Phys. 44 1785–1806
[22] Nation P D and Blencowe M P 2010 New Journal of Physics 12 095013
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