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Abstract—Mobile traffic classification is an essential task for
network security and management. Even though some progress
has been made, the existing methods have limitations regarding
plasticity and the requirement for large amounts of labeled data
for training. In real-world wireless networks, new applications
are constantly emerging. The lack of plasticity means the model
must be retrained entirely whenever a larger dataset with
new classes is obtained, which is time-consuming. Furthermore,
obtaining large amounts of labeled data is often complicated
and expensive. To overcome these limitations, we proposed a
novel approach for classifying encrypted mobile traffic using the
few-shot incremental learning with a Long Short-Term Memory
(LSTM) model. We pre-train an LSTM model with a base dataset,
then incrementally add classes and update the model with few-
shot datasets. We leverage the exemplar selection and knowledge
distillation to keep the stability and plasticity of the model. We
validate our method by collecting Downlink Control Information
(DCI) of twenty different mobile applications from commercial
Long Term Evolution (LTE) networks. Our experimental results
demonstrate the effectiveness of the proposed method.

Index Terms—Encrypted traffic classification, Incremental
learning, Few-shot dataset, LTE networks traffic.

I. INTRODUCTION

Mobile traffic classification is an essential task in modern

network management and security. With the proliferation of

mobile devices and the ever-increasing volume of traffic gener-

ated by them, accurately classifying mobile traffic has become

an essential challenge for network operators and security

analysts [1]. In recent years, many techniques have been

reported for mobile traffic classification leveraging UDP/TCP

port analysis or packet-level information [2]–[4]. However,

due to the encryption in Long Term Evolution (LTE) and

5G networks, there is no passive method to acquire the

traffic data from the network layer or transport layer. This

encryption mechanism makes traffic classification in LTE and

5G networks a challenge.

With the assistance of the LTE downlink decoding software

(e.g., SRS Airscope [5] or OWL [6]), analyzing the Downlink

Control Information (DCI) becomes possible. In LTE, the

Physical Downlink Control Channel (PDCCH) is used to

transmit the DCI message from the base station to the user

equipment (UE). The DCI message includes various control

information elements, such as the modulation and coding

*These authors contributed equally to this work.

scheme, resource allocation, power control commands, and

other parameters required for efficient data transmission. With

the user-specific traffic information from DCI, it enables traffic

classification by a passive sniffer. The literature on this topic

has explored various methods and techniques for using DCI to

classify network traffic. A model based on recurrent neural net-

work (RNN) was presented in [7] to recognize traffic service

types by decoding DCI. Trinh et al. introduced the method to

recognize not only traffic services but also the usage type of

applications (apps) in both supervised and unsupervised ways

based on machine learning [8]. In [9], it presents a method

utilizing data link layer information to accurately recognize

20 different types of apps on both iOS and Android mobile

phone platforms. However, the effectiveness of these methods

depends on both training and evaluation samples coming from

a fixed dataset with a large number of samples.

As the evolving of mobile networks, new applications are

constantly emerging. To correctly recognize these new applica-

tions, the multi-class classifier must be entirely retrained on the

expanded dataset. Retraining the entire multi-class classifier

is time-consuming, especially for large datasets. Therefore,

a key issue in encrypted traffic classification is the ability

to incrementally add new applications to the classification

system without retraining the entire system from scratch.

Unfortunately, fine-tuning the classifier is not an option, as

it leads to the catastrophic forgetting problem [10]. With

incremental learning approaches growing mature gradually,

some progress has been made on this topic. In [11], an

incremental Support Vector Machines approach is deployed

to traffic classification. An incremental learning framework

is reported that employs neural network classifiers [12]. This

work is based on a dataset [13] collected by monitoring Do-

main Name System (DNS) traces from the application layer. A

method proposed in [14] employs incremental learning based

on generative replay for encrypted traffic classification. It

uses Generative Adversarial Networks to select representative

samples and generate high-quality samples. Although all these

works demonstrate good performance, they train and evaluate

the models on a large labeled dataset. However, getting a large

dataset is complicated and expensive. Besides, they are all

based on network layer information that can not be acquired

passively in LTE/4G and 5G networks.

In this paper, we present a novel framework for mobile



encrypted traffic classification based on a few-shot incremental

learning approach to address the constraints mentioned above.

We briefly summarize our contributions as follows:

• We propose an incremental learning framework that uti-

lizes rehearsal and knowledge distillation techniques in

combination with the Long Short-Term Memory (LSTM)

model [15] for mobile encrypted traffic classification.

• We adopt an exemplar selection algorithm to identify

representative samples from the training data of the

current training session. This allows us to effectively

control the dataset’s size after adding new applications

to the system. Meanwhile, this mechanism can avoid the

catastrophic forgetting problem effectively.

• We collect a real-world LTE traffic dataset consisting of

20 different mobile applications to evaluate our proposed

model. After learning new applications, the experimental

results show that our approach maintains ideal classifica-

tion accuracy.

The rest of this paper is organized as follows. Section II

introduces the details of the incremental learning framework.

Section III introduces the evaluation and presents the experi-

mental results. Section IV concludes this paper.

II. METHODOLOGY

A. Problem Setting

The few-shot class-incremental learning (FSCIL) setting

can be defined as follows. The entire learning process is

divided into t training sessions, and we consider a sequence

of labeled training sets {D(1), D(2), ..., D(t)}, where D(t) =

{xi, yi}|D(t)|
i=1 . L(t) denotes the classes included in D(t),

then ∀i, j, L(i) ∩ L(j) = ∅. D(1) is a large-scale training

set of base classes, and D(t>1) is the few-shot training

set of new classes. The model Θ is trained sequentially on

{D(1), D(2), ..., D(t)} with adaptable feature extractor and

classifier, while only D(t) is available at training session t.
Once trained on D(t), the model Θ is tested to recognize all

the encountered classes up to session t. The main challenge

in FSCIL is to avoid catastrophic forgetting of old classes.

According to [16], there are mainly two strategies for ad-

dressing catastrophic forgetting: 1) by freezing parts of the

network weights, 2) by rehearsal, i.e., continuously stimulating

the network with the earlier data.

For our model, we adopt the rehearsal mechanism to update

the model parameters. We use the training data from the

currently available classes and the stored exemplars from

earlier classes. Additionally, our model utilizes knowledge

distillation [17] to prevent the deterioration of information in

the network over time.

B. Model

In this paper, D(1) is the traffic series of base application

classes, and D(t>1) is the traffic series of newly added appli-

cation classes. Since we aim to adapt the traffic classification

system efficiently and effectively, the new applications only

have very limited training samples. Therefore, the problem

nature requires a few-shot incremental learning system. The

system should assimilate new knowledge with minimum effort

while applying previously learned knowledge in future up-

dates. This enables the updated classification system to process

new applications while retaining its ability to classify existing

ones.

As illustrated in Figure 1, the traffic classification system

consisting of an encoder for preprocessing the traffic series, a

feature extractor based on the LSTM network (f t
LSTM ), and

a fully connected layer as a classifier (f t
FC). Therefore, the

overall objective predictive function at training session t is

defined in Eq. (1):

f t(.) = f t
FC(f

t
LSTM (.)) (1)

For an input sequence, S = {s1, s2, s3, ...sT }, the forward

process of an LSTM cell at time t is shown in Eq. (2) - (7).

it = σ(Wisst +Wihht−1 + bi) (2)

ft = σ(Wfsst +Wfhht−1 + bf ) (3)

ot = σ(Wosst +Wohht−1 + bo) (4)

c̃t = tanh(Wcsst +Wchht−1 + bc) (5)

mt = ft �mt−1 + it � c̃t (6)

ht = ot � tanh(mt) (7)

where it, ft, and ot represent the input gate, forget gate, and

output gate, respectively. c̃t is the intermediate state; mt is a

memory cell and ht is the hidden state. tanh(.) and σ(.) are

activation functions while � denotes point-wise multiplication.

When the system obtains a new dataset, it updates the fea-

ture extractor and the classifier. It is followed by constructing

an exemplar set from the training dataset for the last session.

And the overall training process is as follows.

• Before training, we use an encoder to compress the raw

traffic series to a consistent length. The resulting encoded

data is then fed into the deep learning model. The detail

of the encoder is introduced in Section III.

• At the first training session, we train the feature extractor

and the classifier using the encoded traffic series from

the base training set D(1) including n different types of

applications. Each application has lbase training samples.

Once completed, we get the f1(.) = f1
FC(f

1
LSTM (.)).

• At the t-th (t > 1) training session, only the current

dataset D(t) is available. D(t) includes m different types

of applications and each application has linc training

samples. We combine D(t) and the stored exemplars to

form an augmented training set. We inherit the feature

extractor from the previous session while extending the

classifier by m cells for classifying new applications. The

weights of the extended cells are randomly initialized.

Then we train the model with D(t) to get the f t(.) =
f t
FC(f

t
LSTM (.)).

After each training session t, the model is tested with a dataset

consisting of all the encountered applications, i.e., totally
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Fig. 1. Few-shot incremental learning model architecture. For the base model, we train the LSTM model with the base training dataset. After that, some
exemplar samples are selected from the base dataset. The incremental model is adapted from the base model and trained with the new classes and the selected
exemplar samples. Meanwhile, a new loss function considering knowledge distilled is used to train the incremental model.

n + (t − 1)m types of applications at the session t. And

each application has ltest test samples. For classification, the

softmax function is used to get the probability of each class i
shown in Eq. (8).

σ(z)i =
ezi∑n+(t−1)m

j=1 ezj
(8)

where z = (z1, z2, . . . , zn+(t−1)m)T is the output vector of

the fully connected layer and n+ (t− 1)m is the number of

the classes at session t.

C. Exemplar Selection

In order to prevent catastrophic forgetting, the system stores

K training samples from each class to form an exemplar set

after each training session. We should only select the most

representative samples to better represent the class feature. We

decompose the training set D(t) into |L(t)| subsets X(c) with

l samples for each class c. Then, we use f t
LSTM to extract the

feature vector f t
LSTM (x

(c)
i ) = φ(x

(c)
i ) of each traffic series

x
(c)
i from X(c) and calculate the mean feature vector μ(c)

of the class. To form a representative exemplar set, we aim

to minimize the Euclidean distance between the mean feature

vectors of the exemplar set P (c) and the class c. A greedy

strategy is applied to achieve this goal, where the detailed

procedure is described in Algorithm 1, according to [16].

D. Knowledge Distillation

Although we have chosen exemplars to augment the su-

pervision information for the old class, we still suffer from

catastrophic forgetting when the number of optional exemplars

is very limited. Therefore, we require additional supervision

information to assist the model in preserving the representative

capacity of the old classes. Knowledge distillation is a widely

used method that transfers key knowledge from a teacher

model to a student model. In our case, the model from the

Algorithm 1 Exemplar Selcetion

1: Inputs: Training set D(t)
2: Inputs: K exemplars per class

3: Require: feature extractor φ(.)
4: Outputs: Exemplars set P
5: Divide D(t) into X(c), c = 1, . . . , |L(t)|
6: for c = 1, ..., |L(t)| do
7: μ(c) = 1

C

∑
xi∈X(c)

φ(x
(c)
i )

8: for k = 1, ...,K do

9: pk ← argmin
xi∈X(c)

‖μ(c) − 1

k
(φ(x

(c)
i ) +

l−1∑
j=1

φ(pj))‖
10: end for
11: P (c) = {pk}Kk=1

12: P = P ∪ P (c)

13: end for

previous session serves as the teacher model, while the current

model is a student model. The overall loss is a combination

of the cross-entropy loss LCE with the knowledge distillation

loss LKD. The overall loss is given as follows:

L(x, y) = LCE(x, y) + λLKD(x, y) (9)

where λ is a hyper-parameter governing the effect of knowl-

edge distillation. According to [18], λ is set to Lold

Lold+m , where

Lold is the number of classes learned in the previous session.

The cross-entropy is given as:

LCE(x, y) =

Lold+m∑
c=1

− (c = y)log(pc(x)), (10)
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Fig. 2. LTE Network Infrastructure and the position of the deployed traffic
monitor

TABLE I
NAMES AND CATEGORIES OF THE APPS FOR EXPERIMENT

Traffic Service Type App Name

Streaming Video

Tik Tok
YouTube

Amazaon Prime Video
Netflix

Streaming Music
Spotify

YouTube Music

Social Media
Instagram

Xiaohongshu

Text Chat

WhatsApp
WeChat

Telegram

Video Calls

WhatsApp
WeChat

Telegram

Game
Genshin

Pubg Mobile

Shopping
Shopee
Lazada

Travel&Local Grab
Tools Google

where pc(x) is the output probability of the sigmoid function

for the c-th class. And distillation loss is defined as follows.

LKD(x) �

⎧⎪⎨
⎪⎩

Lold∑
c=1

−q̂c(x)log(qc(x)), t > 1

0, t = 1

(11)

where Lold = n + (t − 2)m is the number of known

classes at session t, and q̂c(x) =
eôc(x)/T

∑Lold
c=1 eôj(x)/T ; ôc(x) is an

element of ô(x) = (ô1(x), . . . , ôLold
(x))T representing the

output logits of the teacher model; oc(x) is an element of

o(x) = (o1(x), . . . , oLold
(x))T representing the output logits

of the student model. So, qc(x) =
eoc(x)/T

∑Lold
c=1 eoj(x)/T .

III. EXPERIMENT AND ANALYSIS

A. Data acquisition and encoder

To collect data for our experiment, we connected our

mobile phones to a commercial LTE network and launched the

downlink traffic monitor. This allowed us to collect broadcast

information from the base station connected to user devices. To

achieve this, we used the SDR device USRP X310, equipped

with SRS AirScope, a downlink sniffer software that enabled

us to capture all DCI messages and MAC layer packets,

including the Radio Resource Control (RRC) connection setup

message. The position of the traffic monitor was between the

eNodeB and UEs, as shown in Fig. 2.

In order to monitor the traffic series created by the experi-

ment phone, we need to identify the phone first. LTE networks

utilize several identifiers, with the International Mobile Sub-

scriber Identity (IMSI) being a unique identifier used globally

to identify a SIM card. However, due to the high sensitivity

of the IMSI, the network allocates a Temporary Mobile

Subscriber Identifier (TMSI) to the subscriber when they first

access the network. During the setup of the RRC connection,

the eNodeB transmits the TMSI without encryption, making

it possible to obtain the TMSI [19]. Although the TMSI is

refreshed periodically, it has a longer lifetime than the Cell

Radio Network Temporary Identifier (C-RNTI). As a result,

this allows us to track a specific user for a long period.

To determine the initial RNTI of the mobile phone under

experimentation, we first uploaded a large file to create a burst

in uplink data rate. Then, we instructed the mobile phone

to use specific apps, selecting five common traffic service

types in mobile networks and setting the mobile device to

use representative apps for each type. The list of selected

apps is presented in TABLE I. We collected 100 traffic

traces for apps at the base session and 20 traffic traces for

apps at the incremental session, each lasting for 20 seconds.

Afterward, we mapped multiple RNTIs with the TMSI, and

the corresponding DCI messages were filtered using the RNTIs

chain to obtain all DCI messages of the experimented mobile

phone. This study used uplink and downlink Transport Block

Size (TBS) in DCI messages as the raw traffic data.

We also encode the raw data to a consistent length for an

easy training step in the deep learning model. We slice the raw

data with a non-overlapping sliding window of 0.1 seconds.

Then we calculate eight features of the split series: mean TBS

in the uplink, mean TBS in the downlink, max TBS in the

uplink, max TBS in the downlink, total TBS in the uplink,

total TBS in the downlink, the total number of packets arrived

in the uplink, and the total number of packets arrived in the

downlink.

B. Experiment and results

In order to evaluate our proposed approach, we compare

the performance of the proposed method with two baseline

methods.

• Joint-LSTM: At each training session t, we discard the

model obtained from the previous session and retrain the

entire model with training set {D(1), ..., D(t)}. How-

ever, retraining the entire model is increasingly time-

consuming as the number of classes increases.

• Finetuning-LSTM: At each training session t, we keep

the model obtained from the previous session and adapt

the classifier, then directly update the model with the new

dataset D(t).
• Proposed: It is our proposed incremental learning method.
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Fig. 4. Incremental learning performance for ablation study

All models use the same dataset for training and evaluation

on the same test dataset. The training set includes 90 samples

for each of the 5 base classes and 10 samples for each of the

15 incremental classes, while the test set includes 10 samples

for each class. We have 6 training and testing sessions. The

first session trains the base model with the five base class data.

After that, in each incremental session, we add three classes.

Once completing each session, the model stores an exemplar

set, including 5 representative samples per class. The accuracy

rates on the test data at each session are reported as the metrics

of the model’s performance.

The experiment results are shown in Fig. 3, all the methods

achieve 92% classification accuracy at session 1. Although the

accuracy rate decreases as the number of classes increases, the

proposed model always achieves a higher accuracy than the

baseline models. And when there are 20 classes, the proposed

model can still achieve a 50% classification accuracy, while

the accuracy rates of Joint-LSTM and Finetuning-LSTM are

35% and 12%, respectively.

For Joint-LSTM, the degeneration of the accuracy is caused

by class imbalance problem [20], as base classes have much

more training samples than incremental classes. But for the

proposed model, the exemplar set and the incremental training

set have comparable sizes, so the class imbalance problem

does not strongly impact our model. For Finetuning-LSTM,

catastrophic forgetting leads to severe degeneration of the

classification accuracy. In our model, the loss of previous

knowledge is relieved by introducing rehearsal and knowledge

distillation.

In order to analyze the impact of exemplar selection and

knowledge distillation, we perform ablation study experiments.

For exemplar selection, we compare the performance of our

method with a random selection method, in which the exem-

plar set consists of randomly selected K samples from each

class. Figure. 4(a) shows that the nearest-to-mean exemplar

selection strategy increase the classification accuracy by 7.4%

on average. The enhancement demonstrates the superiority

of selecting the most representative samples by the nearest-

to-mean method. For knowledge distillation, our method is

compared with a model using cross-entropy loss solely. Figure.

4(b) shows that adding knowledge distillation loss helps the

model to achieve an average of 6% higher accuracy rates. By

adding knowledge distillation loss, we restrict the deviation of

the current model from the previous model, therefore reducing

the loss of previous knowledge. And the experiment result

shows the enhancement by introducing knowledge distillation

loss.

IV. CONCLUSION

This paper introduces a few-shot incremental learning

framework that utilizes an LSTM network with an adaptive

expanding classifier. The system allows the acquisition of

new knowledge by expanding the classifier and updating the

network. To deal with catastrophic forgetting, we introduce

rehearsal and knowledge distillation techniques. To ensure

efficient learning, we use a sample selection algorithm based

on herding to identify representative examples from the dataset

for rehearsal. To evaluate the effectiveness of our proposed

framework, we collected a real-world traffic dataset. Our

experimental results demonstrate that the proposed framework

can incrementally learn new applications without retraining

from scratch while maintaining high levels of classification

accuracy.
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