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Abstract

We show that all large enough positive integral surgeries on algebraic knots
bound a 4-manifold with a negative definite plumbing tree, which we describe
explicitly. Then we apply the lattice embedding obstruction coming from Don-
aldson’s Theorem to classify the ones of the form S3

n(T (p1, k1p1+1; p2, k2p2±1))
that also bound rational homology 4-balls.
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1 Introduction

Definition. For a manifold M , we say that a manifold N is a rational homology M
if M and N are of the same dimension and H∗(M ;Q) ∼= H∗(N ;Q).

One major problem in low-dimensional topology is to determine which rational
homology 3-spheres bound rational homology 4-balls. It is attributed to Casson and
appears as Problem 4.5 on Kirby’s list of important problems in the discipline [9].
While rational homology 3-spheres abound, very few of them tend to bound rational
homology balls. This can be illustrated by the fact that while the n-surgery on a knot
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1 INTRODUCTION

K ⊂ S3, denoted S3
n(K), is a rational homology 3-sphere for all n ̸= 0 and knots K,

Aceto and Golla showed in [2, Theorem 1.2] that in fact, for each K, there are at most
four possible integer values of n such that S3

n(K) bounds a rational homology ball.
The first study of rational homology 3-spheres bounding rational homology 4-balls

was published in 1981, when Casson and Harer found several families of homology
lens spaces bounding rational homology 4-balls and homology 3-spheres bounding con-
tractible manifolds [5]. In 2007, Lisca classified all the lens spaces and connected sums
of lens spaces bounding rational homology 4-balls [12, 13], popularising the technique
of obstructing bounding rational homology 4-balls with lattice embeddings. Many
people have since then used lattice embeddings on various classes of 3-manifolds to
classify the ones that admit fillings with certain homological constraints. Examples
include Lecuona’s study of double branched covers of S3 branched over some famil-
ies of Montesinos knots [10], Aceto’s study of rational homology S1 × S2’s bounding
rational homology S1 × D3 [1], and Simone’s classifying torus bundles on the circle
bounding rational homology S1 × D3 [18], which he used to construct rational ho-
mology 3-spheres bounding rational homology 4-balls in [19]. Recently, Aceto, Golla,
Larson and Lecuona managed to answer the rationally acyclic filling question for posit-
ive integral surgeries on positive torus knots, a classification with a whopping 18 cases
[2, 3].

The idea of this fruitful technique called lattice embeddings is to represent the
rational homology 3-sphere as the boundary of a negative definite 4-manifold and to
use the following corollary of Donaldson’s theorem [6, Theorem 1]:

Proposition 1. Let Y be a rational homology 3-sphere and Y = ∂X for X a connec-
ted smooth oriented negative definite 4-manifold. If Y = ∂W for a smooth rational
homology 4-ball W , then there exists a lattice embedding (H2(X)/Torsion, QX) ↪→
(ZrkH2(X),− Id).

Here QX is the intersection form ofX, and lattice embeddings are defined in Section
2. Proposition 1 also has a positive version, where X is positive definite and the
embedding goes into (ZrkH2(X), Id).

The author is trying to build on the works of Lisca, Lecuona, Aceto, Golla and
Larson and classify the positive surgeries on iterated torus knots bounding rational
homology balls. An iterated torus knot is a knot obtained from the unknot through
repeated cabling operations.

Definition. Let K ⊂ S3 be an oriented smooth knot. The boundary ∂(νK) of a
tubular neighbourhood νK of K is an embedded torus in S3. The meridian M and
the longitude L are oriented simple closed curves inside ∂(νK), determined up to
isotopy by the following homology and linking relations:

• [M ] = 0 and [L] = [K] in H1(νK), and

• lk(M,K) = 1 and lk(L,K) = 0.
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1 INTRODUCTION

Let p, q be relatively prime integers. We denote by Cp,q(K) ⊂ S3, the unique (up to
isotopy) simple closed curve in ∂(νK) with homology class p[L] + q[M ] ∈ H1(∂(νK)).
The curve Cp,q(K) is called the (p, q)-cable on K.

Definition. The iterated torus knot with k iterations T (p1, α1; p2, α2; · · · ; pk, αk) is
the knot

T (p1, α1; p2, α2; · · · ; pk, αk) = Cpk,αk
Cpk−1,αk−1

· · ·Cp1,α1(O),

O being the unknot.

Iterated torus knots are interesting to consider because many of them, just like
positive torus knots, arise as links of cuspidal singularities of complex plane curves.
We will call the iterated torus knots that do arise as singularity links of cuspidal curves
algebraic. Resolving the singularity using blow-ups allows us to obtain a plumbing
description of a 4-manifold with low b+2 (the number of positive eigenvalues of QX)
bounding the surgery on the knot. Unfortunately, the author lacks the luxury of being
able to push down b+2 to 0 as easily as for torus knots, which slightly restricts the n for
which we can answer the question whether or not S3

n(K) bounds a rational homology
ball, excluding finitely many cases for each K from our study. When we do have a
negative definite filling of our 3-manifold, we need to investigate the existence of a
lattice embedding prescribed by Proposition 1. This can be a very difficult combinat-
orial problem. For example, the classification of positive integral surgeries on positive
torus knots T (p, q) bounding rational homology balls contains a lattice embedding ana-
lysis well over 40 pages long ([3, Section 6]), and this does not include the case when
q ≡ ±1 (mod p), which was studied in the earlier paper [2]. Also, minimal changes
of the intersection form can render former techniques for studying the lattice embed-
ding useless. In this first paper on integral surgeries on iterated torus knots bounding
rational homology balls, we restrict ourselves to algebraic iterated torus knots of the
form T (p1, k1p1 + 1; p2, k2p2 ± 1). We prove the following theorem:

Theorem 2. Let α1 ≡ 1 (mod p1), α2 ≡ ±1 (mod p2), α2/p2 > p1α1 and n ≥ 2+p2α2.
Then the rational homology 3-sphere S3

n(T (p1, α1; p2, α2)) bounds a rational homology
4-ball if and only if the tuple (p1, α1; p2, α2;n) is one of the following:

1. (p1, p1 + 1; p2, p2(p1 + 1)2 − 1; p22(p1 + 1)2) or

2. (2, 7; p2, 16p2 − 1; 16p22).

Remark. The condition α2/p2 > p1α1 is equivalent to the algebraicity of the knot, and
n ≥ 2+p2α2 is needed in order for S3

n(T (p1, α1; p2, α2)) to bound an H-shaped negative
definite plumbing of disc bundles over spheres. The conditions α1 ≡ 1 (mod p1) and
α2 ≡ ±1 (mod p2) are, analogously to the conditions of [2], there to simplify the lattice
embedding analysis.

It is interesting to compare this result to other work on surgeries on iterated torus
knots bounding rational homology 4-balls. We have already seen examples of ones that
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do. One result in that vein is Theorem 1.3 of Aceto, Golla, Larson and Lecuona in
[3], which given a surgery on a knot K bounding a rational homology ball gives us
surgeries on infinitely many of its cables bounding rational homology balls. Another
work is of an algebro-geometric flavour. Bodnár classified in [4] all rational unicuspidal
complex curves C inside CP 2 with two Newton pairs. This is relevant to us because the
complement of a tubular neighbourhood of C, CP 2−νC, is a rational homology 4-ball,
and ∂(CP 2−νC) = ∂(νC) = S3

d2(K) for K an iterated torus knot of two iterations and
d the degree of the curve. However, Theorem 2 is to the author’s knowledge the first
analysis that excludes potential examples of surgeries on iterated torus knots bounding
rational homology balls.

We note that only the “only if” part of Theorem 2 is new, whereas the “if” part
follows from [3, Theorem 1.3]. (The reason only one of the two families of cables
with positive surgeries bounding torus knots mentioned in [3, Theorem 1.3] appears is
that the other family has surgery coefficient lower than p2α2.) One may wonder if all
surgeries on iterated torus knots that bound rational homology 4-balls arise from [3,
Theorem 1.3], that is whether the following is true:

Conjecture 3. Suppose that S3
n(T (p1, α1; p2, α2)) bounds a rational homology B4. Then

p22 divides n, S3
n

p22

T (p1, α1) bounds a rational homology ball, and α2 =
n
p2

± 1.

Bodnár’s examples [4] show that this is not true in general. However, the answer
is unknown if we make the additional assumption that n ≥ 2 + p2α2 and thus that
S3
n(T (p1, α1; p2, α2)) bounds a negative definite H-shaped plumbing of disc bundles

over spheres. This is because only examples (iii) and (iv) in [4, Theorem 3.1.1] give
us an S3

n(T (p1, α1; p2, α2)) satisfying the additional assumption, which both arise from
[3, Theorem 1.3]. Bodnár’s examples suggest that the finitely many integral surgery
coefficients per knot for which the surgery does not bound a negative definite plumbing
are the ones that are the most likely to give rise to a 3-manifold that bounds a rational
homology 4-ball.

1.1 Outline of Paper

In Section 2, we give a brief introduction to lattice embeddings, directed at those new
to the area, while establishing the notation and terminology. We also prove a basic
proposition that we will use in Section 4. In Section 3, we find plumbing diagrams for
surgeries on algebraic iterated torus knots. In Section 4 we analyse which plumbing
graphs admit lattice embeddings.
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Figure 1: A −2-chain of length 3 has two essential lattice embeddings, one into
(Z4,− Id) and one into (Z3,− Id).
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2 Preliminaries on Lattice Embeddings

This section is to serve as a brief introduction to working with lattice embeddings.
Recall Proposition 1. In this paper, as well as many others, including [1, 11, 12, 13, 3],
we are working with X a tree-shaped plumbing of disc bundles on spheres. Its second
homology is the free abelian group Z⟨V1, . . . , Vk⟩ on the vertices and the intersection
form is

⟨Vi, Vj⟩QX
=


weight of Vi if i = j

1 if Vi is adjacent to Vj

0 otherwise.

A lattice embedding f : (H2(X)/Torsion, QX) ↪→ (ZrkH2(X),− Id) is a homomorph-
ism of abelian groups f (by abuse of notation often called a linear map) such that
⟨Vi, Vj⟩QX

= ⟨f(Vi), f(Vj)⟩− Id. Sometimes we talk about lattice embeddings into other
ranks, meaning that f goes into (Zr,− Id) for some r not necessarily equal to rkH2(X).
We denote f(Vi) = vi. Usually, we mean ⟨·, ·⟩− Id when we write just ⟨·, ·⟩. When we talk
about basis vectors, we are referring to an orthonormal basis of Zr, that is the codo-
main. We say that a basis vector e hits a vector vi if ⟨vi, e⟩ ≠ 0. We say that a vector
w is included in v, or that v contains w, if v = w+u and there is no basis vector hit-
ting both w and u. We call a lattice embedding f : (H2(X)/Torsion, QX) → (Zr,− Id)
essential if every basis vector of the image hits some vertex.
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When working with lattice embeddings of plumbing graphs, we often write the
image of each vertex at the vertex, as for example in Figure 1. We consider two
embeddings equivalent if they are the same up to signs and renaming of vertices, i.e.
self-isometries of (Zr,− Id), and we only consider embeddings up to equivalence.

As an exercise in working with lattice embeddings, the reader is invited to prove
the following standard fact:

Proposition 4. A −2-chain of length k ̸= 3 (that is a linear/path-shaped graph of
length k with all weights equal to −2) has a unique lattice embedding, essential into
(Zk+1,− Id). A −2-chain of length 3 has two lattice embeddings, shown in Figure 1.

Proof sketch. The left embedding in Figure 1 easily generalises to an essential embed-
ding of a −2-chain of length k into Zk+1. Given an embedded graph, any subgraph has
an induced embedding into some (Zr,− Id). Thus an embedding of −2-chain of length
k + 1 has to be an extension of the embedding of a −2-chain of length k. If k ≥ 3,
there is only one possible extension of an embedding like in the left part of Figure 1.
The embedding in the right part cannot be extended at all.

If the graphs Γ1 and Γ2 have embeddings into (Zk1 ,− Id) and (Zk2 ,− Id) respect-
ively, then the disjoint union of the graphs has an induced embedding into (Zk1+k2 ,− Id),
created by renaming the basis vectors of Zk2 so that they are distinct from the basis
vectors of Zk1 . The following corollary will be useful in Section 4.

Corollary 4.1. An embedding of a disjoint union of −2-chains is, up to sign and
renaming of vertices, a disjoint union of embeddings

1. (e1 − e2, ..., ek − ek+1),

2. (e1 − e2, e2 − e3,−e1 − e2) and

3. the embedding (e1 − e2), (e1 + e2) of the two-component graph consisting of two
disconnected vertices of weight −2.

Proof. Suppose that the embedding of the disjoint union of −2-chains has a component
with embedding (e1 − e2, e2 − e3,−e1 − e2). Let v = λ1e1 + λ2e2 + u, where u is not
hit by e1 or e2, be the image of a vertex in a different component. By orthogonality
to e1 − e2, λ1 = λ2, and by orthogonality to −e1 − e2, −λ1 = λ2. Thus e1 and e2
hit no other vertex. If e3 hits another vertex, then e2 must hit the same vertex by
orthogonality to e2 − e3, which cannot happen.

Suppose that the embedding of the disjoint union of −2-chains has a component
with embedding (e1 − e2, . . . , ek − ek+1) and one of the ei’s for 1 ≤ i ≤ k + 1 shows up
again in a vertex with embedding v in a different component. Since ⟨v, ej−ej+1⟩− Id = 0
for all 1 ≤ j ≤ k, λ(e1 + · · · + ek+1) is included in v for some λ ̸= 0, giving v weight
at most −λ2(k + 1). Since v has weight −2, k + 1 = 2 and λ2 = 1. So components
that can share basis vectors must both have length 1, the embedding of a pair of such
vertices sharing a basis vector being (e1−e2), (e1+e2) up to sign and renaming. These
basis vectors cannot occur in a third component by the same argument as above.
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3 PLUMBINGS BOUNDING SURGERIES ON ITERATED TORUS KNOTS

3 Plumbings Bounding Surgeries on Iterated Torus

Knots

Proposition 1 gives us an obstruction for a 3-manifold to bound a rational homology
ball. In this paper we are interested in 3-manifolds of the form S3

n(T (p1, α1; p2, α2)).
Non-zero integral surgeries on knots in S3 always bound a definite knot trace.

Notation. Let X be a 4-manifold with boundary S3, K ⊂ ∂X a knot and n an integer.
Then Xn(K) is the manifold obtained from attaching a 2-handle to X along K with
framing n. Especially when X = D4, Xn(K) is called the n-trace on K.

In particular, Y = S3
n(T (p1, α1; p2, α2)) bounds D4

n(T (p1, α1; p2, α2)), which has
intersection form n Id1. The only restriction that the positive version of Proposition 1
provides us with is that n be a square, whereas Aceto and Golla proved in [2, Theorem
1.2] that Y will bound a rational homology ball for at most two positive n, making
the first restriction seem futile. In this section we therefore find a different, negative
definite, manifold X that Y bounds and whose intersection form is harder to embed.

The outline of this section is as follows. First, we use algebro-geometric facts to
show that large integer surgeries on algebraic knots have a negative definite plumbing
graph (Proposition 6). Then, we use some recipes provided by Eisenbud and Neumann
in [7] to explicitly describe the plumbing graphs of surgeries on iterated torus knots
(Proposition 7). Finally, for those iterated torus knots that are algebraic, we explicitly
describe the plumbing graphs with the lowest possible positive index, which must thus
be zero (Theorem 8). This section is largely based on a book by Eisenbud and Neumann
([7]) that provides several interesting recipes, including how to go from a singularity
link to its splicing graph and from a splicing graph to a plumbing graph.

In [7, Appendix to Chapter I], Eisenbud and Neumann summarise what we know
about singularities of plane curves, that is algebraic curves in CP 2 or C2.

Definition. Let f ∈ C[x, y] be a non-zero polynomial vanishing at 0. Also let C =
V (f) = {(x, y) ∈ C2 | f(x, y) = 0}. The singularity link Lε ⊂ S3

ε is the intersection
of C with a sphere S3

ε ⊂ C2 centred at 0 and with sufficiently small radius ε.

Singularity links are important because they describe plane curve singularities to-
pologically. A plane curve singularity is topologically a wedge of discs, embedded inside
a 4-ball as the cone over the singularity link. If the plane curve has a self-intersection,
then the singularity link at the self-intersection point has several components. A sin-
gular point that is not a self-intersection is called a cusp or a cuspidal singularity.
Its singularity link is thus a knot.

Definition. An algebraic knot is a one-component singularity link, that is the link
of a cuspidal singularity.

It is interesting to know what links are singularity links. To describes the singularity
link, we can try to solve f(x, y) = 0 for y in terms of x around 0. If there is a singularity
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3 PLUMBINGS BOUNDING SURGERIES ON ITERATED TORUS KNOTS

at 0, we cannot use the implicit function theorem and get y as a function of x, but
we can in fact find solutions in terms of fractional power series called Puiseux series.
Each of these solutions describe a branch of the curve, and thus a component of the
link. Different Puiseux series, differing by a change of variable x 7→ ζx for ζ a root of
unity, describe the same branch. We can remove all but finitely many terms without
changing the link until we get a minimal series of the form

y = xq1/p1(a1 + xq2/(p1p2)(a2 + xq3/(p1p2p3)(· · · (ak−1 + xqk/(p1···pk)) · · · )

for pairs (pi, qi) satisfying pi, qi > 0 and gcd(pi, qi) = 1. (These pairs are called Newton
pairs.) Eisenbud and Neumann then show that the knot described by this Puiseux
series is exactly T (p1, α1; p2, α2; · · · ; pk, αk) for α1 = q1 and αi+1 = qi+1 + pi+1piαi. We
obtain the following alternative definition:

Proposition 5. A knot is algebraic if and only if it is an iterated torus knot

T (p1, α1; · · · ; pk, αk)

satisfying

• that pi, αi ≥ 2 for all 1 ≤ i ≤ k, and

• that αi+1 > pi+1piαi for all 1 ≤ i ≤ k − 1.

Using the algebro-geometric characterisation of these special iterated torus knots
we may prove the following:

Proposition 6. Let K = T (p1, α1; . . . ; pk, αk) be an algebraic knot and n ≥ pkαk + 2.
Then S3

n(K) bounds a negative definite plumbing of disc bundles over spheres.

Proof. Let C ⊂ C2 be a curve with singularity link K at 0. We may resolve the
singularity using a sequence of blow-ups. In fact, by potentially blowing up a few more
times, we can ensure that the reduced total inverse image is a simple normal crossing
divisor. An example of this procedure can be seen in Figure 2.

Fact. There exists a small 4-ball D4
ε ⊂ C2 around 0, a complex surface U ∼= D4

ε#kCP 2

and a map p : U → D4
ε such that

1. p|U−p−1(0) is a biholomorphic diffeomorphism onto D4
ε − {0},

2. p−1(0) = E1 ∪ · · · ∪Ek and (f ◦ p)−1(0) = D ∪E1 ∪ · · · ∪Ek where D is a smooth
disc called the proper transform of C and E1, . . . , Ek

∼= CP 1 are smooth spheres
called exceptional curves,

3. D,E1, . . . , Ek only have simple normal crossings, a.k.a. transverse double points,
and

4. the graph of intersections is in fact a tree with D a leaf node.
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(a) (b)

(c) (d)

Figure 2: Minimal embedded resolution of the singularity y2 = x3.
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Remark. Such a singularity resolution is called an embedded resolution.

Note that ∂U = S3 still, with the singularity link intact inside it, but X = Un(K)
has intersection form n Id1⊕ − Idk, which if n is positive means that the intersection
form has positive index 1.

Figure 3: The graph is a tree. All vertices inside the blue circle have weights at most
−2. The 3-manifold represented by the piece of the graph inside the orange circle is
S3.

We know thatX has a Kirby diagram which is a disjoint union of an n-framedK and
k unknots that are −1-framed, but we also have a more interesting representation. The
way D4

ε was a regular neighbourhood of 0, U is a regular neighbourhood of p−1(0) =
E1 ∪ · · · ∪ Ek, with all crossings simple and normal. That makes U a plumbing of
sphere bundles, each sphere bundle being a neighbourhood of an Ei. Inside U lies D, a
smooth surface that intersects exactly one Ei exactly once. (See Figure 2d for a great
illustration. There U is the red area, which is clearly a plumbing, and D is the curve in
blue.) Thus X is a plumbing of sphere bundles obtained by adding one sphere bundle
with some Euler number N depending on n to U ’s plumbing representation. In fact,
we know more. Every blow-up we make to create the minimal embedded resolution
happens on the proper transform of the curve. Since a blow-up always decreases the
self-intersection of a curve and the self intersection of the last exceptional curve we
have added is always −1, the plumbing graph must have a shape as in Figure 3, that
is a tree-shape, having one leaf of weight N depending on n, one vertex of weight −1
and connected to the vertex of weight N and the remaining vertices having weight no
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3 PLUMBINGS BOUNDING SURGERIES ON ITERATED TORUS KNOTS

more than −2, and satisfying that the plumbing subgraph induced by excluding the
vertex of weight N has boundary S3.

We can determine N . Note that the process of desingularising C happens inside the
small ball D4

ε around 0, and only depends on the singularity link, not on n. Blowing
up decreases all self-intersections by a constant depending on where we blew up. Thus
N(n) = n− c for some positive constant c. Now, [7, Theorem 18.3.4] tells us that the
graph of Figure 3 and the piece inside the blue circle have the same boundary if N = 0,
so if (and only if) N = 0, S3

n(K) might be the connected sum of two different graph
manifolds, which Gordon [8] tells us in Theorem 7.5 only happens when n = pkαk for
k the index of the last Newton pair. Thus N = n− pkαk.

Figure 4: Positive index-lowering transformation of N into a sequence of −2’s.

Recall that when n > 0, the X we have described in Figure 3 has positive index 1.
If N ≥ 2, we can use the sequence of blow-ups and blow-downs in Figure 4 to transform
it into a chain of −2’s and the −1 into a −2. Since in the process we blow down a 1,
this lowers the positive index by 1, giving us a negative definite graph.

Remark. If N is negative, then ∂X cannot bound a 4-manifold with a negative definite
plumbing tree by [15, Theorem 1.2] and Neumann’s plumbing calculus ([14, Theorem
3.2]) since the graph in Figure 3 is already in normal form and thus has the least positive
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3 PLUMBINGS BOUNDING SURGERIES ON ITERATED TORUS KNOTS

index out of all plumbing trees. This is why we in Theorem 2 restrict ourselves to the
case when N ≥ 2, that is n ≥ p2α2 + 2.

Now we know exactly when surgeries on algebraic torus knots have negative definite
plumbing graphs, but not exactly what these plumbing graphs look like. Fortunately,
Eisenbud and Neumann have recipes for constructing them. In Chapter V of [7] they
describe an algorithm for computing a plumbing representation of a 3-manifold from a
splice diagram, which we have for S3

n(T (p1, α1; p2, α2)) from Appendix to Chapter I. We
would not need algebraicity in order to obtain such a graph, but we need algebraicity
to obtain a nice simplification.

Notation.

[a1, . . . , as]
− = a1 −

1

a2 −
1

. . . −
1

as

.

Figure 5: Splicing diagram of an iterated torus knot.

Proposition 7. Let K = T (p1, α1; p2, α2; . . . ; pk, αk) be a positive iterated torus knot.
Then S3

n(K) bounds a 4-manifold with a plumbing graph as in Figure 6, where N =
n − pkαk, and each Vi is the graph in Figure 7, with [ci,2, ci,3, . . . , ci,si ]

− = αi

αi−pi
and

[di,1, di,2, . . . , di,ti ]
− = αi

pi
. Moreover, if αi/pi > 2, then ci,2 = ci,3 = · · · = ci,di,1−1 = 2.

Note that [ci,2, ci,3, . . . , ci,si ]
− and [di,1, di,2, . . . , di,ti ]

− are related by the Riemenschneider
point rule ([17, Section 3] for the original source, or [11, Section 3] for an explanation
in English). We may also point out that our unusual choice of indexing of the c’s is
due to the fact that [1, ci,2, ci,3, . . . , ci,si ]

− = pi
αi
.

Proof. Chapter II and Appendix to Chapter 1 in [7] describe how to write down a
cabling using a splicing graph, the result being as shown in Figure 5. Section 22 in [7]
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3 PLUMBINGS BOUNDING SURGERIES ON ITERATED TORUS KNOTS

Figure 6: Plumbing diagram of S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)).

then gives a recipe for translating this graph into a plumbing graph. First, each plus
in the graph gets translated into the hook of Figure 7 using Theorem 22.1. The only
non-trivial part here is computing the number at the corner of the hook. According to
Theorem 22.1, it is the additive inverse of

1

piαi

+
1

[ci,si , . . . , ci,2]
− +

1

[di,ti , . . . , di,2]
− =

1

piαi

+
(αi − pi)

∗

αi

+

(
pi

⌈
αi

pi

⌉
− αi

)∗

pi
,

where 0 < a∗ < b in a∗

b
is a number such that aa∗ ≡ 1 (mod b). The above computation

uses the fact that if [a1, . . . , al]
− = a/b for b < a then [al, . . . , a1]

− = a/(b∗) from for
example [16, Lemma 2.4]. The number above is a positive integer less than 2 since
1

piαi
+ (αi−pi)

∗

αi
< 1.

Figure 6 (with an arrow instead of an N) is obtained from Theorem 22.2, the

Addendum to Theorem 22.1 and the fact that
⌈

pi
αi

⌉
= 1. That picture represents a

knot inside a plumbed 3-manifold (boundary of a plumbed 4-manifold), which in our
case is S3. Note that several different plumbings can represent the same 3-manifold,
but they are related to each other through blow-ups and blow-downs and some other
0-related moves by Neumann’s plumbing calculus, whose formulation adapted to links
in plumbing graphs is [7, Theorem 18.3]. Thus, Figure 6 (with an arrow instead of
an N) is equivalent through these moves to the graph of U in Figure 3 with an arrow
sticking out of the −1-vertex. We will see later exactly how to go from Figure 6 to
the graph from algebraic geometry sketched in Figure 3. What is important is that
the graphs are related by blow-ups and blow-downs happening away from the vertex
of weight N , so the N ’s of Figure 6 and Figure 3 are the same.

The plumbing graph in Figure 6 is not “minimal”, that is, it contains vertices of
weight −1 that can be blown down. It cannot be the one obtained from a blow-up
resolution of a singularity since it is not of the form described in Figure 3. We note that
ifK = T (p1, α1; p2, α2; . . . ; pk, αk) is an algebraic knot, then di+1 =

⌈αi+1

pi+1

⌉
≥ piαi+1, so

the sequence (ci+1,2, ci+1,3, . . . , ci+1,si) is initiated by at least piαi− 1 twos. There must
also be a non-two in the sequence, as otherwise, by Riemenschneider’s point rule, αi/pi
would be an integer. Thus, for algebraic knots, we are going to strengthen Proposition
7 into the following theorem:

13 of 26



3 PLUMBINGS BOUNDING SURGERIES ON ITERATED TORUS KNOTS

Figure 7: Close-up diagram of each Vi part of the plumbing diagram of
S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)) in Figure 7.

Theorem 8. Let K = T (p1, α1; p2, α2; . . . ; pk, αk) be an algebraic knot and let n ≥
pkαk + 2. Then S3

n(K) bounds a negative definite plumbed 4-manifold with the graph
shown in Figure 8, where each hook Wi is described by Figure 9. Again, N = n−pkαk,
[ci,2, ci,3, . . . , ci,si ]

− = αi

αi−pi
and [di,1, di,2, . . . , di,ti ]

− = αi

pi
.

Proof. Assuming thatK is algebraic and thus that the sequence (ci+1,2, ci+1,3, . . . , ci+1,si)
is initiated by at least piαi − 1 twos, Figure 10 shows us a way to contract the plumb-
ing graph, substituting it by one representing the same 3-manifold. The first step is a
sequence of piαi − 1 (−1)-blow-downs, the second one is another −1-blow-down, and
the third one is a 0-absorption corresponding to Theorem 18.3.3 in [7], or Section 1 in
[15], which also describes the effect of these operations on the index of the intersection
form of the 4-manifold, in this case the effect being that both the positive and the
negative index is decreased by one. These contractions, which happen far away from
the arrow/N vertex, allow us to change our plumbing to one where all vertices except
maybe the one of weight N and the one adjacent to it (of weight −1) are of weight
at most −2, just like the graph in Figure 3. In fact, our graph looks like the graph
in Figure 8 but with the rightmost node having weight −1 instead of −2 and just an
N -weighted vertex instead of the rightmost chain of N−1 vertices of weight −2. Using
that N ≥ 2 and the plumbing calculus of Figure 4, we finally obtain Figure 8. The fact
that the graph in Figure 8 is negative definite follows from the existence of a negative
definite plumbing graph, the fact that the graph in Figure 8 is in normal form (defined
on [15, Page 4]) and by the uniqueness theorems of plumbing graphs in normal form
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4 EXISTENCE OF LATTICE EMBEDDINGS

Figure 8: The minimal negative definite plumbing diagram of
S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)). Each Wi is a subgraph described by Figure 9.

Here N = n− pkαk.

[15, Theorem 1.2] and [7, Theorem 18.3].

When working with lattice embeddings, we often need different tools depending on
whether the trivalent vertices have weight −2 or if the weight is lower. In Section 4 this
is relevant because if all trivalent vertices have weight −2, then none of the vertices
with weight less that −2 are adjacent. On the other hand, if every vertex in a graph
has weight at least its valency and one strictly greater, then its intersection form has
a weakly chained diagonally dominant matrix, whose determinant is always non-zero.
This can for example be used to argue that if such a graph has a lattice embedding,
then a basis vector hitting only one vertex must be hitting a vertex with weight exactly
its valency, something which has for example been used in [3]. Because of this difference
in available tools, we call the knot T (p1, α1; . . . ; pk, αk) super-algebraic if all of the

contractions in Figure 10 have a = 2, that is di+1,1 − 1 =
⌈
αi+1

pi+1

⌉
− 1 ≥ piαi for all i.

We end this section by introducing the following terminology, based on The Hu-
man Centipede: considering the negative definite graph of Figure 8, if we remove the
trivalent vertices, the rightmost horizontal segment will be called the tail, the rest
of them will be torsos numbered from left to right, and the vertical segments will be
legs, also numbered from left to right. The trivalent vertices will simply be called
nodes, also numbered from left to right. The union of Torso i, Leg i and Node i will
be called Body i.

4 Existence of Lattice Embeddings

In this section, we check our negative definite lattices from Section 3 for embeddability
in order to use the obstruction of Proposition 1. The reader should be warned about
the technical nature of lattice embeddings, and that the easiest way of understanding
a proof using them is, just like for diagram chasing, to work it out on one’s own.

We will first prove the theorem carefully in the super-algebraic case (α2/p2 > p1α1+
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4 EXISTENCE OF LATTICE EMBEDDINGS

Figure 9: Close-up diagram of each Wi part of the plumbing diagram of
S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)) in Figure 8. In order for this diagram to make sense at

the extremities, interpret p0α0 as 0, and −ck+1,pkαk+1 as −2.

1 rather than α2/p2 > p1α1). We split the proof for the super-algebraic case into two
propositions depending on whether α2 ≡ −1 (mod p2) or α2 ≡ 1 (mod p2). The case
⌈α2/p2⌉ = p1α1+1, proved in less detail as a separate proposition afterwards, is similar,
but requires separate consideration due to some vertices of weight lower than −2 being
adjacent.

Proposition 9. Let α1 ≡ 1 (mod p1), α2 ≡ −1 (mod p2), α2/p2 > p1α1 + 1 and
n ≥ 2 + p2α2. Then the rational homology 3-sphere S3

n(T (p1, α1; p2, α2)) bounds a
rational homology 4-ball if and only if the tuple

(p1, α1; p2, α2;n)

is one of the following:

1. (p1, p1 + 1; p2, p2(p1 + 1)2 − 1; p22(p1 + 1)2) or

2. (2, 7; p2, 16p2 − 1; 16p22).
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4 EXISTENCE OF LATTICE EMBEDDINGS

Figure 10: Contracting the graph by blowing down

Proof. We use the process described in Section 3 to show that S3
n(T (p1, k1p1+1; p2, k2p2+

(p2 − 1))) bounds the plumbing in Figure 11, potentially with k1 − 1 = 0. We do this
by computing some negative continued fractions. First, we compute that α1/p1 =
[k1 +1, 2, . . . , 2︸ ︷︷ ︸

p1−1

]− and thus Leg 1 has weights (−2, . . . ,−2︸ ︷︷ ︸
p1−1

) from bottom to top and by

Riemenschneider’s point rule, we get that Torso 1 has weights (−2, . . . ,−2︸ ︷︷ ︸
k1−1

,−(p1 + 1))

from left to right. We have α2/p2 = [k2 + 1, p2]
−, leaving Leg 2 with one vertex

of weight −p2, whereas Riemenschneider’s point rule gives a Torso 2 the weights
(−2, . . . ,−2︸ ︷︷ ︸

k2−1

,−3,−2, . . . ,−2︸ ︷︷ ︸
p2−2

) from left to right, but with the first p1α1 −2’s cut off

by the contraction described in Figure 10. Note that if we only had algebraicity but
not super-algebraicity, we would have the −3 in Node 1, adjacent to the vertex of
weight −(p1 + 1).

By Corollary 4.1, the embeddings of the −2-chains are forced as by Figure 11. Note
that every −2-chain in the graph is extended at the end by some vertex not necessarily
of weight −2, but we showed in the proof of Proposition 4 that the embedding (h1 −
h2, h2 − h3,−h1 − h2) can never be extended that way, which is why every −2-chain
in Figure 11 is embedded with one more basis vector than the number of vertices, no
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4 EXISTENCE OF LATTICE EMBEDDINGS

Figure 11: Plumbing graph of S3
n(T (p1, k1p1 + 1; p2, k2p2 + (p2 − 1))) with N ≥ 2 and

d2,1 = k2 + 1 > p1α1 + 1.

matter the length. We have three vertices left to embed, with embeddings v, w and
u, marked in blue in Figure 11. Note that there are at least 3 g’s, at least 3 f ’s and
either no or at least 2 e’s. For the obstruction of Proposition 1 to fail, we need to be
able to embed the lattice of this graph in a lattice of the same rank as the number of
vertices. If k1 > 1, our partial embedding in red is already using as many basis vectors
as we have access to. If k1 = 1, we have access to one extra basis vector h.

There are three options for embedding w:

1. w = fp1+l+1 + h− g1 implying that k1 = 1,

2. w = fp1+l+1 + g2 + g3 implying that p2 = N = 2 and

3. w = −g1 − f1 − f2 implying that p1 = 2 and l = 0.

We go through these cases one by one.

1. If v is hit by fp1 , then v is hit by all vectors f1, . . . , fp1 . It must be hit by another
vector, which must be h since being hit by some g means being hit by them
all. However, that would mean ⟨v, w⟩ = ⟨±h, h⟩ = ±1, which is not the case.
Thus v is hit only by the f ’s with index larger than p1, which together with
orthogonality to the all vectors but u and the adjacent vertex, plus intersection
1 with the adjacent vertex, gives

v = (fp1+1 + · · ·+ fp1+l+1)− λ(g1 + · · ·+ gp2+N−1)− (1 + λ)h

for some λ.

If u is hit by gp2−1, it is also hit by all g1, . . . , gp2−2. There is only space left for
one basis vector, which must be h. The only possibility for orthogonality to w
becomes u = −(g1 + · · · + gp2−1) − h. Now 0 = ⟨v, u⟩ = −λ(p2 − 1) − (1 + λ).
So 1 = −λp2, which is impossible since p2 > 1. Thus u is not hit by gp2−1, so
it must be hit by gp2 and thus also gp2+1, . . . , gp2+N−1. For orthogonality to the
chains of −2’s and w, we get

u = gp2 + · · ·+ gp2+N−1 + κ(f1 + · · ·+ fp1+l+1 − h).
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4 EXISTENCE OF LATTICE EMBEDDINGS

It remains to make sure that ⟨v, v⟩ = −(p1 +1), ⟨u, u⟩ = −p2 and ⟨v, u⟩ = 0. We
get: 

− (p1 + 1) = −(l + 1)− λ2(N + p2 − 1)− (λ+ 1)2

−p2 = −N − κ2(l + p1 + 2)

0 = Nλ− κ(l + 1)− κ(λ+ 1)

Simplifying yields: 
p1 = l + λ2(N + p2 − 1) + (λ+ 1)2 (1)

p2 = N + κ2(l + p1 + 2) (2)

0 = λN − κ(l + λ+ 2) (3)

Now, if κ ̸= 0, Equation (2) implies that p2 > p1. If that is so, Equation (1)
gives that λ = 0. Then Equation (3) gives that κ = 0, which is a contradiction.
Thus κ = 0, implying though Equation (3) that λ = 0, though Equation (2) that
p2 = N , and through Equation (1) that l = p1 − 1. This solution corresponds to

(p1, α1, p2, α2, n) = (p1, p1 + 1, p2, p2(p1 + 1)− 1, p22(p1 + 1)2)

and is known to bound a rational homology ball by Theorem 1.3 in [3].

2. If w = fp1+l+1 + g2 + g3, then u cannot be hit by g2 as that would mean that
u = g2 + g3 and ⟨w, u⟩ = −2. Thus u is hit by g1 and another basis vector.
However, since the e’s and the f ’s come in a package deal due to sitting in −2-
chains orthogonal to u, none of these can hit u and we have k1 = 1 and u = h−g1.
As in the case above, if fp1 hits v, then v = −(f1 + · · · + fp1) ± h, but then v
intersects u. Thus v = fp1+1 + · · · + fp1+l+1 + · · · , through the −2-chain, but
through orthogonality to w, v must also be hit by one of g2 and g3. Through
orthogonality to the tail vertex, the g2 and g3 must have the same coefficient in v,
and v’s orthogonality to w says that the coefficient of fp1+l+1 must be minus the
double of the coefficient of g2, which is impossible. Thus there are no embeddings
with w = fp1+l+1 + g2 + g3.

3. Suppose w = −g1 − f1 − f2, p1 = 2 and l = 0. Then ⟨v, v⟩ = −3, so if v is
hit by f2, it is hit by f1 too with equal coefficient, and orthogonality to w is
impossible. Thus v is hit by f3 and two other basis vectors. Since there are at
least 3 g’s, these must be e’s. We get k1 = 3 and v = −e1 − e2 + f3. Now u
cannot be hit by gp2−1 as it would be hit by all g1, . . . , gp2−1 and there would
be only one space left for another basis vector, whereas the e’s and f ’s come in
packages of 3. Thus u = gp2 + · · ·+ gp2+N−1 + λ(e1 + e2 + e3) + κ(f1 + f2 + f3).
Orthogonality of u to w gives κ = 0 and orthogonality of u and v then gives
λ = 0. This solution corresponds to (p1, α1, p2, α2, n) = (2, 7, p2, 16p2 − 1, 16p22),
which bounds a rational homology ball by Theorem 1.3 in [3].
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4 EXISTENCE OF LATTICE EMBEDDINGS

Figure 12: Plumbing graph of S3
n(T (p1, k1p1 + 1; p2, k2p2 + 1)) with N ≥ 2 and d2,1 =

k2 + 1 > p1α1 + 1.

Now we consider the case where α2 ≡ 1 (mod p2) instead. The reader may note
that the only tuples (p1, α1; p2, α2;n) for which we find embeddings in this case have
p2 = 2, in which case α2 ≡ −1 (mod p2) if and only if α2 ≡ 1 (mod p2).

Proposition 10. Let α1 ≡ 1 (mod p1), α2 ≡ 1 (mod p2), α2/p2 > p1α1 + 1 and
n ≥ 2 + p2α2. Then the rational homology 3-sphere S3

n(T (p1, α1; p2, α2)) bounds a
rational homology 4-ball if and only if

(p1, α1; p2, α2;n) = (2, 7; 2, 31; 64).

or
(p1, α1; p2, α2;n) = (p1, p1 + 1; 2, 2(p1 + 1)2 − 1; 4(p1 + 1)2).

Proof. Since αi/pi = [ki + 1, 2, . . . , 2︸ ︷︷ ︸
pi−1

]−, the recipe in Section 3 gives us a plumbing

graph with (pi − 1) −2’s in each leg. Riemenschneider’s point rule gives

[ci,2, ci,3, . . . , ci,si ]
− = [2, . . . , 2︸ ︷︷ ︸

ki−1

, pi + 1]−

and the contraction in Figure 10 shortens the Torso by (p1α1−1) −2’s, leaving us with
the negative definite graph in Figure 12. By Proposition 4, a sequence of −2’s has only
one possible embedding up to signs and renaming of elements, unless it has length 3,
in which case there is an embedding of the form (v1 − v2, v2 + v3,−v1 − v2), but this
embedding cannot be extended at its ends to a longer chain. Thus, unless N = p2 = 2,
the embedding of the −2-chains in Figure 12 must be the one in red. When p2 = 2,
α2 ≡ 1 (mod p2) if and only if α2 ≡ −1 (mod p2), a case that we have already dealt
with completely. Hence we assume that p2 > 2 and the red partial embedding is forced.
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4 EXISTENCE OF LATTICE EMBEDDINGS

Figure 13: Plumbing graph of S3
n(T (p1, p1 + 1; p2, k2p2 + 1)) with N ≥ 2 and d2,1 =

k2 + 1 > p1α1 + 1.

If k1 − 1 > 0, we have already used more basis vectors than we have vertices in the
graph, and thus no embedding satisfying the requirements of Proposition 1 can exist.
If k1 = 1, our graph looks like in Figure 13. We have two vertices left to embed: v in
Torso 1 and w in Torso 2. It is easy to see that v cannot be hit by b1, since that would
force v = −(b1 + · · ·+ bp2) + u for some basis vector u, but there is no option for what
u could be. Thus v = h1 + · · · + hl+1 + λ(e1 + · · · + eN + g1 + · · · + gp2) for some λ.
Now if w is hit by g1, then w = −(g1+ · · ·+ gp2)+hl+1) by orthogonality to Leg 2 and
having to hook on to the −2-chain in Torso 2. But then 0 = ⟨w, v⟩ = −1 + λp2, which
is impossible. Hence, our embedding must be of the form described in Figure 14.

There are 3 equations left to satisfy in order to obtain an embedding, determined
by the relationship between the vertices of weight −(p1 + 1) and −(p2 + 1), and their
relationship to themselves. These equations are:

−(p1 + 1) = −(l + 1)− λ2(N + p2)

−(p2 + 1) = −N − (κ+ 1)2 − κ2(l + p1)

0 = −κl − (κ+ 1)− λN

Simplifying them yields:
p1 = l + λ2(N + p2) (4)

p2 = (N − 1) + (κ+ 1)2 + κ2(l + p1) (5)

0 = κl + (κ+ 1) + λN (6)

Suppose e1 shows up again in Body 1, meaning that λ2 ≥ 1. By Equation (4), p1 > p2.
Now, if κ2 ≥ 1, then by Equation (5), p2 > p1, which is a contradiction. However, if
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4 EXISTENCE OF LATTICE EMBEDDINGS

Figure 14: Embedding of S3
n(T (p1, p1 + 1; p2, kp2 + 1))

κ = 0, then Equation (6) degenerates into λN = −1, which contradicts that N ≥ 2.
If e1 does not show up again in Body 1, meaning that λ = 0, then Equation (4) gives
that l = p1 and Equation (6) gives that −1 = κ(l+1) = κ(p1+1), which is impossible.
Thus, the only embeddable cases are when p2 = 2, in which case we get the cases
coming from α2 ≡ −1 (mod p2).

Proposition 11. Let α1 ≡ 1 (mod p1) and α2 ≡ ±1 (mod p2). Also let ⌈α2/p2⌉ =
p1α1 + 1 and n ≥ 2 + p2α2. Then S3

n(T (p1, α1; p2, α2)) does not bound a rational
homology 4-ball.

Proof. We start by the case where α2 ≡ −1 (mod p2), in which case the plumbing
graph of S3

n(T (p1, α1; p2, α2)) looks as in Figure 15. The proof is similar to the one
of Proposition 9, with the main difference being that here v and w are adjacent. As
before, there are three options for w, namely

1. w = −g1 + fp1 + h, and thus k1 = 1,

2. w = g2 + g3 + fp1 , and thus p2 = 2 = N , or

3. w = −f1 − f2 − g1 in which case p1 = 3.

We quickly go through these cases one by one:

1. If v is hit by fp1 , then v = ±(f1+ · · ·+fp1)±h, by orthogonality to Leg 1 and the
only way to fill out a space of 1. However, this cannot have intersection 1 with w.
Thus v = −h+λ(g1+ · · ·+gp2+N−1+h). Now, either u = −(g1+ · · ·+gp2−1)−h,
which cannot be orthogonal to v since 0 = ⟨v, u⟩ = λp2 − 1 has no solutions, or
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4 EXISTENCE OF LATTICE EMBEDDINGS

Figure 15: Embedding of S3
n(T (p1, k1p1 + 1; p2, (p1α1 + 1)p2 − 1)

u = gp2 + · · · + gp2+N−1 + κh + µ(f1 + · · · + fp1). By orthogonality to w, we get
κ = −µ. Orthogonality to v gives ⟨v, u⟩ = (λ− 1)µ− λN = 0. Now, it remains
to solve the system

p1 + 1 = −⟨v, v⟩ = λ2(p2 +N − 1) + (λ− 1)2 (7)

p2 = −⟨u, u⟩ = N + µ2 + µ2p1 (8)

0 = ⟨v, u⟩ = (λ− 1)µ− λN. (9)

Note that λ = 0 implies p2 = −2, which is not admissible. Thus, by Equation
(7), p1 ≥ p2. If µ ̸= 0, then by Equation (8), p2 > p1, which gives a contradiction.
If µ = 0, then by Equation (9), λ = 0 or N = 0, both of which are impossible.
Thus we have no solutions in this case.

2. If w = g2 + g3 + fp1 , then we have no options for u, which here satisfies −2 =
⟨u, u⟩. Either u is hit by g2 and thus u = g2 + g3, which is not orthogonal to
w, or u = −g1 + h. Then k1 = 1. Now either v is hit by the f ’s, implying
v = ±(f1+ · · ·+fp1)±h, which is not orthogonal to u, or v = λ(h+g1+g2+g3),
which cannot have intersection 1 with w.

3. If w = −f1 − f2 − g1, we have p1 = 3 and −4 = ⟨v, v⟩. If v is hit by f ’s, we
have v = ±(f1 + f2 + f3) ± h or v = ±(f1 + f2 + f3) + ek1 , none of which can
have intersection 1 with w. Thus (g1 + · · ·+ gp2+N−1) is included in v and since
p2 +N − 1 ≥ 3 we have four options:

(a) We could have k1 ≥ 2, p2 = N = 2 and v = g1 + g2 + g3 + ek. Then either
u = g2 + g3 which is not orthogonal to v, or u includes −g1, but we cannot
fill in the gap of 1.
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4 EXISTENCE OF LATTICE EMBEDDINGS

Figure 16: Embedding of S3
n(T (p1, k1p1 + 1; p2, p1α1p2 + 1)

(b) A similar case is k1 = 1, p2 = N = 2 and v = g1 + g2 + g3 + h. Then
u = g2 + g3 is still impossible, and u = h− g1 is not orthogonal to w.

(c) Alternatively, we could have p2 = 2, N = 3 and v = g1 + · · · + g4. Then
either u is hit by g2 and includes g2+g3+g4 which has lower self-intersection
than −2, or u = −g1 + h, k1 = 1 and u is not orthogonal to v.

(d) Lastly, we could have p2 = 3, N = 2 and v = g1 + g2 + g3 + g4. Then either
u = g3 + g4 + h, which is not orthogonal to v, or u = −g1 − g2 + h, which is
still not orthogonal to v.

Thus there are no embeddings if α2 ≡ −1 (mod p2).
If α2 ≡ 1 (mod p2), S

3
n(T (p1, α1; p2, α2)) bounds the plumbing graph in Figure 16.

Once again, the main difference with Proposition 10 is that v and w are adjacent.
We assume that p2 ≥ 3 since the other case fits into the case of α2 ≡ −1 (mod p2).
Proposition 4 forces the partial embedding in red. If k1 > 1, we have used too many
vectors already, so Proposition 1 obstructs the existence of a rational homology 4-ball
bounding S3

n(T (p1, α1; p2, α2)) in this case. We assume k1 = 1. We have no basis
vectors available apart from the f ’s and g’s.

No f can hit v since then all of them would, which would leave us with a gap
of 1 that we cannot fill in. Thus v = λ(g1 + · · · + gp2+N). If w is hit by gp2 , then
w = fp1 − (g1 + · · · + gp2), which cannot have intersection 1 with v. Thus w =
gp2+1+ · · ·+ gp2+N +κ(f1+ · · ·+ fp1), whose intersection with v is −λN , which cannot
equal 1. Hence, there are no embeddings when α2 ≡ 1 (mod p2) either.
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