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Introduction: Thrombolysis treatment for acute ischaemic stroke can lead to
better outcomes if administered early enough. However, contraindications exist
which put the patient at greater risk of a bleed (e.g. recent major surgery,
anticoagulant medication). Therefore, clinicians must check a patient’s past
medical history before proceeding with treatment. In this work we present a
machine learning approach for accurate automatic detection of this information
in unstructured text documents such as discharge letters or referral letters, to
support the clinician in making a decision about whether to administer
thrombolysis.
Methods: We consulted local and national guidelines for thrombolysis eligibility,
identifying 86 entities which are relevant to the thrombolysis decision. A total of
8,067 documents from 2,912 patients were manually annotated with these
entities by medical students and clinicians. Using this data, we trained and
validated several transformer-based named entity recognition (NER) models,
focusing on transformer models which have been pre-trained on a biomedical
corpus as these have shown most promise in the biomedical NER literature.
Results: Our best model was a PubMedBERT-based approach, which obtained a
lenient micro/macro F1 score of 0.829/0.723. Ensembling 5 variants of this
model gave a significant boost to precision, obtaining micro/macro F1 of 0.846/
0.734 which approaches the human annotator performance of 0.847/0.839. We
further propose numeric definitions for the concepts of name regularity
(similarity of all spans which refer to an entity) and context regularity (similarity
of all context surrounding mentions of an entity), using these to analyse the
types of errors made by the system and finding that the name regularity of an
entity is a stronger predictor of model performance than raw training set
frequency.
Discussion: Overall, this work shows the potential of machine learning to provide
clinical decision support (CDS) for the time-critical decision of thrombolysis
administration in ischaemic stroke by quickly surfacing relevant information,
leading to prompt treatment and hence to better patient outcomes.

KEYWORDS

clinical decision support (CDS), acute stroke, thrombolysis, machine learning (ML), named
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TABLE 1 The eligibility checklist for thrombolysis administration in use at
Queen Elizabeth University Hospital, Glasgow, UK. This illustrates the
scale of the criteria that must be satisfied and the information retrieval
task required prior to administering thrombolysis.

The following must be Yes:
Does the patient have symptoms of acute stroke? Yes

Is there a measurable deficit on the NIH scale? Yes

Was the patient previously independent? Yes

Is there a clear time of onset within the last 4 ½ hours? Yes

Has a CT scan since stroke onset excluded haemorrhage? Yes

Has a senior member of the stroke team reviewed the CT scan? Yes

The following must be No:
Has the patient suffered head trauma or stroke within the last 3 months? No

Has the patient undergone major surgery within the past 2 weeks? No

Is there a past history of intracranial haemorrhage? No

Is the history suggestive of SAH? No

Is the systolic BP >185 mmHg (after treatment if necessary)? No

Is the diastolic BP >110 mmHg (after treatment if necessary)? No

Has there been any GI or urinary tract haemorrhage within the last 21 days? No

Has there been an arterial puncture at a non compressible site within the last 7
days?

No

Was there a seizure at the time of symptom onset? No

Is the patient on full dose anticoagulant treatment (e.g. warfarin with INR
>1.5, therapeutic dose heparin/LMWH or oral thrombin inhibitor such as
dabigatran, rivoroxaban)

No

If available, the answer should be No:
Is the PT >15 sec (for those not on anticoagulants)? No

Is the platelet count <100,000 No

Is the plasma glucose <2.7 or >22.2 mmol/l No

Cutforth et al. 10.3389/fdgth.2023.1186516
1. Introduction

An acute stroke is a clinical emergency that requires prompt

assessment and management. Around 85% of strokes are

ischaemic (1), as opposed to haemorrhagic, requiring timely

treatment by thrombolysis (intravenous clot busting

medication) and/or thrombectomy (surgical mechanical clot

retrieval). Not all ischaemic stroke patients are eligible for

thrombolysis or thrombectomy; the decision is based upon

historical and current patient factors, alongside imaging

features. The remaining 15% of haemorrhagic strokes may

require neurosurgical intervention but must not be treated

with thrombolysis. We focus in this paper on thrombolysis;

the faster the “door-to-needle time” with thrombolysis

treatment, the better the chance of a good functional outcome

for the patient (2). Current guidelines from the National

Institute for Health and Care Excellence (NICE) state that

treatment with a thrombolytic agent should be administered

within 4.5 h post symptom-onset (3).

There are well-defined indications and, importantly,

contraindications to thrombolysis that must be checked for all

patients. Indications relate to the potential benefit of

treatment, for instance, the pre- and post-stroke levels of

independence. Contraindications to thrombolysis relate to the

risk of bleeding, for instance, recent major surgery,

anticoagulant medication, or a history of intracranial

haemorrhage. Therefore, inappropriate treatment with

thrombolysis can lead to catastrophic patient outcomes. The

task of obtaining and reviewing all the relevant clinical

information is complex and time-critical, leading to risks for

both eligible and ineligible thrombolysis candidates, namely

delayed treatment and missed contraindications respectively.

Information about indications and contraindications for

thrombolysis comes from a variety of sources. Much of the

information comes from the patient evaluation at the point of

care, e.g. the patient history for the acute stroke event and the

physical examination findings, as well as any immediate imaging

results. However, a significant proportion of the required clinical

information relates to the past medical history (e.g. recent major

surgery, anticoagulant medication). The patient’s (electronic)

health record can therefore be an important source of

information, containing rich descriptions of past medical history

in unstructured text documents such as discharge letters or

referral letters. Automated surfacing of relevant information from

the patient record could support the clinician in reviewing this

information more quickly.

Named entity recognition (NER) is a well-studied information

extraction task from the field of natural language processing (NLP).

The task is to extract spans, i.e. subsections of a text, which refer to

particular named entities. For example, in the general domain the

entity set could be {person, location, organisation}. In our case, the

list of relevant entities was compiled with reference to two sets of

thrombolysis eligibility criteria: national guidelines from NICE

(3) and a local checklist from Queen Elizabeth University
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Hospital (Table 1). This yielded a total of 86 entities, ranging

from subarachnoid-haemorrhage to visual-disturbance. We

classify the entities according to the following five categories:

Diagnosis, Symptom, Social History, Medication, Treatment.

In this work we measure and analyse the efficacy of transformer-

based methods for NER in clinical text, training and validating on a

large-scale dataset of unstructured clinical documents for the real-

world problem of timely thrombolysis treatment in acute stroke

patients. Data from almost 3,000 stroke patients was collected and

annotated, as shown in the overview in Figure 1. We aim to

evaluate if deep learning can provide accurate and robust

performance for a clinical decision support (CDS) task. To illustrate

the output of our work, Figure 2 shows the operation of our NER

model on a synthesised discharge letter, and Figure 3 shows how

the information from the NER model may be presented to the

clinician to aid rapid understanding of contraindications.
1.1. Related work

We first review existing systems which aim to aid in

thrombolysis CDS, and then subsequently review biomedical

named entity recognition methods. In common with other NLP

sub-fields, biomedical NER has advanced significantly in recent

years due to the application of large pre-trained transformer

architectures (4).
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FIGURE 1

Summary of our data selection and annotation process. Our dataset contains discharge letters, clinic letters, GP referrals and endoscopy reports from
2,912 patients. The training set comprises 2,081 patients and the remainder are reserved for the held-out test set. Using both local and national
guidelines, clinical knowledge was used to compile the relevant entities for thrombolysis decision. The NER model is trained to recognise 86 entities
relevant to the thrombolysis eligibility checklist. Data was manually annotated by a team of clinicians and medical students.

FIGURE 2

A synthesised discharge letter on which we demonstrate the application of our method. The output shows the entities that should be detected. Colour
coding reflects category of entity (Green=Diagnosis, Turquoise=Symptom, Pink=Social History, Yellow=Medication, Purple=Treatment). AF, atrial
fibrillation; ICH, intracranial haemorrhage; POC, package of care; PR, per rectum; RHS, right hand side; SAH, subarachnoid haemorrhage.

Cutforth et al. 10.3389/fdgth.2023.1186516
1.1.1. Existing thrombolysis CDS systems for
EHR data

Of the research groups working on CDS in the stroke domain,

some identify and display contraindications to thrombolysis at the

point of care (5, 6), whilst others focus on predicting outcomes in

the case that thrombolysis is administered versus not administered

(7–9). A recent review of machine learning methods for selecting

patients who might benefit most from thrombolysis treatment is

provided in (10). These methods are complimentary to our

contraindication-finding approach. Most closely related to our

approach is a small-scale feasibility study that designed a user

interface to specifically highlight contraindications to

thrombolysis by matching Unified Medical Language System

(UMLS) (11) concepts between a thrombolysis eligibility

checklist, and a stroke patient EHR (5). In contrast, our study is
Frontiers in Digital Health 03
focused on the extraction of relevant concepts, and unlike (5) we

use clinical domain expertise to curate a set of relevant entities

and perform a detailed examination of the performance of

various NER methods. To the best of our knowledge, none of the

solutions described above are currently used in clinical practice.

1.1.2. Biomedical named entity recognition
Biomedical NER is considered to be a slightly harder task than

general domain NER due to the prevalence of abbreviations,

synonymy, and morphological complexity as a result of the use of

unusual characters such as Greek letters, digits, and punctuation

(12). Clinical text poses an additional challenge, since clinicians

frequently write in shorthand and may not always employ correct

grammar. A number of public datasets exist which have allowed

the development of different NER techniques, including JNLPBA
frontiersin.org
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FIGURE 3

An illustration of how the algorithm results might be presented to clinicians using synthesised data. All entity occurrences are presented on the left pane,
and then shown with context on the right pane, aiding rapid understanding of any contraindications.

Cutforth et al. 10.3389/fdgth.2023.1186516
(13), BC5CDR (14), NCBI (15), i2b2 (16), and MedMentions (17).

Early methods included the application of dictionaries/gazetteers

(18), or handcrafted features with probabilistic graphical models

such as a conditional random field (19). The first generation of

end-to-end deep neural architectures were based on character-level

and/or word-level recurrent neural networks, often combined with

a probabilistic graphical model to predict the final tag sequence,

typified by the early work of (20).

Most recently, researchers in the biomedical NER field have

focused on the application of large pre-trained transformer

encoder models, based on Bidirectional Encoder Representations

from transformers (BERT) (21). In this approach, a transformer

model comprising encoder blocks only is pre-trained on a large

corpus with two unsupervised NLP tasks: masked language

modelling and next sentence prediction. A fully connected layer

is then used to map the contextual word embeddings from the

output of the BERT encoder to NER class logits, and the full

model is fine-tuned using a supervised dataset. BERT-based

NER approaches have been shown to outperform previous

approaches (12).
1https://pubmed.ncbi.nlm.nih.gov/download/
1.1.3. Extending BERT-based approaches for
biomedical NER

The BERT-based NER approach has been extended in various

ways. Some approaches aim to increase domain relevance. For
Frontiers in Digital Health 04
instance, numerous studies have shown that biomedical NER

tasks benefit from pre-training and vocabulary selection on a

biomedical text corpus such as PubMed,1 yielding domain-

specific models such as SciBERT (22), BioBERT (23), BioMed-

RoBERTa (24), and PubMedBERT (25). Other studies have

investigated integrating the Unified Medical Language System

(UMLS) (11) biomedical knowledge graph with BERT

architectures, such as (26–28), generally yielding a modest

performance increase.

Other approaches target architectural improvements. For

instance, BERT models have been combined with BiLSTMs in a

two-stage proposal/refinement method in (29). Scaling up the

model size and careful tuning of hyperparameters also gave

modest improvements in (30). Finally, an encoder-decoder

transformer architecture (text-to-text model) has shown strong

performance on biomedical NLP tasks in (31).

Pre-training on biomedical data and using a biomedical

vocabulary gives a consistent gain in performance. For example,

on the NCBI-disease dataset, PubMedBERT (25) obtains an F1

of 87.8% versus the top scoring model with 90.4%, while general-

domain BERT obtains 85.6%. On the BC5-chem dataset (14)
frontiersin.org
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TABLE 2 Exhaustive list of stroke-related entities that require annotation
alongside their synonyms or equivalents as per the annotation protocol.

Cutforth et al. 10.3389/fdgth.2023.1186516
PubMedBERT scores 93.3% versus the current top result of 95.0%,

while general-domain BERT obtains 89.2%.
Entity
type

Member entities

Diagnosis Stroke, ischaemic stroke, intracranial haemorrhage, subarachnoid
haemorrhage, extradural haemorrhage, subdural haemorrhage,
brain haemorrhage unspecified, non-brain haemorrhage, transient
ischaemic attack, head trauma, non-head trauma, trauma
unspecified, dementia, delirium, hyperlipidaemia, diabetes mellitus,
hypoglycaemia, ischaemic heart disease, myocardial infarction,
hypertension, atrial fibrillation, congestive heart failure, carotid
stenosis, small vessel disease, peripheral vascular disease,
pericarditis, endocarditis, aneurysm, aortic dissection,
arteriovenous malformation, intracranial neoplasm, gastrointestinal
ulceration, acute pancreatitis, bleeding condition, clotting
condition, pregnancy, demyelinating condition, peripheral nerve
disorder, cerebral abscess, Todd’s paresis, epilepsy, functional
neurological disorder, encephalitis, migraine

Symptom Weakness, speech disturbance, visual loss, other visual disturbance,
sensation loss, confusion, altered conscious level, fall, seizure,
papilloedema, neck stiffness, fever, vomiting, dizziness, headache,
vertigo, ataxia, other cerebellar dysfunction, fluctuating
neurological symptoms

Social history Smoking, alcohol, illicit drug use, long term placement, requires
help, impaired mobility

Medication Warfarin, clopidogrel, rivaroxaban, apixaban, dabigatran,
edoxaban, aspirin, heparin, other anticoagulant, oestrogen
containing drug, herbal remedy

Treatment Surgical procedure, thrombolysis, mechanical thrombectomy, other
invasive procedure, treatment escalation decision, capacity decision
2. Materials and methods

2.1. Dataset

We use data obtained through a collaboration with the

Industrial Centre for Artificial Intelligence Research in Digital

Diagnostics (iCAIRD),2 for which we obtained ethical approval.3

The data was sourced from hospitals in the Greater Glasgow &

Clyde (GG&C) area in Scotland and comprises all adult patients

who were diagnosed with a stroke in the period 1 Jan 2013 to 31

Dec 2018. The data is pseudonymised and we accessed it onsite

at the West of Scotland Safe Haven within NHS Greater Glasgow

and Clyde via the Safe Haven Artificial Intelligence Platform

(SHAIP) (32). Note that since we requested data for 18 months

on either side of the stroke event, many of the text documents

arose from other non-stroke clinical events.

This dataset contains approximately 50 K documents from 10 K

patients. Documents were a mixture of General Practice referrals,

Intermediate Discharge letters (IDLs), Final Discharge letters

(FDLs), Outpatient clinic letters (OPCLs), Emergency Department

letters, and Endoscopy reports. All documents comprise

unstructured (free text) data, and the content was generally

written by doctors, either general practitioners (GPs) or hospital

doctors from various specialties encountered by patients during

the 18-month period preceding and following the stroke event.
2.1.1. Data split
For the purpose of the study, we annotated a subset of 8,067

documents from 2,912 patients, which we split at the outset into

2,081 training patients and a held-out test set of 831 patients.

The training split was then randomly subdivided into five folds

to be used for cross validation and ensembling.
2.1.2. Data annotation
We designed an annotation protocol and then conducted an

extensive annotation effort involving 8 medical students and 4

clinicians with 2–10 years of clinical experience each. Annotation

was performed using the brat rapid annotation tool (33). All

annotators attended a refresher teaching session on stroke and a

training session on the protocol prior to beginning annotation.

Additionally, throughout the process, annotators were able to ask

questions regarding annotation work, with questions and answers

made visible to all annotators.

Through the duration of the annotation period, we performed

regular quality checks on each annotator by interleaving a

common subset of documents through each annotator’s allocated

folder of documents, and computing agreement with consensus
2https://icaird.com
3West of Scotland Safe Haven ethical approval number GSH19NE004.
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gold standard annotations created by the two lead clinicians who

developed the protocol and were responsible for ongoing updates

(H.W. and C.B., with 5 years and 10 years of clinical experience

respectively). Approximately 5% of the annotated documents were

repeatedly annotated in this way. In Section 3.1, an analysis of the

human annotator error relative to the gold standard is presented.
2.1.3. Annotation protocol
The annotation protocol was collaboratively designed between

Canon Medical Research Europe, the University of Glasgow and

Deep Cognito (34) We identified which entities to annotate

based on the local Queen Elizabeth University Hospital clinical

guidelines and national clinical guidelines from NICE (3).

Table 2 describes the full set of 86 entities which emerged from

this process. Entities are grouped under 5 categories: Diagnosis,

Symptom, Social History, Medication, Treatment.

The protocol aims to contain sufficient detail to ensure consistency

between annotators. A list of synonyms is provided for each entity and

these lists were updated over the course of the annotation process, e.g.

for the entity congestive heart failure possible synonyms are “Left

ventricular systolic dysfunction,” “LVSD,” “cardiac decompensation”

and “LV dysfunction.” Instructions are also provided on how to

determine the extent of the annotation text span, e.g. for the entity

ischaemic stroke the span might be “Apparent R MCA infarct” i.e.

omit the word “apparent” but contain the anatomical qualifiers. In

addition, examples of correct and incorrect spans were provided to

disambiguate difficult cases, e.g. for the entity Confusion a correct

span would be “altered mental status” and an incorrect span would

be “memory loss.”
frontiersin.org
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TABLE 5 Number of annotated entities. We labelled 86 different entities
drawn from five categories, and instances are grouped in this table
according to the entity categories.

Train Test Total
Diagnosis 12,015 8,791 20,806

Symptom 6,309 5,230 11,539

Social history 5,430 3,994 9,424

Medication 7,248 6,143 13,391

Treatment 3,626 2,850 6,476

All entities 34,628 27,008 61,636

TABLE 3 Basic demographic statistics from our dataset.

Train (%) Test (%) Total (%)
Male 870 (41.8) 303 (36.5) 1,173 (40.3)

Female 818 (39.3) 258 (31.0) 1,076 (37.0)

Unknown gender 393 (18.9) 270 (32.5) 663 (22.8)

Age (years) median (IQR) 78 (68-87) 77 (65-87) 78 (67-87)

Ethnicity
White scottish 1,325 (63.7) 446 (53.7) 1,771 (60.8)

Unknown 636 (30.6) 342 (41.2) 978 (33.6)

Other white 83 (4.0) 30 (3.6) 113 (3.9)

Pakistani 17 (0.8) 4 (0.5) 21 (0.7)

Indian 9 (0.4) 3 (0.4) 12 (0.4)

Other 11 (0.5) 6 (0.7) 17 (0.6)

Unique patients 2,081 831 2,912

TABLE 4 Number of annotated documents (and corresponding unique
patients), showing the prevalence of different document types in our
dataset.

Train Test Total
GP referral 2,465 1,938 4,403

IDL 733 1,118 1,850

FDL 1,082 392 1,474

OPCL 388 194 582

ED Letter 26 30 56

Endoscopy report 138 54 192

All document types 4,511 3,556 8,067

Unique patients 2,081 831 2,912

Cutforth et al. 10.3389/fdgth.2023.1186516
2.1.4. Annotation statistics
In total, 8,067 documents were annotated. A breakdown of the

patient demographics and number of annotations by document

type, data split, and entity category are presented in Tables 3–5.

There is a 55%–45% train-test split at the level of the annotated

documents. All document types were annotated approximately in

proportion to their frequency in our dataset.

TABLE 6 Hyper-parameters used for individual BERT models.

Hyper-parameter Value Search space
Learning rate 3� 10�5 log10 (x) � U(10�6, 10�3)

Train epochs 150 x � U(50, 200)
Batch size* 32 x � U(1, 64)
Weight decay* 0.01 log10 (x) � U(10�3, 10�1)

LR schedule Constant {Constant, Linear, Cosine}

Loss function Cross-entropy {Cross entropy, Dice (38)}

MLP head depth 3 {1, 3, 5}

MLP head width 512 {512}

Rows marked with * were not found to significantly affect results, so default values

were used.
2.2. NER methodology

We now describe the NER algorithms which are evaluated in this

work. Our main approach is based on a token-level transformer

classifier.

2.2.1. String search baseline
As a baseline, we have implemented a naive exact string

search method. In this approach, the training data is used to
Frontiers in Digital Health 06
compile a list of possible strings for every label (ambiguous

cases are ignored). Predictions are then generated by searching

for occurrences of each string, and then applying the

corresponding label to that span.

2.2.2. Transition model
A second, more sophisticated baseline is the transition-based

model implemented in the spaCy library (35). This approach

uses fixed word embeddings and a convolutional neural network,

and is designed to be an effective and efficient general purpose

NER method.

2.2.3. Transformer models
The main approach applied to the NER problem in this work is

a token-level classifier based on the BERT architecture (21). We

used a number of different pre-trained weights and vocabularies

from the literature: PubMedBERT (25) and BioMed-RoBERTa

(24) are trained on biomedical papers from PubMed, while

SciBERT (22) is trained on general scientific papers from

Semantic Scholar). A separate label is assigned to each token in

the model input by passing the contextual embedding of each

input token to a multilayer perceptron (MLP) of 3 layers with

512 nodes. A probability distribution over the output classes is

obtained by taking the softmax over the logits. In order to

classify arbitrary length spans, an Inside-Outside-Beginning

(IOB) tag scheme (36) is used. Under this scheme, the first token

of an entity span should be assigned the B-entity tag and any

subsequent tokens assigned I-entity tags, and any tokens not

relating to entities should be assigned O tags. Therefore, given N

entity classes, the model chooses from 2N þ 1 possible tags (in

our case, 86 entities leads to 173 IOB classes). All trainable

parameters in the model are optimised using the Adam

optimiser (37) with a categorical cross-entropy loss function.

A number of model hyperparameters were explored, using a

validation fold consisting of 20% of the training set. In Table 6

we present the optimal values which were found, as well as the

search bounds. Where applicable, optimal parameters were found

using the hyperopt Python package (39).

2.2.4. Ensemble of BERT models
Model ensembling is a well-known technique to obtain a

modest performance improvement by taking the average

prediction over a group of classifiers (40); ensembling causes
frontiersin.org
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random errors arising from individual classifiers to be smoothed

out. We constructed an ensemble classifier using five variants of

the best transformer model variant, trained on different subsets

of the training set, according to a 5-fold cross validation split.

The ensemble predictions were obtained by averaging the logits

and taking the argmax over classes, allowing the confidence of

individual models to be taken into account.
2.3. Evaluation metrics

In Section 3, we evaluate the performance of models using

precision, recall, and F1. In the NER setting, these metrics can be

computed in either a strict or lenient fashion. With strict matching,

a predicted entity span must exactly match the ground truth span

and label to count as a true positive, whereas with lenient

matching the labels must match but a partial overlap between the

spans is sufficient. For example, for the phrase “Patient on

warfarin” (tokenised to [“patient,” “on,” “warfarin”]), the prediction

[O, B-warfarin, I-warfarin] with ground truth [O, O, B-warfarin]

would count as a lenient match but not a strict match.
2.4. Label properties

In order to better understand the performance of the NER

methods on different labels, we examine three label properties,

taking inspiration from the work in (41) which introduces the

concepts of “name regularity” and “context regularity”. Here, we

propose corresponding numeric definitions to measure each

property for a given label in a given annotated dataset. The

relationship between label properties and performance is presented

in Section 3.2. The three properties examined for each label are:

1. Training set frequency. This is simply the number of instances

of a particular entity label in the training set.

2. Name regularity. This is a measure of the similarity of all training

set spans which are labelled as a particular entity, defined as:

1� Nunique

N

� �
N

N � 1
(1)

where N is the total number of spans for the given label, and

Nunique is the number of unique spans. The name regularity has

a range of [0, 1], taking a value of 1 when every span is

identical, and a value of 0 when every span is different.

3. Semantic context regularity. This is a measure of the similarity

of the context surrounding each entity mention. For each entity

example, we take the 5 tokens on either side of the entity span,

and compute the average of their word embeddings.4 For

sample k, we call this mean embedding xk. The semantic
4using the en_core_web_lg GloVe (42) word embeddings from the spaCy

(35) package.
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context similarity is then defined as:

2
N(N � 1)

XN
i¼0

XN
j¼iþ1

Sij, where Sij ¼ xi � xj: (2)

In other words, this is a measurement of the similarity of the

context around each entity mention, using the cosine

similarity between the average of the word embeddings of the

context. It has a range of [0, 1], where a higher value

indicates a more similar context.

3. Results

3.1. Quantitative evaluation

In Table 7, quantitative results on our held-out test set are

presented. Uncertainty estimates were obtained by training 5

models using different random seeds and different training sets

(using a five-fold cross validation split of the training set), and

hence reflect the variance due to the model training procedure

and due to the training set sample. Overall, these tables show

that BERT-based models outperform our exact string search

baseline, and that out of PubMedBERT (25), SciBERT (22), and

BioMedRoBERTa (24), the PubMedBERT model performs best.

A significant improvement in performance is observed using an

ensemble of PubMedBERT models, particularly in the model

precision.

For reference, we compare model prediction accuracy to the

performance of our human annotators by comparing to the gold

standard annotations on a common subset of documents which

were annotated by all annotators. In total, there were 292 gold

standard documents containing 2,870 spans. We can evaluate

annotator performance on this set of documents using the

quantitative metrics described in Section 2.3. Although the

numbers are not directly comparable due to having been

computed on different sets of documents, the ensemble model is

approaching our estimate of human annotator micro F1. The

ensemble model compares much less favourably in macro F1 to

the human annotators, suggesting that the algorithm has

difficulty learning how to label rare classes such as todds-paresis

or peripheral-nerve-disorder.

The fact that the PubMedBERT-based models are

approaching our estimate of the annotation error implies that

quantitative evaluation using these annotations may not be

reliable. In order to understand this issue, a further manual

evaluation was undertaken by a clinician; results are presented in

Section 3.3.
3.2. Error analysis

We further investigate the types of errors made by the

PubMedBERT-based models (which performed best in Table 8),

comparing to errors made by the baseline string search approach.

Then, we examine the relationship between properties of
frontiersin.org
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TABLE 7 NER results on held-out test set using strict (upper table) and lenient (lower table) span matching, where strict matching requires an exact
match of span boundaries and label, while lenient matching requires an exact match of label, and overlap in span boundaries. Best results indicated
in bold. Estimated human annotation performance computed on a subset of 5% of documents shown for reference.

Method Matching Avg. F1 Precision Recall
String search 0.348 0.274 0.476

SpaCy transition-based (35) 0.710 +0:003 0.740 +0:003 0.682 +0:008

SciBERT (22) 0.679 +0:005 0.674 +0:009 0.684 +0:007

BioMed-RoBERTa (24) Strict Micro 0.690 +0:003 0.681 +0:007 0.699 +0:002

PubMedBERT (25) 0.693 +0:004 0.690 +0:007 0.696 +0:002

PubMedBERT ensemble 0.722 +0:001 0.728 +0:001 0.715 +0:002

Human annotators 0.735 0.656 0.817

String search 0.416 0.416 0.489

SpaCy transition-based (35) 0.567 +0:017 0.616 +0:011 0.546 +0:020

SciBERT (22) 0.609 +0:003 0.617 +0:015 0.620 +0:007

BioMed-RoBERTa (24) Strict Macro 0.619 +0:004 0.614 +0:008 0.635 +0:004

PubMedBERT (25) 0.622 +0:008 0.629 +0:007 0.628 +0:014

PubMedBERT ensemble 0.644 +0:003 0.663 +0:008 0.641 +0:004

Human annotators 0.727 0.678 0.817

Method Matching Avg. F1 Precision Recall
String search 0.547 0.432 0.745

SpaCy transition-based (35) 0.802 +0:004 0.839 +0:003 0.769 +0:009

SciBERT (22) 0.815 +0:003 0.810 +0:008 0.819 +0:009

BioMed-RoBERTa (24) Lenient Micro 0.826 +0:002 0.817 +0:006 0.837 +0:002

PubMedBERT (25) 0.829 +0:002 0.826 +0:006 0.831 +0:004

PubMedBERT ensemble 0.846 +0:001 0.854 +0:001 0.837 +0:002

Human annotators 0.847 0.791 0.911

String search 0.580 0.577 0.690

SpaCy transition-based (35) 0.640 +0:019 0.700 +0:014 0.614 +0:022

SciBERT (22) 0.713 +0:003 0.725 +0:012 0.722 +0:009

BioMed-RoBERTa (24) Lenient Macro 0.721 +0:005 0.719 +0:011 0.738 +0:004

PubMedBERT (25) 0.723 +0:007 0.736 +0:005 0.728 +0:014

PubMedBERT ensemble 0.734 +0:003 0.764 +0:014 0.728 +0:003

Human annotators 0.839 0.803 0.910

TABLE 8 Multiple linear regression analysis for each model in which the
independent variables are the three label properties, and the dependent
variable is the lenient per–label F1. A scatter plot of each variable
independent of the others is shown in Figure 5.

Method Label property b+ SE p r2

log10(frequency) 0.077 +0:043 0.076

String search name reg. 0.58 +0:11 <0.001 0.39

context reg. -0.011 +0:29 0.97

log10(frequency) 0.13 +0:03 <0.001

PubMedBERT name reg. 0.58 +0:08 <0.001 0.64

context reg. �0.016 0:19 0.93

log10(frequency) 0.16 +0:03 ¡0.001

PubMedBERT ensemble name reg. 0.54 +0:08 <0.001 0.68

context reg. �0.06 +0:19 0.72

5Excluding 5 labels which the model failed to learn. These labels had F1

scores of 0, and on average appeared only 4.5 times each in the training set.
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individual labels and their performance. The large number of labels

present in our NER problem means that the distribution of per-

label scores carries information which we can analyse to

understand what makes this NER problem difficult for the

models under consideration.

3.2.1. Distribution of per-label F1 scores
The distribution of lenient F1 scores across each label is

presented in Figure 4, showing that there is a relatively wide
Frontiers in Digital Health 08
spread of performance between different labels. The best three

labels for the ensemble method are aspirin (0.968), warfarin

(0.965), and edoxaban (0.949), while the worst5 three labels are

functional-neurological-disorder (0.095), cerebral-abscess (0.118),

and neck-stiffness (0.2). Medications generally have a small set of

possible surface forms, so these results suggest, as might be

expected, that labels with fewer possible variants (i.e. higher

name regularity) are easier to detect. Indeed, the best three labels

have an average name regularity of 0.95, versus 0.17 for the

bottom three.

3.2.2. Effect of label properties on F1 score
In Figure 5 and Table 8 the effect of three label properties

(described in Section 2.4) on performance for each model is

investigated. Multiple linear regression was performed,

treating the property as an independent variable and the per-

label lenient F1 as the dependent variable. For all models,

name regularity had the largest effect size. Suprisingly, the

number of training set examples only had only a weak
frontiersin.org
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FIGURE 4

Box plot and histograms of per-label lenient F1 score.

FIGURE 5

Lenient micro F1 versus different label properties. The y-value of each point shows the F1 score for a particular label using a particular model. Multiple
linear regression analysis on this data is presented in Table 8.
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positive effect, and context regularity independent of

performance. However, the relatively low r2 values show that

these three label properties are still insufficient to explain

label performance.
3.3. Manual error analysis

Given that on certain metrics there is negligible difference

between the estimate of human annotator error and the model

error, the metrics computed against the ground truth may not

reliably demonstrate clinically important differences. Therefore,
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in order to further investigate the differences in performance

between the models, we conducted a manual clinical error

analysis of the results.
3.3.1. Error analysis protocol
A random subset of 310 documents from the held-out test set

(this corresponds to approximately 10% of the test set) was selected

for the manual error analysis. The corresponding human ground

truth was then combined with the predictions from each model

in turn, and the two sets of annotations were combined into a

single view and displayed within our in-house text annotation

software. A junior doctor (C.W.) with 3 years of clinical
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TABLE 9 Manual evaluation of precision of selected models and human
annotations on a subset of 310 documents from the test set.

Method Matching Avg. Precision
PubMedBERT 0.803

PubMedBERT ensemble Micro 0.887

Human annotators 0.871

PubMedBERT Strict 0.764

PubMedBERT ensemble Macro 0.857

Human annotators 0.836

PubMedBERT 0.888

PubMedBERT ensemble Micro 0.948

Human annotators 0.944

PubMedBERT Lenient 0.840

PubMedBERT ensemble Macro 0.914

Human annotators 0.910
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experience then reviewed all predictions, and either marked as

correct, or if not then corrected as necessary. The evaluator was

blinded to the source of the annotations (i.e. model prediction or

human annotation) to reduce bias. This evaluation permits direct

comparison between the precision of the model predictions and the

human annotations, albeit on a much-reduced subset of the test set.
3.3.2. Results of manual analysis
The manually-measured precisions are shown in Table 9. The

precision of the ensemble model is notably much improved

compared to the single PubMedBERT model with the number of

pure false positive errors (type 1) decreased by two-thirds, and

marginally better than the human annotators. The estimated

precision of the human annotators is significantly higher than

previously estimated using the gold standard documents in

Section 3.1 (0.791 versus 0.944). This likely reflects the style of

evaluation, where the evaluator is not making decisions

independently of the annotator but rather rating visible

annotations, and therefore in edge cases may tend to be

generous. We also note that the evaluation document subsets are

different so the metrics are not directly comparable.
4. Discussion

Our results show that contemporary NER approaches are able

to perform well on the task of locating relevant entities for the

thrombolysis decision. Evaluation on the test set suggests that the

ensemble of five PubMedBERT models achieves an almost

identical F1 score to the human annotators (0.846 vs 0.847),

which is exciting. However, further inspection shows the model

has a better micro precision (0.854 vs. 0.791) but a worse micro

recall (0.837 vs. 0.911) than the human annotators, which from a

clinical point of view is not desirable, since false negatives are

more serious than false positives when searching for

contraindications. It is also notable that the micro and macro

averages are similar for human annotators, whereas the machine-

learning systems experience a drop of approximately 0.1 on

macro averaged metrics, suggesting that rare labels are handled

less effectively. However, the multiple linear regression analysis
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showed that in fact it was name regularity rather than training

set frequency which played the most important role in

determining performance i.e. rare spans are more problematic

than rare labels. This point was reinforced by our observation

that all transformer-based models experienced a significant drop

in recall between the in-dict (i.e. spans which were also present

in the training set) and out-dict portions of the test set (results

not shown here). This suggests that name memorisation still

plays a significant role for these models, and recognition of

context or knowledge of synonymy learned during biomedical

pre-training is not yet fully utilised. Name memorisation could

be tackled through data augmentation techniques in which

synonyms are gathered from knowledge sources such as UMLS

(11). This type of data augmentation has already been

implemented for NER with BERT models in (43), finding up to

a 7% improvement in micro-F1, with the benefit falling off as the

dataset size increased.

Compared to standard biomedical NER problems in the

literature, this application features a large number (86) of fine-

grained labels which allowed us to do inter-label analysis. It was

shown that there is a large variation in performance between labels

(inter-quartile range on per-label performance for ensemble model

is 0.23). In the limiting case of many classes, this problem becomes

very similar to entity linking—the task of linking entity mentions

to knowledge graph nodes. A cross encoder refinement model

from the two-stage models (44) which have been applied in entity

linking may be useful to improve performance on some labels. The

worst-performing labels may require special treatment, such as

synthesized training data, in a future clinical application.

As previously stated, on some metrics the ensemble model

obtained comparable performance to our estimate of the human

annotator error. Manual analysis showed that the ensemble model

predictions often surpass the original human annotations as

measured by overall F1, but that the error types are different;

human errors are more likely to be false negatives or protocol

noncompliance, while model errors are more likely to be false

positives. This suggests that review and improvement of the ground

truth is required in order to make further improvements to the

model, both to improve the standard of the training data and to

improve our ability to identify and measure model improvements.

In this paper, we have considered only clinical free text data.

However, structured data is also available both within the

documents that we were working with and from other data types

in the EHR. Information that might be expressed in structured

format includes the patient’s current medications, diagnoses,

recent procedures, or recent lab test results. Structured data is

generally an easier and more standardised data format to parse

(likely not requiring machine learning), and any clinical decision

support system should consider this alongside the free-text data,

integrating entity detections from both sources.

A limitation of this work is that the models were trained and

evaluated on documents from both before and after the index

stroke event. As the intended use for stroke CDS is on pre-stroke

documents only, the performance in this context may change

relative to the results in this work, however we believe that such

a change is likely to be minor due to the similarity of the
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language between these cases, and the fact that 36% of the patients

in our dataset experienced multiple strokes.

Finally, we remark that at present, our system does not directly

answer the individual thrombolysis eligibility checklist items as this

requires more information than just the existence of an entity. For

instance, answering the question “Has the patient undergone major

surgery in the last two weeks?” would involve first locating any

occurrences of the surgery entity (using the NER model presented in

this work), but also extracting any important modifiers which apply

to each entity (e.g. negation and timeframe). The NER-only system

presented here is a first step towards such a fully automated system,

that leaves decision-making in the hands of the clinician who must

judge for themselves the meaning of the surfaced information about

relevant entities.
5. Conclusions

This work represents the first text-focused clinical decision

support system for acute stroke treatment. Clinical guidelines were

translated into a set of 86 entities relevant to the thrombolysis

decision, and a large dataset of unstructured clinical letters of acute

stroke patients was annotated for spans relating to these entities.

Multiple transformer-based NER approaches were trained and

evaluated. An ensemble of five PubMedBERT models obtained the

best results (lenient micro F1 ¼ 0.846/macro F1 ¼ 0.734). This

model was comparable to our estimate of human annotator

performance (lenient micro F1 ¼ 0.847/macro F1 ¼ 0.839). One of

the unusual aspects of our NER application was the large number

of fine-grained labels, and a detailed error analysis showed that the

name regularity was the strongest predictor of model performance

on a given label. Finally, a further manual evaluation showed that

the ensemble model outperformed a single PubMedBERT model by

an even larger margin than suggested by the test set ground truth,

due to annotation errors.

To the best of our knowledge, this work is the first text-focused

decision support system for acute stroke treatment. Further, our

system is the first step towards a clinical decision support system

providing a recommendation for patients’ eligibility for

thrombolysis in acute stroke care.

An important avenue for future work is to adopt a data-centric

approach and develop review and correction techniques to improve

the accuracy of human annotation ground truth. This will improve

the standard of the training data and improve our ability to identify

and measure model improvements, in order to enable further

accuracy gains for this clinically critical task. Furthermore, in

future work the entities extracted from unstructured data using

the methods presented here should be integrated with entities

extracted from any structured data which is already present, such

as medication lists.
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