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Abstract

Vector-borne disease transmission is driven by environmental factors determining the 
distribution and spread of pathogens, vectors and human and animal populations. Earth 
observation (EO) data, such as satellite and drone imagery, can be used to characterise these 
factors and identify high risk geographical areas and populations. While the use of EO data 
to understand vector-borne disease epidemiology has a long history, the rapid expansion of 
satellite and aerial data, analysis methods and computing power offer new opportunities 
to integrate EO data into disease surveillance. We review sources and characteristics of EO 
data and analysis methods, identify commonly used EO-derived metrics for a range of dis-
eases and present case studies on specific applications of EO data for disease surveillance. 
We additionally describe key considerations for disease control programmes considering 
the use of EO data, highlighting the applicability of different data types and analysis meth-
ods for different ecological contexts and use-cases.
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1	 Background

Vector-borne diseases (VBD s), such as malaria and dengue, are well-established as 
highly sensitive to environmental conditions. Local land use practices and mete-
orological factors directly determine the spatial and temporal distributions of 
mosquito larval aquatic habitats (Fornace et al. 2021, Patz et al. 2004, Thomson 
et al. 2006, Vittor et al. 2009). Wider climatic changes and disruptions to existing 
ecosystems can alter the abundance and behaviour of mosquito species and lead 
to expansion of these vectors into new locations (Caminade et al. 2019, Iwamura 
et al. 2020, Jones et al. 2008, Metcalf et al. 2017). These ecological changes interact 
with socioeconomic systems in complex and context-specific ways to impact VBD 
transmission risks (Baeza et al. 2017, de Castro et al. 2006, Keiser et al. 2005).

With unprecedented levels of global environmental change, it is increasingly 
critical to monitor changing VBD dynamics. Increasing quality and availability of 
Earth observation (EO) data provides new opportunities to characterise the impacts 
of environmental change on VBD transmission and develop targeted surveillance 
methods. EO refers to the collection of physical and biological data on planetary sur-
faces obtained using remote sensing methods, typically sensors based on satellites 
or aircraft. These data can be used to monitor factors such as land cover, vegetation 
levels, water body distribution and extents of human settlements (Finer et al. 2018, 
Lloyd et al. 2017, Pekel et al. 2016, Wardrop et al. 2018, Wimberly et al. 2021). Since the 
launch of the satellite Landsat-1 in 1972, the quantity and quality of satellite-based EO 
data has grown exponentially (Finer et al. 2018). Simultaneously, aerial technologies, 
such as low-cost drones, are increasingly accessible and are now widely used to col-
lect EO data at user-defined locations (Koh and Wich 2012). This expansion of EO data 
has been accompanied by technological developments in computing and imagery 
analysis methods enabling processing and interpretation of these data sources.

The potential utility of EO data for VBD epidemiological studies has been widely 
recognised since the 1970s (Cline 1970). Motivated by increasing mosquito resistance 
to insecticides and bans on the widespread use of chemicals such as DDT and out-
door disease transmission, early uses of EO data focused on characterising aquatic 
mosquito larval habitats to better target control measures. In 1971, the National 
Aeronautics and Space Administration (NASA) conducted targeted aerial surveys in 
New Orleans, demonstrating the capacity of multispectral imaging using the visible 
to near-infrared region of the electromagnetic spectrum to identify mosquito breed-
ing sites (NASA 1973). These techniques were later deployed operationally within 
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321Earth observation data for disease surveillance

other areas of the United States to target the breeding sites of mosquito vectors 
during an outbreak of St. Louis encephalitis virus (Wagner et al. 1979). Subsequent 
studies illustrated how different types of aerial and space-borne EO data could be 
used to locate aquatic habitats of mosquito larvae and characterise wider types of 
land cover associated with abundance of adult mosquitoes and malaria transmis-
sion (Bergquist et al. 2021, Hay 2000, Hay et al. 1998).

Since these early uses of EO data to characterise vector habitats at local scales, 
there has been a rapid increase in the use of spatial and environmental data for VBD 
studies. Initiatives such as the Malaria Atlas Project use geo-referenced data and 
covariates (e.g. precipitation, temperature, vegetation) derived from planetary-level 
EO data to develop high resolution maps of global vector and VBD distributions (e.g. 
(Bhatt et al. 2013, Sinka et al. 2016, Weiss et al. 2019)). EO data is also increasingly 
incorporated into VBD early warning systems, with metrics derived from EO data 
used to inform predictions of disease outbreaks and trigger VBD control measures 
(e.g. (Lowe et al. 2013, Thomson et al. 2006)). These data are also used to plan and 
inform surveillance activities, such as mapping health facility catchment areas, 
defining survey populations or identifying high priority areas for vector monitoring 
(e.g. (Fornace et al. 2018, Franke et al. 2015, Noor et al. 2009, Stresman et al. 2014)). At 
much finer scales, very high resolution EO data has been used to monitor changes 
in land cover, mosquito breeding sites and human and wildlife disease reservoir 
distribution to understand the mechanisms driving infectious disease emergence 
(e.g. (Carrasco-Escobar et al. 2019, Fornace et al. 2014, Minakawa et al. 2005)).

However, despite these advances, only a relatively small proportion of availa-
ble EO data is actively used for VBD surveillance. There remain significant barriers 
to integrating EO data into health surveillance systems in many high VBD burden 
countries; these challenges often include limited access to equipment, computing 
infrastructure or specialised technical remote sensing expertise within disease con-
trol departments. Additionally, with the wide range of types of EO data and analysis 
methods now available, it can be challenging to identify the best data for specific 
use cases. Within this chapter, we review available EO data sources, characteristics 
and analysis methods. We then examine existing applications of EO data to study 
VBD epidemiology, present examples of how EO data can be leveraged to improve 
VBD surveillance in changing environments and discuss considerations for the use 
of EO data, highlighting the need for knowledge of local vector ecology to inform EO 
data selection and applications.

2	 Sources and characteristics of Earth observation data

EO involves the use of sensors to collect data used to measure characteristics of 
planetary surfaces from reflected or emitted radiation from a distance. Although EO 
can be conducted using aerial and ground-based platforms, spaceborne satellites 
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are by far the largest source of EO data. Since the first launch of the EO satellite 
Sputnik 1 by the former Soviet Union in 1957, over a thousand EO satellites have 
been launched (Figure 1), (Tatem et al. 2008, Union of Concerned Scientists 2021). 
These data are available through a range of public and private sources, such as 
the European Space Agency, NASA and commercial companies such as Maxar 
Technologies (https://www.maxar.com/) and Planet (https://www.planet.com/). 
Costs for these data range from freely available to thousands of dollars for specifi-
cally tasking commercial satellites to cover target areas. While most free EO data is 
available through government or intergovernmental agencies, corporate partner-
ships and outreach programmes have vastly increased access to high resolution 
EO data. For example, a partnership between Planet and Norway’s International 
Climate and Forests Initiative provides free access to high resolution satellite data 
for tropical areas for non-profit uses (https://www.planet.com/nicfi/). These data 
can be further supplemented by local EO data collection using aerial platforms such 
as drones and other aircraft (e.g. (Carrasco-Escobar et al. 2019, Fornace et al. 2014, 
Hardy et al. 2017, Wagner et al. 1979)).

The characteristics of the EO data collected are determined by the specific type 
of sensor used for data collection. Passive sensors measure light reflected by the 

Figure 1	 Earth Observation satellites launched by year (data obtained from Union of Concerned Scientists 2021)
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sun while active sensors have their own source of electromagnetic energy and 
measure the backscatter reflected from this source. While passive sensors include 
instruments such as cameras, active systems use technologies such as radar and 
lidar. These systems are characterised by radiometric resolution based on the 
sensitivity of sensors to measure these differences in reflected or emitted energy. 
The region of the electromagnetic spectrum covered and the number of bands or 
channels used to sample this region of the spectrum determines the spectral res-
olution of a system. This spectral resolution represents the degree of precision to 
which reflected energy from the Earth’s surface is being sampled. For example, low 
spectral resolution systems (e.g. many cameras carried by low-cost drones) sample 
the visible part of the spectrum in three bands: blue, green and red. In contrast, 
more sophisticated systems sample the spectrum from the visible to the near infra-
red and shortwave infrared over a number of bands (e.g. Landsat TM system with 
six bands, MODIS with 32 bands) which enables spectral detection of more com-
plex features, such as different habitat types or calculation of vegetation indices  
(Wimberly et al. 2021).

All EO data is additionally characterised by temporal resolution, the frequency 
at which data are collected, and spatial resolution, the pixel size of data collected. 
With satellite-based EO data, the temporal resolution is determined by the satel-
lite orbit or specific tasking requests determining the frequency at which a satel-
lite passes over a specific location and collects data. Temporal resolution may be 
additionally determined by the availability of usable data; critically, for optical 
satellite-based systems, cloud cover is a major limitation for obtaining usable data 
over areas within the tropics (Burke et al. 2021). These limitations have led to a 
rapid expansion of other types of platforms used to collect EO data underneath the 
clouds, such as drones (also known as unmanned aerial vehicles or UAV s). These 
technologies allow targeted collection of EO data at user defined time intervals. 
Drones additionally allow collection of data with a much higher spatial resolution 
than most satellites (e.g. <10 cm/pixel for standard drone data vs >10 m/pixel for 
most freely available satellite data). These resolutions, as well as the cost and fea-
sibility of using different platforms, impact the suitability of different types of EO 
data for VBD applications (Figure 2). Due to the difficulties in obtaining cloud-free 
satellite imagery, increasingly, studies look towards the use of radar imagery result-
ing from active satellite-based systems operate within the microwave part of the 
spectrum that is not inhibited by cloud cover. Radar imagery can provide valuable 
information for vector disease applications, such as wetland mapping, land cover 
mapping and forest cover. Some sources of radar imagery are free and are routinely 
collected (e.g. Sentinel-1 with a 12-day return period for the tropics) adding to its 
value within operational monitoring programs. But, like optical satellite imagery, 
its spatial resolution is currently limited to 10 m which may be inadequate for many 
vector disease applications.
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3	 Analysing Earth observation data

After acquiring EO data, these data are typically analysed to identify features of 
interest. For example, these may include specific land classes associated with vector 
habitats, types of water bodies where vectors breed or locations of houses compris-
ing the target population at risk. EO-derived metrics are often used as covariates in 
models to identify risk factors or predict risks of vector occurrence or disease risks 
(Weiss et al. 2015). On more operational levels, EO data may inform planning of 

Figure 2	 Example of sources, spatial resolutions and spectral capacity of Earth Observation data in April 2021 in 
Sabah, Malaysia (A) PlanetScope Tropical Visual Archive; (B) Landsat 8 (Band 1 = Blue, Band 2 = near 
infrared (NIR), Band 3 = short wave infrared (SWIR); (C) Elevation (SRTM 1 arc-second); (D) Classified 
forest cover (0, 1) (Hansen et al. 2013); (E) Sentinal-1 radar image (Band 1 = VV, Band 2 = VH, Band 3 = VV/VH 
composite); (F) Normalised Difference Vegetation Index (NVDI), derived from Landsat 8; (G) Land cover 
thematic map (WorldCover)
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VBD surveillance and control measures through identification of high-risk areas or 
target populations.

The intended end use of the data, the feature(s) of interest and available resources 
determine the analysis approach used for EO data. Prior to analysis, a number of 
pre-processing steps are typically conducted to improve the data quality before 
analysis. This can include radiometric calibration to transform the radiance meas-
ured by the sensor to reflectance, the proportion of solar radiation reflected back to 
the sensor, to adjust for atmospheric effects. Additional pre-processing steps may 
include masking clouds or unreliable values (i.e. due to a fault in the sensor) and 
excluding these from further analysis. Orthorectification methods may also be used 
to adjust for distortions from the terrain and satellite or platform motion.

After pre-processing steps have been completed, the EO data can be analysed 
using a range of different methods. One of the most frequently used methods is the 
calculation of spectral indices as a ratio between two or more bands in optical data. 
Commonly used indices include the normalised vegetation index (NDVI), enhanced 
vegetation index (EVI) and soil adjusted vegetation index (SAVI), measures of green-
ness used to assess vegetation (Weiss et al. 2015, Wimberly et al. 2021). Different band 
combinations may also be used to create natural colour and false colour composites 
to visualise EO imagery and aid manual identification of key features of interest.

EO data are also frequently classified into thematic maps to identify key fea-
tures of interest, such as water bodies or land cover types. These classification 
approaches can use a wide range of methods spanning simple visual identification 
to advanced machine learning and artificial intelligence methods. Visualising and 
manually digitising EO data remains one of the simplest, and often the most accu-
rate and quickest, methods of identifying features in complex images. This requires 
informed users to detect and label features or classes of interest. Although this 
can be labour-intensive, increasingly citizen science approaches have been used 
to engage volunteers in labelling large numbers of images using online platforms 
such as Zooniverse (Simpson et al. 2014). Additionally, digitally assisted technologi-
cal approaches, such as region growing, allow users to identify features and rapidly 
label similar surrounding pixels more efficiently (Hardy et al. 2022a).

Alternatively, model-based methods can be used to automatically identify fea-
tures in EO data. These model-based methods can be split into two categories: 
supervised learning, in which labelled data are used to fit a model of predetermined 
features of interest, and unsupervised learning, which analyses unlabelled datasets 
to group features into different categories (Mather and Koch 2010). Supervised 
learning approaches require labelled training data of the specific classes to be iden-
tified; these can include ground-truthed data (such as from field surveys of vector 
breeding sites) or labelled examples of features of interest. While unsupervised 
approaches do not require training data, results may be more challenging to inter-
pret and require an operator to match an unsupervised class to an information class 
of interest.
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Traditionally, pixel-based classification is one of the most commonly utilised 
methods of image classification. This method assigns individual pixels into differ-
ent class types, typically on the basis of spectral information available for individual 
pixels. In contrast, object-oriented classification methods classify groups of similar 
pixels using both pixel-level values and the spatial relationships of pixels to each 
other (Liu and Fan 2010). Images are typically segmented into groups of similar 
pixels which are subsequently assigned to specific objects or classes. More recently, 
deep learning approaches, such as convolutional neural networks (CNN), have revo-
lutionised image analysis. These methods allow efficient analysis of image textures, 
patterns and spectral characteristics by using artificial intelligence approaches to 
identify features in complex environments (Cheng et al. 2020). Although computa-
tionally intensive, more efficient deep-learning architecture and cloud-based com-
puting are increasingly accessible and applied for ecological analysis of EO data, e.g. 
(Bravo et al. 2021, Gray et al. 2019, Kattenborn et al. 2019). While these approaches 
can capture complex patterns in the data to improve classification output, these 
typically require very large training datasets.

4	 Existing use of Earth observation-derived data for vector-borne disease 
surveillance: a scoping review

These different data sources and analysis methods can be used to generate a wide 
range of environmental covariates to integrate into VBD epidemiological studies. 
To evaluate the most commonly used EO-derived metrics and data sources, a brief 
scoping review was conducted using Medline (through PubMed) and Scopus since 
2012. We sought studies which used satellite data to describe, analyse or forecast 
human vector-borne diseases. We restricted the search strategy on the last 10 years 
but did not restrict the studies to population ages or countries.

Based on identification of relevant VBD, the following search strategy was used: 
(‘Chikungunya’ OR ‘Lyme Disease’ OR ‘Plague’ OR ‘Relapsing Fever’ OR ‘Rocky 
Mountain Spotted Fever’ OR ‘Tularemia’ OR ‘Typhus’ OR ‘West Nile Virus’ OR 
‘Zika’ OR ‘trypanosomiasis’ OR ‘schistosomiasis’ OR ‘leishmaniasis’ OR ‘dengue’ OR 
‘malaria’ OR ‘vector-borne disease’ OR ‘mosquito-borne disease’ OR ‘WNV ’ OR ‘chi-
kungunya’ OR ‘filariasis’ OR ‘yellow fever’ OR ‘Japanese encephalitis’ OR ‘onchocer-
ciasis’ OR ‘tungiasis’ OR ‘crimean-congo haemorrhagic fever’ OR ‘lyme disease’ OR 
‘spotted fever’ OR ‘Q fever’ OR ‘chagas’) AND (‘Earth observation’ OR ‘Remote sens-
ing’ OR ‘Satellite data’). We used EndNote20 and Rayyan to remove duplicates from 
the search results. Data on the disease focus, EO data source and metrics used were 
extracted by four reviewers; discrepancies were solved by consensus. A qualitative 
synthesis was conducted whereby the characteristics of the variables which were 
used by the satellites.
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Within this review, there was an initial total of 963 studies identified; out of 
these, 714 studies were excluded due to duplicates, out of scope or not specifying 
the vector-borne disease they were studying. From the 249 studies which were 
included, we extracted the name of the EO source data, type of data used, and the 
vector-borne disease which were studied. Figure 3 summarizes the number of EO 
data sources used for each vector-borne disease´s studies. The most popular EO data 
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sources are the Moderate-Resolution Imaging Spectroradiometer (MODIS) and the 
Landsat satellite, possibly due to the open data repositories and long-term existence, 
respectively. In terms of mosquito-borne diseases, the use of these EO data sources 
is predominantly reported for malaria, dengue, leishmaniasis, and West Nile virus. 
However, a substantial number of studies using MODIS, Landsat, and the Shuttle 
Radar Topography Mission (SRTM) sources assessed infectious diseases transmitted 
by other arthropod and non-arthropod vectors such as freshwater snails (schistoso-
miasis), fleas (bubonic plague), triatomine bugs, and flies (trypanosomiasis).

The distribution and epidemiology of all vectors transmitting these diseases 
depend on their interactions with the environment, with varying characteristics 
important for the ecology of different vectors. Table 1 describes the most common 
EO-derived variables used for each vector-borne disease. Normalized Difference 
Vegetation Index (NDVI), precipitation and land surface temperature are the most 
common types of data used to study the distribution of these diseases, especially 
for mosquito-borne diseases. In contrast, other variables are more frequently used 
for non-mosquito-borne diseases; for example, hydrological variables are most 
frequently reported for studies on schistosomiasis due to the habitats of the snail 
vector. It is important to take into consideration that the use of a specific type of 
data will depend on the type of vector, reservoirs, transmission mechanism, and the 
distribution of each disease.

Table 1	 Earth observation-derived variables used per vector-borne disease

Variables used Malaria Dengue Schistosomiasis Leishmaniasis West Nile 
Virus

Chikungunya Rift Valley 
Fever

Zika Bubonic 
plague

Lyme 
disease

Trypano-
somiasis

Filariasis Yellow 
Fever

Scrub 
typhus

Japanese 
Encephalitis

Total

Normalized 
difference 
vegetation index

61 28 23 17 10 6 5 4 2 2 3 1 1 163

Precipitation 54 35 7 7 9 6 3 6 2 1 1 1 1 0 0 133
Land surface 
temperature

53 26 13 7 9 4 3 1 2 118

Land cover 32 28 6 8 4 2 2 1 3 1 1 88
Altitude 42 7 11 4 4 1 3 1 2 0 0 1 1 1 0 78
Temperature 22 21 5 4 4 3 1 4 2 2 1 1 1 71
Soil-related 
information

21 4 7 5 2 2 6 2 2 1 1 1 54

Water-related 
information

19 6 13 3 2 1 44

Total 304 155 85 55 44 22 20 20 10 9 9 6 6 3 1 749
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5	 Applications of Earth observation-derived data for VBD surveillance 
and control

These studies use EO-derived data for a wide range of applications, from under-
standing the basic epidemiology and distributions of the vectors to designing early 
warning systems and surveillance approaches. EO data can be used to describe hab-
itats of vectors or hosts, identify larval breeding sites or target control measures. 
Within this section, we describe case studies of specific applications of EO data and 
integration into VBD surveillance and control measures.

5.1	 Spatial distribution of vector species
One of the primary uses of EO-derived data in VBD epidemiology is the develop-
ment of maps of distribution of vector species. This spatial distribution of par-
ticular vector species has often been used as a proxy for risk of disease exposure 
(Kraemer et al. 2019, Messina et al. 2019, Ryan et al. 2019), contributing to strategic 
planning and informed management decisions. Ecological niche models (ENM s, 
also known as Species Distribution Models), which determine environmental 
conditions that meet a species’ ecological requirements and predict the relative 
suitability of habitat have been employed in spatial epidemiology to determine 
environmental conditions associated with disease occurrence (Peterson 2014, 

Table 1	 Earth observation-derived variables used per vector-borne disease

Variables used Malaria Dengue Schistosomiasis Leishmaniasis West Nile 
Virus

Chikungunya Rift Valley 
Fever

Zika Bubonic 
plague

Lyme 
disease

Trypano-
somiasis

Filariasis Yellow 
Fever

Scrub 
typhus

Japanese 
Encephalitis

Total

Normalized 
difference 
vegetation index

61 28 23 17 10 6 5 4 2 2 3 1 1 163

Precipitation 54 35 7 7 9 6 3 6 2 1 1 1 1 0 0 133
Land surface 
temperature

53 26 13 7 9 4 3 1 2 118

Land cover 32 28 6 8 4 2 2 1 3 1 1 88
Altitude 42 7 11 4 4 1 3 1 2 0 0 1 1 1 0 78
Temperature 22 21 5 4 4 3 1 4 2 2 1 1 1 71
Soil-related 
information

21 4 7 5 2 2 6 2 2 1 1 1 54

Water-related 
information

19 6 13 3 2 1 44

Total 304 155 85 55 44 22 20 20 10 9 9 6 6 3 1 749
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Phillips et al. 2006). These models can be also used to predict the range of vectors, 
usually merging ground-based observations (e.g. from surveillance records) and 
potential environmental predictors. For example, in Ecuador, the distribution of 
Ae. aegypti was projected to the year 2050 under a variety of models of climate 
change, predicting shifts in the mosquito range and reinforcing surveillance on 
human populations that may be at risk of exposure to diseases vectored by Aedes 
(Lippi et al. 2019). Species distribution models have been also used to optimise a 
tsetse fly eradication campaign in Senegal, allowing more efficient control opera-
tions for the deployment of insecticide-treated targets and release of sterile males 
in the fight against human and animal trypanosomiasis (Dicko et al. 2014). Pareyn 
et al. (2021) identified that suitable habitats for Phlebotomus pedifer, vector of cuta-
neous leishmaniasis in Ethiopia, are more extensive than thought and that the 
main environmental drivers of their distribution were mean annual temperature, 
precipitation seasonality and Enhanced Vegetation Index, among others (Pareyn 
et al. 2020). In seven predominant Culex mosquito species in the Americas, temper-
ature, humidity, urban/built-up land class, and cultivated and managed vegetation 
were important environmental drivers structuring the spatial distribution of these 
species (Gorris et al. 2021).

Figure 4	 Example drone imagery in VBD surveillance, detecting (A) goats in Kenya; (B) human 
settlements in Zanzibar; (C) vector breeding sites in Peru; (D) landscape modification 
in Malaysia
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C

0 0 50 100 m25 50 m
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On finer spatial scales, monitoring changes in landscape can be used to iden-
tify changes to vector habitats and design targeted entomological surveillance. A 
study in Sabah, Malaysia and Palawan in the Philippines demonstrated the use of 
UAV s to map environmental risk factors for transmission of the zoonotic malaria 
Plasmodium knowlesi (Fornace et al. 2014). Due to the difficulty obtained cloud-free 
satellite data, a UAV was used to provide data with higher spatial and temporal 
resolution. Consolidated and adaptive mapping of an area over a set time period 
(December 2013 to May 2014) also allows for repeat sampling of areas seen to be 
undergoing rapid land use change, which generates datasets of land cover that are 
accurate for the desired timeframes. This ability to adapt and map study areas in 
real-time and produce maps with high temporal and spatial granularity is an essen-
tial tool for understanding the dynamic interactions between environmental fac-
tors, vector ecology and local transmission patterns (Figure 4). Resulting maps can 
then be used to systematically characterise land use types over the study area and 
create accurate spatial sampling frames for entomological surveys in areas under-
going rapid deforestation (Byrne et al. 2021a).

5.2	 Surveillance of invasive mosquito species
The use of EO might be particularly useful to identify pathways for vector introduc-
tion from abroad and to support strong surveillance systems and effective interven-
tions (Caminade et al. 2012). Anopheles stephensi, an endemic malaria vector in Asia, 
has been detected in Africa, particularly in the Horn of Africa – Djibouti (Faulde 
et al. 2014), Ethiopia (Carter et al. 2018), Somalia (World Health Organisation 2019) – 
and now spread to several regions in the continent (Ahmed et al. 2021), raising con-
cerns about the impact on malaria transmission. This mosquito species thrives in 
clean water containers, abundant in urban landscapes. Because most malaria vector 
control strategies in Africa target rural environments, the prospect of this malaria 
vector in urban areas is of great concern for the malaria control and elimination 
programs (World Health Organisation 2019). Due to the confirmed vector compe-
tence in An. stephensi Ethiopian and Djibutian populations (Seyfarth et al. 2019), its 
association to malaria outbreaks and increased reported cases in Djibuti (Faulde 
et al. 2014), extended mosquito presence in the dry season (Seyfarth et al. 2019) 
and reduced susceptibility to multiple insecticides classes (Yared et al. 2020), WHO 
considers the spread of An. stephensi a major potential threat to malaria control 
and elimination in Africa and Southern Asia (World Health Organisation 2019). 
As a result, several measures have been recommended to tackle its invasion and 
spread. One of the core interventions is to conduct active surveillance for An. ste-
phensi aquatic stages in urban and peri-urban areas – in addition to routine sur-
veillance in rural environments. EO data could be extremely advantageous for 
mapping and monitoring typical breeding sites – water storage containers outside 
the home, rainwater collections, roof tops, wells or large human-made cisterns – to 
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identify high risk urban areas in which An. stephensi will have the best conditions  
to establish.

The potential for An. stephensi invasion across sub-Saharan Africa has been 
predicted combining occurrence data from 1985–2016 with satellite imagery data 
sets (Sinka et al. 2020). The habitat suitability modelling study, which includes sev-
eral environmental variables extracted from MODIS (annual mean temperature, 
Index and Tasselled Cap Wetness, Enhanced Vegetation and land cover classifica-
tion) ((Deblauwe et al. 2016), CHIRPS (seasonal precipitation)), GMIA (Irrigation – 
Global Map of irrigated areas FAO, United Nations, and International Geosphere 
and Biosphere Programme (GBP) (human population density and Crop mosaic), 
projected that the invasion of this mosquito into African urban environments could 
place an additional 126 million people at malaria risk (Sinka et al. 2020). EO data 
is essential to design effective surveillance systems to monitor areas suitable for 
An. stephensi.

5.3	 Detection of surface-water bodies for effective mosquito larvae control
For vectors with an aquatic life stage, systematic identification of dynamic hydro-
logical systems can be valuable in identifying breeding sites and inform larval 
source management. While both satellite and aerial-based EO can be used to iden-
tify breeding sites, an increasing number of studies are using drones due to the high 
spatial resolution, ability to detect breeding sites within a specified time frame and 
ownership of these systems by disease control organisations.

In Unguja, Zanzibar Archipelago, a Spatial Intelligence System (SIS) was designed 
to identify all surface water bodies within malaria transmission hotspots over a 
wide area, defined using satellite radar and optical EO imagery (Hardy et al. 2017). 
In this study, off-the-shelf DJI Phantom 4 drones, fitted with a standard 4k RGB 
(Red-Green-Blue) camera, were used to collect detailed imagery of potential breed-
ing sites at a high spatial resolution (0.1 m/pixel). Temporal resolution was deter-
mined by the hydrological conditions of the study area with new drone surveys 
being commissions where rainfall events led to a significant change in surface water 
extent. Surface water were very varied, including large inundated rice paddies, nat-
ural swamps with aquatic vegetation, and small (<2 m in diameter) ponding of 
water in tyre ruts and paths where soil infiltration rates are low. This complex array 
of water bodies was mapped using manual digitising assisted using a freely availa-
ble region growing tool (Hardy et al. 2022a). Subsequent information on water body 
location and extent was uploaded to a smartphone app (Zzapp Malaria: https:// 
www.zzappmalaria.com/) which was used by field operatives to locate and system-
atically treat potential Anopheles sp. breeding sites.

In Cote d’Ivoire, a technical workflow was established to integrate satellite data 
and drone surveys with mosquito larval sampling to identify large, semi-permanent 
water bodies that provide potential breeding sites for malaria vector Anopheles 
funestus (Byrne et al. 2021b). Using Sentinel-2 high-resolution multispectral satellite 
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imagery, the study area was stratified into four environmental strata according to 
spectral profiles and derived vegetation indices from satellite data and sampled 
proportionally to identify semi-permanent water bodies across variable rural land-
scapes. Red-Green-Blue (RGB) mapping of areas surrounding surface water bodies 
was conducted using an off-the-shelf DJI Phantom 4 drone. To achieve the required 
spatial resolution for fine-scale mapping, drones were flown at 150 m altitude, gen-
erating a high resolution of 0.04 m/pixel. With the aim to develop a systematic 
approach and inform deep-learning approaches to EO data classification, this illus-
trates drone surveys conducted in a spatially representative sampling frame devel-
oped in conjunction with freely available satellite datasets.

In Maynas Province, Peru, the use of drone-based imagery has also been demon-
strated in identification of Nyssorhynchus darlingi aquatic breeding sites in malaria 
hotspots (Carrasco-Escobar et al. 2019). Here, local vector ecology, the hydrological 
context and research aims determine a different set of requirements. To identify 
the most productive water bodies in a riverine environment, the study prioritised 
high-resolution images over a small study area (~1 km) and multispectral imagery. 
Conventional RGB imagery was captured using a DJI Phantom 4 Pro quadcopter 
with a DJI 4K RGB flown at an altitude of 100 m to give a spatial resolution of 0.1 m/
pixel. In addition, multispectral imagery was collected using a 3DR Solo quadcop-
ter, fitted with a Parrot Sequoia sensor composed of single-band cameras (Green, 
Red, Red Edge and Near Infrared – NIR). The 3DR Solo was flown at an altitude of 
50 m, which gives a ground sampling distance of 0.02 m/pixel. This demonstrates 
the flexibility and richness of data available with tailored use of UAV technology 
and specific sensors. The study design itself provided proof-of-concept for using 
high-resolution imagery from UAV to differentiate the spectral profiles of produc-
tive water bodies where Ny. darlingi is likely to breed in Amazonian Peru, an inno-
vation which could be applied to integrating larval source management in malaria 
elimination strategies.

5.4	 Early warning systems and automated mosquito surveillance using 
Earth observation

EO data is also widely used to develop predictive models enabling deployment of 
targeted control measures. In the last decade, the emergence and re-emergence 
of VBD reinforced the need for an effective early warning, surveillance and con-
trol of vectors and preparedness (Weaver 2013). Due to arthropod vectors being 
especially sensitive to changes in climate, forecasting systems driven by EO data 
have been useful for predicting disease risk and to guide epidemiological surveil-
lance and decision-making process (Thomson et al. 2006, Thomson et al. 2008). 
The publication of guidelines of Malaria Early Warning Systems for Africa by the 
WHO, offered a valuable framework for integrated approach response strategies 
and epidemic preparedness (DaSilva et al. 2004, Thomson and Connor 2001, World 
Health Organisation 2001). Social, environmental and epidemiological factors are 
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involved in malaria epidemics prediction and together with weather monitoring 
and seasonal climate forecasts, can be incorporated in malaria early warning sys-
tems (Thomson et al. 2006, World Health Organisation 2001). Dengue ecology and 
its strong relationship with climate variation is another example of how risk pre-
diction studies and modelling approaches could help in the forecast of outbreaks 
(Colón-González et al. 2018, Colon-Gonzalez et al. 2021, Lauer et al. 2018, Lowe 
et al. 2016, Petrova et al. 2019) (see Finch et al. Chapter 12 for detailed environmental 
EO predictors and EWS in VBD).

Other innovative approaches for VBD surveillance using EO, automated sen-
sors and algorithms/machine learning are still underway. For instance, VECTRACK 
(https://vectrack.avia-gis.com/) is an Earth Observation service for preventive 
control of insect disease vectors. This project seeks to generate an automated sur-
veillance system combining an Earth Observation (EO) Sentinel service and sat-
ellite data with a network of ground optoelectronic sensors and traps to enable 
fully remote and automated counting and classification of the target mosquitoes 
(McEntaggart et al. 2020). This combined data will then feed into spatial models, 
and along with data on meteorological and environmental conditions, this can 
be used to generate large-scale risk maps. The use of this approach might help to 
significantly reduce costs and time of monitoring and surveillance and allows for 
more rapid intervention; however, this has yet to be fully evaluated.

5.5	 Use of Earth observation data to map animal reservoirs and human 
populations at risk

The use of EO data in ecological or conservation studies is already well established; 
for example, in aerial surveys of large wild mammals over sparse areas (Koh and 
Wich 2012). However, in the study of vector-borne diseases with sylvatic life cycles 
in wildlife reservoirs, ecology intersects with public health and EO data of human 
and animal hosts can also provide critical information on transmission cycles and 
potential distribution of disease.

Yellow Fever (YF) is a zoonotic disease endemic in neotropical forests, transmit-
ted by Haemagogus spp. mosquito vectors and with reservoirs of Yellow Fever Virus 
(YFV) circulating in non-human primate hosts. In Brazil, satellite-derived EO data 
has been used to estimate the distribution of the primate host species Alouatta 
caraya and A. guariba clamitans, which is then built into ecological niche mod-
els using maximum entropy modelling (Maxent) to identify geographic areas at 
risk of sylvatic outbreaks and human populations at risk (de Almeida et al. 2019). 
Explanatory variables include topography derived from the SRTM (Jarvis et al. 2022) 
and climatic variables derived from WorldClim (e.g. rainfall, temperature, solar 
radiation, water vapor pressure, wind speed), which uses meteorological station 
data validated by MODIS-derived satellite data (Fick and Hijmans 2017) at 1 km 
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resolution. Here, use of satellite EO data to predict the distribution of reservoir 
species provides a valuable tool in building spatial risk models to inform public 
health interventions.

EO data has also be used to provide detailed estimations of human populations 
for VBD surveillance and management (Tatem et al. 2012). Sub-national metrics for 
population density are vital to mitigate VBD, with population denominator data 
required to define infection rates, allocate resources and measure the impact of 
interventions. However, accurate population data can be lacking in resource-poor 
settings. In addition, non-uniform distributions of people within administrative 
boundaries can lead to miscalculations. Recent computational approaches have 
been used to map population density as a continuous surface, using available survey/ 
census data and drawing on high-resolution satellite-derived remote sensing var-
iables (e.g. topography, elevation, mean reflectance in specific bands, vegetation 
indices) to create a gridded population distribution (Qiu et al. 2022). Advances in 
high-quality and high-resolution (<10 m) satellite imagery has further improved 
global estimates, allowing human-built structures to be identified, counted and 
incorporated into models to generate spatially disaggregated estimates of human 
population distribution at resolutions of 90 m (Lloyd et al. 2017, Wardrop et al. 2018). 
In geographic areas that are at risk of VBD transmission but lack the infrastructure for 
updated or fine-scale demographic information, WorldPop population distribution 
surfaces can be vital in ensuring accurate risk mapping and targeted interventions.

At more localised spatial scales, UAV s can be used to map animal reservoirs of 
VBD s. Rift Valley Fever (RVF) is a viral zoonotic disease of wild ungulates in sub- 
Saharan Africa, that can be transmitted to humans through infective fluids or 
through bites from mosquito vectors. In Kenya, the commercially available senseFly 
eBee drone was used to identify the density and distribution of livestock and wild-
life hosts of RVF (https://www.zooniverse.org/projects/rfv-drones/rift-valley-fever 
-drones). The UAV was fitted with the senseFly S.O.D.A sensor, a drone-specific pho-
togrammetry camera that can capture sharp images and 3D digital surface models. 
From this, orthomosaic images were produced with a resolution of 0.03 m/pixel. 
This study required high resolution imagery across large study areas, with a view 
to identifying goats, camels and cattle and managing the disease reservoir. Imagery 
of this kind can be used to train machine learning algorithms to track and iden-
tify key mammal species in sparse landscapes that are integral to disease transmis-
sion cycles.

In Kinabatangan, Malaysia, a study aimed to identify and count the roosting sites 
of non-human primates (Jumail et al. 2021). Non-human primates are a reservoir for 
Plasmodium knowlesi, the aetiological agent of zoonotic malaria across Southeast 
Asia and most notably in East Malaysia. Unlike the broad swathes of savannah 
imaged in the previous example, this study looked at fine-scale 1 km transects of 
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riverine forest. To obtain the required data, teams used a custom built hexacopter 
drone fitted with a FLiR Thermal Camera. Thermal images could then be used for 
visual identification of monkeys and counting of roosts across the transects. This is 
an example of the adaptability and user customisation possible with UAV technol-
ogy, with equipment and sensors selected and modified to meet the requirements 
of both the ecological context and research aims.

6	 Considerations for use of Earth observation data for VBD surveillance

Although these examples highlight how EO data can contribute to VBD surveil-
lance, EO data remains underutilised in many VBD-endemic countries. While many 
sources of EO data are now freely available, one of the primary barriers to uptake 
remains technical expertise on remote sensing within disease control departments. 
This can be further challenged by the wide array of data sources and analysis plat-
forms currently available. Decisions on EO data sources and analysis methods 
should be guided by local knowledge of vector ecology and the control strategies to 
be deployed. Factors to be considered include the following.

6.1	 Area of interest
The geographical location and extent of the target area of interest will have deter-
mine the applicability of different data types. For example, fine-scale mapping may 
use targeted drone surveys while more extensive risk-mapping at larger spatial 
scales requires satellite-based EO data. Additionally, specific countries or regions 
may have targeted satellite or aerial EO data collection, such as through satellites 
run through national mapping services. The location also determines the feasibility 
of using different data sources; optical satellite data coverage may be limited in 
tropical forested areas with high cloud cover and drones may not be feasible in 
cities or areas with military activities.

6.2	 Mapping objectives
The choice of EO data and analysis methods are also highly dependent on the 
objective of the mapping exercise and the corresponding features to be detected. 
For many risk mapping exercises, this may consist of a list of potential environmen-
tal covariates associated with a particular vector or VBD distribution. In other cases, 
the objective may be to detect specific vector breeding sites to deploy larval source 
control measures or to locate houses to plan a survey. In all cases, the specific fea-
tures to be detected, and the characteristics of these features, should be identified. 
This may also consider specific types of EO data frequently used to detect these 
features, e.g. LIDAR data to measure canopy structure or optical data including NIR 
to calculate NDVI as a measure of greenness.
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6.3	 Spatial and temporal resolution
The spatial and temporal resolutions of these features should inform the selection 
of EO data with corresponding resolutions. For example, An. funestus typically 
breeds in large, semi-permanent water bodies which can be detected by coarser 
satellite-based EO data collected at irregular intervals. Other studies aiming to map 
the distribution of short-lived temporary water bodies, such as the breeding sites 
for An. arabiensis, or movements of disease hosts would be required to identify EO 
data with higher temporal resolutions to capture these dynamic features. Similar 
factors should be considered when mapping changing environments such as 
actively deforested areas. This should identify the temporal and spatial resolutions 
needed to capture these changes. Conversely, much coarser data may be required 
for large-scale mapping to capture broad environmental trends. Studies should 
consider the minimum resolutions of EO data required and trade-offs between 
computational requirements and higher resolution data.

6.4	 Cost and logistics
Despite many sources of EO data being freely available, all mapping exercises 
require resources, such as personnel time, expertise, computing infrastructure or 
equipment purchase. These costs may increase when specialised equipment or 
data is required. For example, this may include the purchase of drones and sen-
sors or tasking commercial satellites to cover specific areas. For studies requiring 
field activities, such as drone mapping or collection of ground-truthing data, these 
will require resources to support field staff, local transport and other consumables. 
Additionally, these studies typically require advanced permissions to collect sam-
ples, personnel data or to conduct drone mapping. This will often require permis-
sions from Civil Aviation Authorities or other mapping agencies as well as local 
community acceptance and consent (Hardy et al. 2022b).

6.5	 Availability of training data
One of the main determinants of analysis methods to be used is the availability of 
training data used to fit supervised models (such as machine learning and Artificial 
Intelligence approaches). The types and characteristics of training data needed are 
highly dependent on the target features to be identified. For example, algorithms 
designed to detect breeding sites of specific vector species are largely dependent 
on data from ground-based entomological surveys. Studies aiming to identify wider 
habitat types (e.g. forests or large water bodies) may be able to generate training 
data remotely by labeling high resolution imagery using GIS or specialised software 
tools. For specific applications, additional labelled training datasets may be available 
through online repositories (e.g. labelled agricultural data through Radiant Earth, 
https://www.radiant.earth/). The amount of training data required is dependent 
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on the complexity of the feature to be identified as well as the type of algorithm 
used and may be a limiting factor in choosing specific algorithm types. However, 
there are example studies where training data has been generated automatically 
for machine learning models applied to satellite EO data providing an end-to-end 
automated mapping system, although such approaches have not yet been applied 
to drone-EO data (Hardy et al. 2019).

6.6	 Technical expertise and computing infrastructure
Decisions on the types of EO data and analysis methods should also consider the 
availability of technical expertise needed to process EO data and develop algo-
rithms. This should also assess how the data will be used, the time frames required 
and the primary end user. For example, if local health departments need to use 
information from drone surveys immediately after flights are conducted, the most 
feasible approaches may be manually digitising images in field settings offline. In 
other cases where mapping is repeatedly conducted over wide areas, it may be more 
feasible and cost-effective to develop deep-learning algorithms to automatically 
identify target features. Specific governments agencies or research programmes 
may additionally have access to dedicated servers or infrastructure to support 
repeated data analysis. In contrast, other smaller research projects or disease con-
trol agencies may need to rely on local infrastructure or cloud-based computing. 
The level of technical expertise available should be considered when planning any 
mapping activities and may impact the feasibility of different approaches.

7	 Conclusions

Most VBD are governed by geographical components and decisions made in terms 
of controlling these diseases are often made a large (regional or national) scales. 
As such, EO has, and will continue to play a vital role in tackling VBD s. The rapid 
expansion of EO data and analysis methods offers new opportunities for VBD sur-
veillance, from tracking habitats of invasive vector species to developing early 
warning systems or planning vector control activities. Rapidly changing environ-
mental conditions increase the need for these methods and data sources to charac-
terise changing VBD epidemiology. Within this chapter, we have given an overview 
of EO data sources and analysis methods as well as example applications. We have 
additionally outlined key considerations for the integration of EO data into VBD 
surveillance and priorities for determining the feasibility of different data sources 
and analysis strategies. While these technologies have the potential to transform 
VBD surveillance, EO data applications need to be designed to be appropriate for 
specific contexts and ecological settings.
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