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Predicting zoonotic potential of viruses: where are we? 
Nardus Mollentze1,2 and Daniel G Streicker1,2   

The prospect of identifying high-risk viruses and designing 
interventions to pre-empt their emergence into human 
populations is enticing, but controversial, particularly when 
used to justify large-scale virus discovery initiatives. We review 
the current state of these efforts, identifying three broad classes 
of predictive models that have differences in data inputs that 
define their potential utility for triaging newly discovered viruses 
for further investigation. Prospects for model predictions of 
public health risk to guide preparedness depend not only on 
computational improvements to algorithms, but also on more 
efficient data generation in laboratory, field and clinical settings. 
Beyond public health applications, efforts to predict zoonoses 
provide unique research value by creating generalisable 
understanding of the ecological and evolutionary factors that 
promote viral emergence. 
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Introduction 
Most emerging infectious diseases in humans are caused by 
viruses that originate from other animal species [1]. As such, 
genomic surveillance and virus discovery in non-human 
animals have been proposed to form important components 
of preparing for future zoonotic threats [2–4]. While virus 
discovery has unquestionable value in filling gaps in the 
evolutionary history of viruses and may enhance our ability 
to pinpoint the animal origins of novel zoonoses, the value 

of these data for pandemic or indeed spillover prevention 
remains controversial. In principle, applying carefully de-
signed experiments to newly discovered viruses might 
provide proxies for human infectivity [5] (particularly when 
interpreted with expert opinion); indeed, this approach is 
already used to risk-assess influenza lineages [6]. However, 
when such experiments are practically feasible, they remain 
laborious and cannot currently keep pace with the dramatic 
acceleration of virus discovery empowered by advances in 
genomics and computational biology [7–9]. The result is an 
ever-growing backlog of viruses that cannot be compre-
hensively assessed as part of efforts to prevent emergence. 
Quantitative triage systems are now being developed to 
allow systematic, evidence-led prioritisation of newly de-
tected viruses for downstream research and surveillance. 

One way viruses might be prioritised is by quantifying their 
relative risk to public health, which is governed by key viral 
characteristics (Figure 1). First, there must be opportunities 
for transmission, which are shaped by both the amount of 
contact between humans and the virus’ natural reservoir (or 
any potential intermediate hosts) and the nature of that 
contact (‘opportunity’). Second, the virus must be capable of 
infecting humans, which requires successful interactions 
with multiple host effectors to enter cells, replicate, spread 
through the body and evade or suppress immune responses 
(‘infectivity’). Third, high-risk viruses must cause large 
numbers of cases, either through repeated spillover (e.g. ra-
bies virus) or through successful transmission between hu-
mans, which may be modulated by human population 
connectivity in the geographic location of spillover or cross- 
reactive immunity from vaccination against or exposure to 
related viruses (‘case count’). Finally, while any virus 
causing high numbers of infections will likely threaten at 
least part of the population, the level of public health threat 
will be determined by the symptoms caused (i.e. ‘disease 
severity’). The continuous nature of risk factors (e.g. the 
level of exposure to humans, the probability of infection 
upon exposure, etc.), implies a wide range within which 
viruses may be stratified (Figure 1). In specific contexts and 
depending on the aim of the risk-ranking exercise, other risk 
factors may also be appropriate (e.g. potential economic 
damage or the lack of effective diagnostic tests, treat-
ments or vaccines) [10,11]. Classically, infectivity, expected 
case counts and disease severity can only be estimated after 
human infections have been reported. Anticipating oppor-
tunities for zoonotic emergence before human cases is si-
milarly challenging, requiring knowledge of animal 
reservoirs and transmission routes that typically remain 
elusive for years after a virus emerges [12]. A growing 
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number of computational approaches therefore attempt to 
predict factors contributing to public health risk from more 
available data sources. 

Where we are now 
Current approaches to prioritise viruses focus primarily 
on the ability to infect humans (often termed ’zoonotic 
potential’) but differ in their data inputs and in the range 
of viruses targeted. Approaches targeting individual virus 
families (e.g. [13]) have the advantage of being able to 
rely on more targeted data (e.g. commonly sequenced 
genomic fragments), but do not provide general insights 
into zoonotic risk across viruses. Here, we focus on more 
broadly applicable approaches, which can be classified 
into three groups based on the types of predictors used 
(Figure 2). 

Trait-based 
Trait-based approaches focus on identifying virus, 
host or ecological traits correlated with reports of human 

infection. A wide range of such traits has been identified 
(e.g. the breadth of known host range, cytoplasmic re-
plication, enveloped virions and transmission by ar-
thropod vectors) [14–16]. These and other risk factors 
have been combined in an expert opinion-based risk 
assessment, but formal assessments of its predictive 
power are currently unavailable [17]. On the one hand, 
trait-based models are desirable since they are easy to 
interpret and provide testable hypotheses about infec-
tion or emergence risk. On the other hand, they suffer 
from similar issues to the experimental approaches they 
are meant to supplement. Data for the most informative 
traits (e.g. host range breadth) are often unavailable and 
laborious to collect, and when available may reflect as-
certainment biases. Whether routinely used corrections 
based on the number of publications associated with 
each virus species adequately address such biases re-
mains unclear. One reason to doubt these corrections is 
that the search effort represented by individual pub-
lications is likely to vary systematically according to the 

Figure 1  

Current Opinion in Virology

Prioritising viruses based on public health risk. Zoonotic viruses of major public health concern overcome a range of barriers to emergence (left), 
including ecological opportunity for spillover to humans and navigation of a range of within- and between-host barriers to successful infection and 
onward transmission. The relative ability of different viruses to overcome these barriers, along with the consequences of such infections in humans, 
could be used to stratify them by the risk posed (right), providing potential opportunities for earlier intervention (traffic signs/striped barriers) than 
currently possible. Recent advances in predicting human infection suggest it may be possible to develop quantitative filters to supplement the limited 
data on risk factors that are available for most viruses. Since earlier filters require fewer new data but can remove many potentially low-risk viruses 
from further consideration, the more laborious downstream characterisation needed to measure other risk factors becomes more focused and 
feasible. RABV: Lyssavirus rabies; EBOV: Orthoebolavirus zairense; SARS-CoV: Severe acute respiratory syndrome-related coronavirus.   
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Figure 2  

Current Opinion in Virology

Current approaches to predicting viral zoonotic risk. The three broad classes of models differ in inputs and internal data representation but provide 
qualitatively similar outputs. Combining input classes may help improve the robustness of models when faced with novel viruses; however, the input 
data required also determine when and where models can be applied, since some data (e.g. host range) are generally unavailable for recently 
discovered viruses. Viruses currently known to infect humans are indicated in bold. ASFV: African swine fever virus; CMPV: Camelpox virus; CHIKV: 
Chikungunya virus; NDUV: Ndumu virus; SIV: Simian immunodeficiency virus; WMV: Wad Medani virus. 
Data and example outputs are derived from [14,19,26,46]. 
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traits of the host species involved (e.g. studies involving 
endangered host species or larger animals will sample 
fewer individuals, while species that live in large groups 
that are accessible to researchers may be more heavily 
sampled). More widely available risk factors (e.g. cyto-
plasmic replication) tend to be too phylogenetically 
conserved to make predictions at useful taxonomic 
scales. As such, trait-based approaches may provide 
useful biological insights but offer inherently limited 
prospects to narrow the growing chasm between virus 
discovery and zoonosis prevention. 

Network-based 
A second class of ‘network-based’ approaches aims to 
predict human infection based on the set of host species 
a virus is currently known to infect as well as host range 
similarities between viruses. Host range is expressed 
either by connecting viruses that share at least one 
known host (virus-only network) or by connecting 
viruses and their known hosts (a bipartite host-virus 
network, Figure 2) [18,19]. Virus-only networks cluster 
viruses with similar evolutionary history, traits and/or 
ecology, all of which influence opportunities for host- 
sharing. Similarly, host-virus networks capture estab-
lished predictors of human infection, including host 
range and ecological opportunity (assuming that pre-
sence in hosts already known to share other viruses with 
humans indicates a viable contact route for exposure). 
This implicit information has been used to predict 
human infection either by summarising network prop-
erties directly, or by creating a low-dimension embed-
ding representing the overall network structure [18,19]. 
The ability of network-based approaches to infer plau-
sible network links involving hosts other than humans 
may allow application earlier than possible from ob-
served host range data alone [19]. However, as with trait- 
based approaches, the effects of biases inherent to the 
datasets used to train and evaluate these models remain 
poorly explored. Human-associated viruses tend to be 
better-studied, which may make them stand out in un-
expected ways. For example, human-associated viruses 
will have more recorded connections to non-human host 
species, but models implicitly relying on this feature 
may fail to recognise novel human-infecting viruses that 
have not yet received the same level of research atten-
tion. Consequently, it remains unclear how much host 
range data will be required for a given virus before 
network-based approaches can reliably be applied. 

Genome-based 
Given the data availability issues plaguing other methods, a 
third set of approaches has focused on predicting ability to 
infect humans directly from virus genome sequences. 
Genome sequences are advantageous as they are generally 
the first (and often only) data available for newly discovered 
viruses. Viral genomes supply information about virus 
phylogeny (helpful for prediction since related viruses often 

have related hosts [20]) as well as more poorly understood 
signals of host range encoded in genome compositional 
biases [21–23]. Current approaches rely on artificial in-
telligence but differ in how they represent sequence data. 
Deep-learning approaches can automatically extract useful 
representations from sequences and show impressive per-
formance, detecting sequence reads associated with 
human-infecting viruses without the need for sequence 
alignment [24]. However, the data-hungry nature of these 
models, requiring thousands of virus observations, has re-
quired training models using large numbers of closely re-
lated genomes (e.g. strains of the same virus species). The 
resulting pseudoreplication is likely to generate models that 
overestimate their own predictive performance: models 
have effectively already ‘seen’ the human infection status 
of the new viruses they are challenged to predict. Novel 
virus species, which can represent large fractions of taxa in 
modern virus discovery efforts, may be poorly predicted 
because model training has inadvertently deprioritised 
identification of generalisable signals of human infection. 
Further, identifying instances of misleading performance is 
hampered by the limited interpretability of deep-learning 
models. Alternative approaches that use less data-de-
manding machine- learning algorithms can reduce pseu-
doreplication by building models from smaller datasets 
(i.e. hundreds, rather than thousands of viruses) at coarser 
taxonomic resolution (e.g. species), but require human-de-
signed representations of viral genomes (Figure 2). Current 
models use compositional biases (e.g. codon usage, dinu-
cleotide or amino acid biases, etc.) or the presence or ab-
sence of individual substrings (k-mers) and have been used 
to predict both host range generally [25] and ability to infect 
humans specifically [26], performing equivalently to or 
better than trait-based approaches. 

Reliance on viral genomes opens the risk that models 
succeed by recreating viral evolutionary relationships [27], 
with zoonoses tending to be taxonomically clustered. In 
fact, genomic models outperform explicit approximations 
of viral taxonomy and appear to uncover signals that pre-
dict human infection across unrelated viral species or even 
families [26]. While interpretation of these putatively 
general signals of human infection remains challenging, 
methods to understand the underpinnings of why a virus is 
predicted to be zoonotic (or not) are now emerging [28]. 
On a more practical level, generalisability across viruses 
enables models to predict the risk posed by novel viruses 
at the time of their (genomic) discovery [26]. The low cost 
and data requirements of genome-based models also en-
able repeat applications to identify biologically important 
variation within species, including temporal variation from 
continued evolution. 

Opportunities for improvement 
Current approaches to predict zoonotic potential are 
promising but require further improvement to guide 
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preparedness. Improvements are likely to arise from 
advances in the design and implementation of compu-
tational algorithms, innovations that identify more in-
formative indicators of human infection from widely 
available data and growth and refinement of datasets. 
Ongoing computational efforts to combine the trait, 
network and genomic approaches mentioned above may 
aid generalisability by reducing the reliance on any 
single data type [19,29]. New indicators of human in-
fection are also likely to arise. For example, Mollentze 
et al. [26] improved the performance of a viral genomic 
predictor of human infection by re-expressing genomic 
biases relative to those in the human genome. Cutting- 
edge developments in natural language processing, re-
cently applied in host range prediction, may also play a 
role in feature engineering [30], and new ways of in-
corporating predicted protein structures unavailable to 
models to date may further improve performance [9]. 
Technological developments in laboratory science also 
promise improved predictive performance. For example, 
a major limitation of the datasets used to train and 
evaluate all models developed to date is our inability to 
distinguish viruses that are capable of human infection, 
but have not yet been observed to infect humans, from 
viruses that are genuinely incapable of human infection. 
By redefining the status of true zoonoses, new methods 
in high-throughput, massively multiplexed serology 
(e.g. Phage Immunoprecipitation Sequencing, PhIP- 
Seq) may resolve some incorrect labelling of viruses and 
therefore improve model specificity [31]. 

Beyond infection, approaches to predict other compo-
nents of public health risk are urgently needed (Figure 
1). Trait-based approaches have shown some success at 
identifying correlates of exposure risk, virulence and 
human-to-human transmissibility [32–35], but again 
rely on broad or generally unavailable variables. It may 
be more feasible to subdivide these problems, focusing 
on more readily measured features of virus-host inter-
actions that nevertheless give some information about 
each virus’ capabilities. For example, predicting cell- 
type or tissue tropism in humans may give indirect 
evidence of potential differences in transmissibility 
and virulence, while benefiting from large bodies of 
experimental data available to train models. Such de-
tailed predictions would also be more readily verifiable 
in laboratory experiments. Indeed, in parallel to de-
velopment of predictive models, there has been a 
growing body of literature seeking to infer zoonotic 
risk directly from scalable, modular experimental as-
says [5,36,37]. Integrating predictive models with these 
approaches would create verifiable methods for con-
verting laboratory results into relative measures of risk, 
while keeping models grounded in virus biology. Such 
interpretability is key to both improving trust in pre-
dictive models and for anticipating the conditions 
under which models fail. 

Attempts to predict components of public health risk are 
unlikely to cover all possible contributing factors. For 
example, the virus-focused nature of predictions means 
they tend to ignore external influences on risk, such as 
spatiotemporal variation in the likelihood of spillover. 
Since the reservoirs, potential intermediate hosts and 
true spatial distribution of most viruses remains un-
known, this will be difficult to address analytically. 
Further, human population connectivity and cross-pro-
tective immunity at the location of emergence may alter 
outcomes of spillover, but their influence remains diffi-
cult to predict for individual viruses. Nonetheless, pre-
dictions of the inherent ability of different viruses to 
infect and transmit among humans allow viruses to be 
compared relative to each other. This can provide va-
luable information that could be considered alongside 
projections from virus species-agnostic epidemiological 
models and expert opinion-based risk assessments fo-
cused on specific regions. 

Controversy 
Although the prospect of combining increasingly low- 
cost sequencing, publicly available data and computa-
tional models to identify and pre-empt zoonotic risks is 
enticing, the viability of this approach for generating 
actionable recommendations remains contentious. A 
fundamental challenge is the vast number and diversity 
of viruses in nature. Simple calculations based on current 
rates of virus discovery point to as many as 1.7 million 
species infecting mammals and birds [2]. Models ac-
counting for repeat discoveries in multiple host species 
still suggest at least 40 878 species infecting mammals 
alone [38]. Only a fraction of these viruses is predicted to 
be capable of infecting humans (e.g. N = 9787, 23.9% of 
mammalian viruses [38]) and a smaller, unknown pro-
portion would cause sufficient public health risk to merit 
intervention. This diversity creates a distinct challenge 
for actionable zoonosis prediction: even reasonably ac-
curate models will produce a considerable number of 
false positives. The challenge of viral diversity is com-
pounded by continued viral evolution in reservoir hosts, 
which may necessitate periodic monitoring to update 
models and predictions. This criticism in principle could 
be mitigated by greater capacity for high-throughput 
laboratory screening to flag false positives, making the 
development of such systems a priority. 

Zoonosis prediction is also stymied by data availability. 
In addition to being incomplete, current knowledge of 
viral diversity is biased towards animal taxa that have 
been linked to human disease and towards the evolu-
tionary relatives of established zoonoses [39]. The extent 
to which different model types will be influenced by 
these biases is likely to vary according to model de-
pendence on viral host range and network structure. 
Greater emphasis on untargeted, metagenomic virus 
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discovery in taxa without clear links to human health will 
gradually reduce the magnitude of these potential biases  
[8,9,40]. However, filling gaps in the viral evolutionary 
tree increases uncertainty in the taxonomic resolution at 
which viruses should be modelled (e.g. species, 
lineage, or isolate) and in which traits of viruses (e.g. host 
range) can be assumed to be constant across related 
taxonomic units. Scrutiny of model- training inputs and 
outputs will be vital to understand the basis of predic-
tions and their credibility, particularly as declining 
computational and technical barriers make sophisticated 
algorithms widely accessible. 

Given the diminishing technical challenge of viral 
synthesis and the push for public availability of viral 
genome sequences, a forward-looking criticism of zoo-
nosis prediction is that pre-identification of viruses with 
pandemic potential might have dual-use applications in 
bioterrorism [41]. At present, the inability of models to 
accurately predict viral characteristics relevant to a bio-
weapon (e.g. disease severity or transmissibility) would 
make predicted zoonoses a poor blueprint for creating a 
pandemic compared with historical or contemporary 
viruses with verified pandemic capability. However, as 
recent years have shown, technological advances pow-
ered by artificial intelligence may not be incremental 
(e.g. AlphaFold [42]). Model developers should there-
fore be cognizant of potential dual-use risks and consider 
the appropriateness of restricting access to data and/or 
model predictions. 

Conclusions 
It remains undetermined whether zoonosis prediction 
will ever generate virus-specific insights sufficient for 
prevention. We nevertheless argue for continued re-
search in this area. First, large-scale comparative ana-
lyses of viruses are uniquely able to understand risk 
factors for emergence that generalise across viruses. 
Characterising viral communities in units of predicted 
zoonotic risk rather than viral species richness or phy-
logenetic diversity could identify high-risk interfaces for 
surveillance. Researchers focused on how environmental 
change affects emergence could similarly study net 
zoonotic risk at the viral community level or choose to 
study focal, ‘model’ viruses that have predicted risk over 
subjective alternatives [43]. Similarly, if genomic risk 
factors for human infection that span viral groups exist, 
as suggested by results from [26], this would drive fun-
damental and applied research in virology in directions 
that could not have otherwise been easily identified. 
Second, predictive models add value to surveillance 
studies at the human–animal interface by providing a 
rational evidence base to select which viruses to monitor 
or study in laboratories [44]. Importantly, the alternative   

approach — focusing on close phylogenetic relatives of 
zoonoses — has demonstrated potential to misguide the 
allocation of limited resources [26]. Third, the only al-
ternative to bolstering capacity for prevention via virus 
prospecting and risk triaging would be heightened 
monitoring of high-risk human populations to more ra-
pidly extinguish nascent pandemics, but focusing miti-
gation efforts on only a single stage of the emergence 
pathway carries substantial risk (Figure 1). While iden-
tification of agents is faster now than ever, the timeline 
between detection and an effective public health re-
sponse remains a formidable challenge, with question-
able viability for pathogens with even moderate 
transmissibility in humans [45]. Given the expected 
variance in human disease severity, some fraction of 
early cases would go undetected by hospital-based sur-
veillance and detection in asymptomatic individuals via 
active surveillance would be unlikely to trigger action in 
the absence of additional information, thus further ex-
tending the time lag between zoonotic transmission, 
detection and action. 

Virus discovery has exploded in recent years with the 
advent of metagenomic sequencing and shows no sign of 
decelerating [7,39]. As discussed above, these efforts 
have scientific value unrelated to pandemic prevention, 
though the capacity for the latter is at times exaggerated 
unhelpfully. When interpreted and communicated ap-
propriately, complementing ongoing virus discovery 
with the development and refinement of inexpensive 
quantitative frameworks has few downsides and pro-
vides biological insights while increasing the relevance 
and efficiency of research and surveillance. Further, the 
relatively low cost of model development means that 
investment in this area need not compromise alternative 
investments such as heightened surveillance at high-risk 
interfaces, broad-acting preventive measures (e.g. per-
sonal protective equipment) or accelerated response. 
Given our current inability to either prevent spillover or 
extinguish developing epidemics, all tools available 
should be used to aid understanding of the process of 
viral emergence. 
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