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Abstract: Throughout the COVID-19 pandemic, SARS-CoV-2 infections in domestic cats have caused
concern for both animal health and the potential for inter-species transmission. Cats are known to
be susceptible to the Omicron variant and its descendants, however, the feline immune response to
these variants is not well defined. We aimed to estimate the current seroprevalence of SARS-CoV-2 in
UK pet cats, as well as characterise the neutralising antibody response to the Omicron (BA.1) variant.
A neutralising seroprevalence of 4.4% and an overall seroprevalence of 13.9% was observed. Both
purebred and male cats were found to have the highest levels of seroprevalence, as well as cats aged
between two and five years. The Omicron variant was found to have a lower immunogenicity in
cats than the B.1, Alpha and Delta variants, which reflects previous reports of immune and vaccine
evasion in humans. These results further underline the importance of surveillance of SARS-CoV-2
infections in UK cats as the virus continues to evolve.
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1. Introduction

Felids have been established as one of the most commonly infected non-human hosts
of SARS-CoV-2. Domestic cats, in particular, are known to be highly susceptible to SARS-
CoV-2 infections [1–4], most of which are believed to result from separate anthropozoonotic
transmission events, in which the virus is transmitted from owner to pet, rather than cat-to-
cat [5]. Despite this, cat-to-cat transmission has been demonstrated under experimental
conditions [6–8] and SARS-CoV-2 antibodies have been detected in both abandoned and
stray cats [9,10], which may indicate other possible routes of transmission. Transmission
has also been detected between cats and other animals such as mink [11].

In the UK, moderate levels of SARS-CoV-2 seroprevalence in domestic cats have been
documented in multiple publications [12–14], based on the analysis of remnant diagnostic
samples submitted for other purposes. Despite this appreciable seroprevalence, veterinary
diagnostic testing of domestic animals for SARS-CoV-2 is rarely performed due to the very
narrow testing criteria dictated by government guidelines. Consequently, it is difficult
for veterinarians to confirm suspected cases of the disease, which can lead to improper
treatment of the infection. As a result, there exists a dearth of knowledge regarding the
long-term effects and clinical pathologies associated with SARS-CoV-2 infection in cats,
with clinicians and owners potentially unaware of the cause of a pet’s illness. The lack of
diagnostic testing means that the true scale of animal SARS-CoV-2 cases cannot be fully
appreciated and that the transmission dynamics associated with feline infections remain
poorly understood. Despite the majority of feline cases appearing to be owner-to-cat
transmission events [15–17], felid-to-human transmission has been documented from a
cat [18] and a lion [19]. It is currently unknown whether felids can infect other susceptible
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animals, such as dogs; however, this remains a possibility as cats and dogs frequently live
together in the same household [20–22].

Currently, the majority of reported natural SARS-CoV-2 infections in felids have
been either asymptomatic or subclinical [23], however, severe sequelae including acute
respiratory distress [24] and myocarditis [25,26] have been documented.

Cats are known to generate a robust neutralising antibody response to SARS-CoV-2,
which enables animals to resist re-infection [27], as well as an IgG response against the
Spike and Nucleocapsid proteins of multiple different variants [14,21,28].

There is a distinct lack of knowledge, however, of the feline immune response to more
recent, post-Omicron variants. In the UK, there have been multiple novel predominant
circulating variants since the peak of the Omicron (BA.1) wave in December 2021–January
2022 [29]. These are: BA.2 (descended directly from BA.1) [30], BA.5 (descended from
BA.2) [31], BQ.1.1 (descended from BA.5) [32] and XBB (a recombinant of two different BA.2
strains) [33], all of which evolved from the Omicron (BA.1) variant. In humans, all four of
these newer variants [34,35], as well as Omicron (BA.1) [36], have been shown to evade
vaccine- and infection-derived immunity, as well as reduce the efficacy of monoclonal
antibody therapy [37].

We previously observed that distinct patterns of immunity to different variants arise
depending on which variant was likely to have infected the animal. Furthermore, this
serological study demonstrated that the emergence of novel variants in the feline population
mirrored and trailed their appearance in the human population [14]. The aims of this study
were to characterise the neutralising antibody response to the Omicron (BA.1) variant and
its descendants, to provide an updated picture of seroprevalence and to investigate the
prevalence of non-virus neutralising anti-SARS-CoV-2 IgG in UK cats.

2. Materials and Methods
2.1. Samples

Residual serum and plasma samples for serological testing were provided by the
University of Glasgow Veterinary Diagnostic Services laboratory (VDS). These samples had
been submitted by practising UK veterinary clinicians for diagnostic testing including rou-
tine monitoring, pre-breeding screening, detection of infections and other clinical pathology
tests. Only residual samples that remained after testing were used for this study and none
of the samples had been submitted to the VDS because of suspected SARS-CoV-2 infection.
Ethical approval for the study was granted by the University of Glasgow Veterinary Ethics
Committee (EA27/20). The investigators (GT, NL, CMS, SS, HS and SJ) were blinded to
sample metadata until the data analysis stage as samples were labelled with a unique
6-digit identifier.

2.2. Serological Testing

Serum and plasma samples were screened for SARS-CoV-2 neutralising antibodies
at a fixed dilution of 1 in 50 using a pseudotype-based virus neutralisation assay (PVNA).
Subsequently SARS-CoV-2 neutralising antibody titres against each variant were calculated
for all samples that tested positive in the screening assay, by performing a PVNA with
serially diluted samples.

Samples collected early in the pandemic were initially tested against pseudotype
virus bearing the S protein of the ancestral variant (Wuhan-Hu-1 D614G (B.1)) only and
new variants were subsequently included in the assay over time, as they emerged in the
UK population.

2.3. Pseudotype-Based Virus Neutralisation Assay

The method for this assay has been described previously [14,38]. Briefly, HEK293T and
HEK293-ACE2 cells (described previously [39]) were maintained in Dulbecco’s modified Ea-
gle’s medium (DMEM) supplemented with 10% foetal bovine serum, 200 mM L-glutamine,
100 µg/mL streptomycin and 100 IU/mL penicillin. HEK293T cells were transfected with
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the appropriate SARS-CoV-2 S gene expression vector (wild type or variant) in conjunction
with p8.91 [40] and pCSFLW [41] using polyethylenimine (PEI, Polysciences, Warring-
ton, PA, USA). HIV (SARS-CoV-2) pseudotypes were harvested from culture fluids 48 h
post-transfection, filtered at 0.45 µm, aliquoted and frozen at −80 ◦C prior to use. The
SARS-CoV-2 spike glycoprotein expression constructs were synthesised by GenScript (Ri-
jswijk, The Netherlands). Construct mutations relative to the Wuhan-Hu-1 sequence are
detailed in Section 1 of the Supplementary Information.

All synthesised S genes were codon-optimised, incorporated the mutation K1255STOP
to enhance surface expression and were cloned into the pcDNA3.1(+) eukaryotic expression
vector. 293-ACE2 target cells [41] were maintained in complete DMEM supplemented with
2 µg/mL puromycin.

The fixed dilution screen was performed with serum/plasma diluted 1:50 in complete
DMEM (in duplicate) for each pseudotype. Diluted samples were incubated with HIV
(SARS-CoV-2) pseudotypes for 1 h and plated onto 239-ACE2 target cells. After 48–72 h,
luciferase activity was quantified by the addition of Steadylite Plus chemiluminescence
substrate and analysis on a Perkin Elmer EnSight multimode plate reader (PerkinElmer,
Beaconsfield, UK). Samples which reduced the infectivity of the pseudotypes by at least
90% were classed as positive. For positive samples, SARS-CoV-2 neutralising activity
was then quantified by serial dilution. Each sample was serially diluted (in triplicate)
from 1:50 to 1:36,450 in complete DMEM prior to incubation with the respective viral
pseudotype. Antibody titre was then estimated by interpolating the dilution of serum,
which reduces the mean infectivity of the triplicate sample to 10% of the value for the no
serum pseudotype control.

For the detection of SARS-CoV-2 antibodies, live virus neutralisation assays have been
shown to have a high level of correlation with pseudovirus-based assays, with both VSV
and lentiviral backbones [42,43].

2.4. Feline-Specific Secondary ELISA

Following supply issues with the commercial DABA kit initially used in this study
(Microimmune SARS-CoV-2 Double Antigen Bridging Assay (COVT016), Clin-Tech, Guild-
ford, England), an in-house feline-specific ELISA was designed by combining and adapting
protocols established previously by Parr et al. (FeLV) [44] and Hughes et al. (Human
SARS-CoV-2) [39].

ELISA plates (Immulon 2HB Flat Bottom MicroTiter Plates, ImmunoChemistry Tech-
nologies, Davis, CA, USA) were coated with SARS-CoV-2 RBD protein diluted to 50 ng per
well in 100 mM sodium bicarbonate and 33 mM anhydrous sodium carbonate buffer for
1 h at room temperature, washed with 1x PBS with 0.1%Tween-20 (wash buffer) and then
blocked for a further hour with a 1x solution of casein (Vector Laboratories, Newark, CA,
USA) diluted in wash buffer.

Plates were then washed before samples diluted to 1:1000 in casein buffer were added
to wells in duplicate and then incubated at room temperature for one hour. Three controls
were used:

• No serum control—casein buffer.
• Negative control—pre-pandemic VDS cat samples that had previously tested negative

for SARS-CoV-2 neutralising antibodies.
• Positive control—a pool of 20 pseudotype neutralisation assay and DABA positive

serum samples identified previously [14].

Plates were washed and biotinylated anti-cat IgG (Vector Laboratories, Newark, CA,
USA), diluted 1:8000 in casein buffer, was added to the plate and incubated for one hour
at room temperature. Plates were washed again and streptavidin horseradish peroxidase
(Vector Laboratories, Newark, CA, USA), diluted 1:8000 in casein buffer, was added and
incubated for 20 min.
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Plates were washed and 10x TMB super-slow substrate (Sigma-Aldrich, Burlington,
MA, USA) was added and incubated at RT for 15 min. Dilute sulphuric acid was then
added as a stop solution.

Within 10 min, the plates were read on a Multiskan plate reader (ThermoFisher,
Waltham, MA, USA) at 450 nm to calculate optical density and at 620 nm to measure
background transmission. Mean OD values for each sample were calculated from the
duplicate measurements. A standard checkerboard assay was conducted to validate the
assay against known positive and negative serum samples and to determine optimal
concentrations of reagents for reducing background readings. With reference to the results
of two other tests, two different ELISA cut-offs were defined (detailed in Section 2 of
Supplementary Information), one with high stringency (OD ≥ 0.5, i.e., clearly positive) and
one with low stringency (OD ≥ 0.1, i.e., equivocal).

2.5. Data Analysis

Duplicate samples were removed and samples from the same animal tested multiple
times were identified; only the earliest positive sample was used to estimate seroprevalence.

Samples were categorised as either:

• Positive neutralising: positive (OD ≥ 0.5) or borderline (0.5 > OD ≥ 0.1) ELISA result
plus a neutralisation titre ≥ 50 (dilution which results in a 90% reduction in infectivity)
against at least one variant.

• Positive non-neutralising: positive ELISA result but no detectable neutralisation titre
(titre of <50).

• Negative: negative ELISA result and no detectable neutralisation titre (titre < 50).

Sampling dates were categorised into seasons: winter (December to January), spring
(March to May), summer (June to August) and autumn (September to November). The
sampled cats were categorised into three breed type groups: purebred (e.g., Siamese and
Ragdoll), non-purebred (e.g., domestic short hair) or unknown (no breed information
available). Four age groups were defined: kitten/junior (<2 years), young adult (≥2 and
<5 years), mature adult (≥5 and <10 years) and senior (≥10 years).

Data were analysed and graphs were prepared using GraphPad Prism 9.3.1. (Graph-
Pad Software Inc, San Diego, CA, USA) and Microsoft Excel. Distribution of data was
assessed using a Shapiro–Wilk normality test. Sample metadata (cat age, sex, breed, and
postcode area), which had been supplied by submitting veterinarians, was acquired from
the VDS database. Differences between groups were assessed for significance in paired data
using a Wilcoxon test and in unpaired data using a Mann–Whitney test. Significance of cat-
egorical data was assessed using a chi-square test or Fisher’s Exact test when assumptions
for each test were met. Correlations were assessed using Spearman’s test.

3. Results
3.1. Samples

After data cleaning, our dataset contained samples from 4385 cats.
Sampling dates ranged from January 2020 to February 2023 (Figure 1A).
Of the cats sampled in the study, 53% were male, 39% were female and 8% were

of unknown sex. Their mean age was five years, the median was three years and when
categorised by breed, 33% were purebred, 58% were non-purebred cats and 9% were of
unknown breed.

The majority of the cats sampled in this dataset were located in England (76%), while
18% were from postcode areas within Scotland, 3% were from Wales, 2% from Northern
Ireland and 1% from the Channel Islands and the Isle of Man. Sample numbers varied
greatly by postcode area and this was not proportionate to the local human population.
Over-represented areas included Glasgow, Edinburgh and Cambridge.
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Figure 1. (A) Bar plot showing the number of samples included in the dataset per month on the
left y axis. On the right y axis, the total number of samples per season in the dataset is shown as a
black line. (B) Stacked bar plot showing the total percentage seropositivity across different seasons.
The darker bars depict positive neutralising samples, and the paler stacked bars show positive
non-neutralising samples.

Samples which displayed a detectable neutralisation titre against at least one variant
were categorised by the variant against which they produced the highest titre, and this is
referred to as variant dominance. For example, a sample with its highest titre against the
Alpha pseudotype is referred to as “Alpha dominant”.
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3.2. Seroprevalence

Positive neutralising samples made up 4.4% of the collection (194/4385)
(95%CI: 3.8%–5%). All positive samples, both positive neutralising and positive non-
neutralising samples, comprised 13.9% of the dataset (609/4385) (95%CI: 12.9%–15%).

SARS-CoV-2 neutralising seroprevalence peaked in the autumn of 2021 with a high of
6.2% (95%CI: 4.4%–8%). Overall seropositivity peaked in the winter of 2022/23 at 20.2%
(95%CI: 15.9%–24.5%) (Figure 1B). Neutralising seroprevalence has remained relatively
stable since the autumn of 2021, between 4% and 6%. This is likely due to a combination of
recent infections and a long-standing immunological response to older variants. There was a
markedly lower ELISA positivity in proportion to neutralising positivity in spring/summer
2021; this time period corresponds to the peak of the Delta wave in humans. ELISA OD
in positive neutralising samples was found to be significantly higher than in positive
non-neutralising samples (p = 0.04). A higher ELISA OD also correlated with a higher
neutralisation titre in positive neutralising samples (r = 0.47 (95%CI: 0.34–0.58), p < 0.0001).

3.2.1. Comparison to Variants in Humans

The emergence of variants in cats mirrored and trailed their appearance in humans
when considering mean titres per season (Figure 2). As BA.1 and its descendent variants
appear to be less immunogenic in cats, current peaks in feline immunity are no longer as
defined as human waves. This is compounded by the fact that dominant titres against
extinct variants, such as Alpha, are still being detected in 2023.
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Figure 2. The upper chart shows the mean titre observed in positive neutralising feline samples and is
plotted per season. The lower chart shows the proportion of human SARS-CoV-2 sequences identified
as different variants over time; human data were obtained via GISAID CoV-Spectrum (GISAID).
A timeline showing major events and emergences of new variants in the UK human population is
shown at the bottom of this figure.

The mean overall titre against each variant, regardless of sample date or dominant
variant, was calculated and is illustrated in Figure 3E. This provides a picture of both
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immunogenicity and levels of cross-neutralisation of different variants. The mean titres
against Omicron and BA.2 were significantly lower than the titres against other variants
(p < 0.0001 on the Kruskal–Wallis test).
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Figure 3. (A) Boxplot of B.1 dominant samples showing median neutralisation titres against different
variants. The blue line shows the mean titre against each variant. (B) Boxplot of Alpha dominant
samples showing median neutralisation titres against different variants. The orange line shows the
mean titre against each variant. (C) Boxplot of Delta dominant samples showing median neutral-
isation titres against different variants. The purple line shows the mean titre against each variant.
(D) Boxplot of Omicron dominant samples showing median neutralisation titres against different
variants. The blue line shows the mean titre against each variant. (E) Boxplot showing median
neutralisation titres against different variants from every neutralising positive sample. (F) Boxplot
showing the median ELISA OD values of each group of variant dominant samples.

3.2.2. B.1 Dominant

Approximately one quarter (26% (50/194)) of all positive neutralising samples were
B.1 dominant. On average, B.1 dominant samples showed moderate neutralisation of
Alpha and Delta variants but low neutralisation of other variants (Figure 3A). Among B.1
dominant samples, the mean neutralising titre against B.1 was 306.

3.2.3. Alpha Dominant

Alpha dominant samples comprised 23% (45/194) of positive neutralising samples.
Alpha dominant samples showed moderate neutralisation both of B.1 and Delta, but very
low neutralisation of all other variants tested; only 4 of 45 Alpha dominant samples had a
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detectable titre against Omicron (BA.1) (Figure 3B). The mean Alpha titre among Alpha
dominant samples was 459.

3.2.4. Delta Dominant

Delta dominant samples comprised 43% (84/194) of all positive neutralising samples.
Delta dominant samples demonstrated moderate neutralisation of B.1 and Alpha and low
neutralisation of both Omicron and BA.2 (Figure 3C). The mean titre of Delta dominant
samples was 505.

3.2.5. Omicron Dominant and Post-Omicron Dominant

It was found that 4% (8/194) of positive neutralising samples were Omicron dominant.
Omicron dominant samples not only displayed a significantly lower mean dominant titre
(93, p < 0.0001) compared to other variant dominant groups, but they also showed very low
levels of neutralisation of other variants; just a single Omicron dominant sample displayed
a detectable Delta titre, and none had detectable titres against any other variant (Figure 3D).
Omicron dominant samples also had a significantly lower mean ELISA OD (p = 0.0037) than
any other variant dominant sample (Figure 3F), strengthening the evidence for Omicron
having lower immunogenicity in cats. The mean titre of Omicron dominant samples was
98, significantly lower than the mean dominant titre for B.1, Alpha and Delta dominant
samples (p = 0.02).

Of the post-Omicron variants, one sample was found to be BA.2 dominant, four were
BA.5 dominant and two were BQ.1.1 dominant. No samples were found to be XBB domi-
nant. Due to low sample sizes, mean titres were not calculated for these dominance groups,
however, all seven post-Omicron dominant samples showed negligible neutralisation of
the pre-Omicron variants B.1, Alpha and Delta. However, cross-neutralisation of other
post-Omicron variants was detected (Table 1).

Table 1. Table showing the SARS-CoV-2 neutralising antibody titres against different variants for
the seven post-Omicron dominant samples in the dataset. The dominant titre for each sample is
highlighted in green. ELISA OD is shaded in shades of blue according to strength with higher OD
shown as a darker shade.

Sample Sampling
Date

ELISA
OD B.1 Titre Alpha

Titre
Delta
Titre

BA.1
Titre

BA.2
Titre

BA.5
Titre

BQ.1.1
Titre

XBB
Titre

A 20/05/2022 0.94035 0 0 0 79 309 0
B 31/08/2022 0.5318 0 0 0 0 58 121
J 09/09/2022 0.5393 0 0 0 0 0 80

M 14/11/2022 3.0546 0 0 0 69 328 1320
X 09/01/2023 0.9723 0 74 0 59 124 448 267 0
T 16/01/2023 0.5637 0 0 0 55 342 393 533 68
D 22/02/2023 0.2621 0 0 0 0 61 332 391 0

3.3. Demographic Analysis

The strength of the antibody response in the different breed groups was similar and no
significant difference in mean neutralisation titre was observed (p = 0.3) (Figure 4C). There
was, however, a significant difference observed in SARS-CoV-2 neutralising seroprevalence,
with purebred cats found to have significantly higher seroprevalence values than non-
purebred cats (p = 0.008).
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Figure 4. (A) Graph showing the total seroprevalence in different breeds of cat. The darker bars
show neutralising seroprevalence and the stacked paler bars show non-neutralising seroprevalence.
(B) Boxplot showing the mean titres of neutralising positive cats of different breeds. (C) Boxplot
showing the mean titres of the three breed groups. There was no significant difference between the
mean titres of purebred and non-purebred cats on a Mann–Whitney test (p = 0.2).

The breed groups were then sub-divided into specific breeds and those breeds with a
sample size of n ≥ 50 were further analysed. A significant difference was observed between
the mean neutralisation titres elicited by specific breed groups (p = 0.01) (Figure 4B),
with Ragdoll and “British” breeds having the highest mean titres and Maine Coon and
Siamese having the lowest. Although both Bengal and Siamese cats were more likely to be
seropositive than other breeds, with both having a SARS-CoV-2 neutralising seroprevalence
>8% (Figure 4A), this difference was not statistically significant.

Male and female cats showed a similar strength of antibody response against SARS-
CoV-2; no significant difference was found between the mean neutralisation titres of
samples from male and female cats (p = 0.24) (Figure 5A). There was also no significant
difference found between the neutralising seroprevalence in male and female cats (p = 0.87).
However, based on the ELISA results, male cats were found to have a significantly higher
SARS-CoV-2 seroprevalence than females (p = 0.0089) (Figure 5B).

There was no significant difference found between the age of cats providing positive
and negative samples (p = 0.12), with a mean age of approximately five years for both
groups (Figure 6C).
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Figure 5. (A) Boxplot showing the mean titres of positive neutralising samples of each sex. It was
observed that there was no significant difference between the mean titre of male and female cats
using a Mann-Whitney test (p = 0.2). (B) Bar chart showing the total % seropositivity for sam-
ples from male and female cats. The darker coloured bars show neutralising seropositivity and
the lighter stacked bars show non-neutralising seropositivity. On a Fisher’s Exact test, the differ-
ence in total seroprevalence between male and female cats was found to be statistically significant
(p = 0.0089) (depicted with an **), however, there was no significant difference between the neutralis-
ing seroprevalence of male and female cats (p = 0.8) (depicted as ns).
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Figure 6. (A) Boxplot showing the mean neutralising titre of samples from cats in different age
groups. (B) Bar graph showing total % seropositivity in different age groups. The darker bars
show neutralising seroprevalence and the lighter stacked bars show non-neutralising seroprevalence.
(C) Scatterplot showing the mean age of sampled cats. Mean age is shown as a black line. There was
found to be no significant difference in mean age of cats with positive and negative results (p = 0.12).
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It was found that cats in the young adult age category were significantly more likely to
be seropositive (p = 0.0024), as well as neutralisation seropositive (p = 0.0002) than those in
the other age groups (Figure 6B). Despite this result, the strength of the immune response,
in terms of antibody titre, remained consistent across all age groups (Figure 6A) with no
significant difference between the mean neutralisation titres of the cats across all five groups
(p = 0.75).

As the majority of postcode areas had a small sample size, no analysis of seropreva-
lence was conducted on individual postcode areas. When organised by country, however,
there was found to be no significant difference in seroprevalence between samples originat-
ing in Scotland, England or Wales (p = 0.13). Due to the small sample size, samples from
Northern Ireland and the Channel Islands and the Isle of Man were not included in this
analysis.

4. Discussion

The seroprevalence of SARS-CoV-2 neutralising antibodies in cats of 4.4% described
here represents an increase on the figure of 3.2% for February 2022 reported previously [14].
Combining the seroprevalence measured by the assay for SARS-CoV-2 neutralising anti-
bodies and the RBD ELISA suggested a total seroprevalence of 13.9%, indicating that the
majority of antibodies detected by the RBD ELISA (68.3%) are non-neutralising. Accord-
ingly, estimates of seroprevalence based on neutralisation assays alone may underestimate
the true seroprevalence. As samples with SARS-CoV-2 neutralising activity had a higher
mean ELISA OD than non-neutralising samples, the higher seropositivity measured by
RBD ELISA may suggest that the neutralising antibody response wanes more rapidly than
the overall anti-RBD response and that the excess of non-neutralising samples detected
with the RBD ELISA may consist of samples from animals in which either (i) no neutralising
antibodies were elicited or (ii) the neutralising response has waned. The non-neutralising
component of the anti-RBD response may contribute to protective immunity by processes
such as opsonisation as documented in human cases of SARS-CoV-2 infection [45]. Ad-
ditionally, feline SARS-CoV-2 infections may elicit an antibody response to other viral
proteins, such as the nucleocapsid which is known to elicit a strong but transient immune
response in humans [46].

It can be observed from serology that the pattern of infections in cats throughout
the pandemic appears to mirror the waves of human infections, particularly for the B.1,
Alpha and Delta variants. For Omicron BA.1 and subsequent variants, however, the
serological picture appears to be more complex; this is likely due to accumulating levels
of immunity against older variants combined with recent infections or re-infections with
the less immunogenic Omicron variants. It is therefore possible that low Omicron spike
immunogenicity in cats has resulted in a decline in detectable seroprevalence despite there
being no decline in the actual number of feline infections. Further testing of immunity to
more conserved regions on viral proteins that are less antigenically variable than the spike,
for example, the nucleocapsid [47], may provide further clarity in this regard. In contrast to
humans, SARS-CoV-2 seroprevalence in cats is unaffected by vaccination and so the true
picture of the immune response generated against these novel variants in the population
may be observed.

It has been previously documented that the Omicron BA.1 variant and its sub-variants
are less immunogenic in humans than the ancestral B.1 variant [36,48,49]. During the
Omicron wave in early 2022, there was significant concern about this variant due to its high
transmissibility [50], its propensity for immune escape [36,51] and vaccine-based immune
evasion [36,52,53]. These adaptations are believed to have arisen from alterations in the cell
entry mechanism of the virus combined with changes in the antigenicity of the Omicron
spike protein [36,54]. In companion animals, Omicron has been reported to be less virulent
than previous variants [55], and cats are also believed to be less susceptible to infection with
Omicron compared to pre-Omicron variants [56]. These combined factors may account for
the low number of Omicron-dominant samples observed in this study.
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This study found certain demographic groups of cats had a higher SARS-CoV-2
seroprevalence than others. Purebred cats appeared more susceptible to the virus than
non-purebred cats. This may be due to purebred cats being more likely to be kept in-
doors [57], leading to increased proximity and interactions with their human owners and
consequently, an increased risk of infection. Additionally, different pedigree breeds have
genetic propensities for different behavioural patterns and “personalities” [58] so this
difference in seroprevalence may be due to the cat’s lifestyle. It may be hypothesised that
there may also be a genetic component to this higher susceptibility in pure-bred cats. Due
to the strict breeding of purebred cats, a number of breeds are known to be more susceptible
to certain diseases or abnormalities [59,60] and it is possible that immune abnormalities in
certain pedigree breeds could contribute to this increased susceptibility to SARS-CoV-2.

Cats between the ages of two and five had higher seroprevalence than other age groups.
This could not be attributed to a stronger SARS-CoV-2 neutralising antibody response,
however, as mean neutralisation titres were similar across age groups. It is possible that
this higher seroprevalence was due to particular behavioural patterns in this group of cats
resulting from hormonal differences.

Male cats were found to have a higher seroprevalence than females. Again, this is
likely due to a confounding variable such as behaviour. It has been documented that male
cats tend to be “friendlier” to their owners than female cats and have increased contact
with them [61]. This higher male SARS-CoV-2 seroprevalence could be a reflection of this
greater level of close contact with their human owners. It is also a possibility that male cats
are inherently more susceptible to SARS-CoV-2—males have been found to have a higher
susceptibility to a number of other viral diseases including feline infectious peritonitis [62]
and FIV [63,64].

It should be noted that the samples analysed in this study were collected as residual
material from routine diagnostic testing, and thus the majority of samples were collected
from cats that were under observation at the time of sampling, whether for a suspected
illness, pre-breeding testing or a routine follow-up for an existing condition. A third, 33%,
of this dataset, comprised purebred cats, whereas purebred cats are believed to make up
just 10% of the UK’s feline population [65,66]. This overrepresentation of samples from
purebred cats may have biased the estimated seroprevalence.

In the absence of sequence data with which viral lineages may be assigned, it was
not possible to accurately determine whether the dominant variant inferred by serology
was the same variant that actually infected the cat. Further studies that incorporate viral
genomic sequencing and PCR testing of suspected cases are merited and would determine
more accurately the infecting variant as well as detect onward transmission events between
cats, humans and potentially other species. It is known that dogs are also susceptible to
SARS-CoV-2 [24,67,68] and as they are in frequent contact with both humans and cats, there
is a requirement for broader studies to investigate comprehensively within-household trans-
mission dynamics. Similarly, further research into the contribution of the non-neutralising
antibodies detected by RBD ELISA to the broader humoral immune response could shed
more light on the nature of protective immunity to SARS-CoV-2 in cats.

5. Conclusions

The relatively stable seroprevalence of SARS-CoV-2 in cats despite the lower immuno-
genicity of the Omicron variant further impresses the need for more widespread testing.
With an estimated 11 million pet cats in the UK [69], a seroprevalence of 13.9% equates to
~1.5 million SARS-CoV-2 infected animals. Availability of testing and further information
on the virulence and pathogenicity of SARS-CoV-2 in companion animals will assist vet-
erinarians in determining in which cases SARS-CoV-2 infection should be considered a
differential diagnosis. Unfortunately, to date, due to the UK Government’s narrow case
definition [70], the difficulty of random sampling and the lack of veterinary diagnostic
testing for SARS-CoV-2, research efforts to deduce the clinical signs and long-term effects
associated with feline infection with this virus have been somewhat hampered. Only by
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utilising broad research methodology can we clearly understand the role of cats in the
transmission of SARS-CoV-2, as well as ascertain the true impact of the virus on both
animal health and the continuing threat of infection to humans and other species.
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