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Abstract. The use of functional imaging such as PET in radiother-
apy (RT) is rapidly expanding with new cancer treatment techniques.
A fundamental step in RT planning is the accurate segmentation of tu-
mours based on clinical diagnosis. Furthermore, recent tumour control
techniques such as intensity modulated radiation therapy (IMRT) dose
painting requires the accurate calculation of multiple nested contours
of intensity values to optimise dose distribution across the tumour. Re-
cently, convolutional neural networks (CNNs) have achieved tremendous
success in image segmentation tasks, most of which present the output
map at a pixel-wise level. However, its ability to accurately recognize
precise object boundaries is limited by the loss of information in the
successive downsampling layers. In addition, for the dose painting strat-
egy, there is a need to develop image segmentation approaches that re-
producibly and accurately identify the high recurrent-risk contours. To
address these issues, we propose a novel hybrid-CNN that integrates a
kernel smoothing-based probability contour approach (KsPC) to produce
contour-based segmentation maps, which mimic expert behaviours and
provide accurate probability contours designed to optimise dose paint-
ing/IMRT strategies. Instead of user-supplied tuning parameters, our
final model, named KsPC-Net, applies a CNN backbone to automati-
cally learn the parameters and leverages the advantage of KsPC to si-
multaneously identify object boundaries and provide probability contour
accordingly. The proposed model demonstrated promising performance
in comparison to state-of-the-art models on the MICCAI 2021 challenge
dataset (HECKTOR).

Keywords: Image Segmentation · PET imaging · Probability Contour
· Dose painting · Deep learning.

1 Introduction

Fluorodeoxyglucose Positron Emission Tomography (PET) is widely recognized
as an essential tool in oncology [10], playing an important role in the staging,
monitoring, and follow-up radiotherapy (RT) planning [2, 19]. Delineation of Re-
gion of Interest (ROI) is a crucial step in RT planning. It enables the extraction
of semi-quantitative metrics such as standardized uptake values (SUVs), which
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normalize pixel intensities based on patient weight and radiotracer dose [20].
Manual delineation is a time-consuming and laborious task that is prone to poor
reproducibility in medical imaging, and this is particularly true for PET, due
to its low signal-to-noise ratio and limited spatial resolution [10]. In addition,
manual delineation depends heavily on the expert’s prior knowledge, which often
leads to large inter-observer and intra-observer variations [8]. Therefore, there
is an urgent need for developing accurate automatic segmentation algorithms in
PET images which will reduce expert workload, speed up RT planning while
reducing intra-observer variability.

In the last decade, CNNs have demonstrated remarkable achievements in
medical image segmentation tasks. This is primarily due to their ability to learn
informative hierarchical features directly from data. However, as illustrated in
[9, 23], it is rather difficult for CNNs to recognize the object boundary precisely
due to the information loss in the successive downsampling layers. Despite the
headway made in using CNNs, their applications have been restricted to the
generation of pixel-wise segmentation maps instead of smooth contour. Although
CNNs may yield satisfactory segmentation results, low values of the loss function
may not always indicate a meaningful segmentation. For instance, a noisy result
can create incorrect background contours and blurry object boundaries near the
edge pixels [6]. To address this, a kernel smoothing-based probability contour
(KsPC) approach was proposed in our previous work [22]. Instead of a pixel-wise
analysis, we assume that the true SUVs come from a smooth underlying spatial
process that can be modelled by kernel estimates. The KsPC provides a surface
over images that naturally produces contour-based results rather than pixel-wise
results, thus mimicking experts’ hand segmentation. However, the performance
of KsPC depends heavily on the tuning parameters of bandwidth and threshold
in the model, and it lacks information from other patients.

Beyond tumour delineation, another important use of functional images, such
as PET images is their use for designing IMRT dose painting (DP). In partic-
ular, dose painting uses functional images to paint optimised dose prescriptions
based on the spatially varying radiation sensitivities of tumours, thus enhancing
the efficacy of tumour control [14, 18]. One of the popular DP strategies is dose
painting by contours (DPBC), which assigns a homogeneous boost dose to the
subregions defined by SUV thresholds. However, there is an urgent need to de-
velop image segmentation approaches that reproducibly and accurately identify
the high recurrent-risk contours [18]. Our previously proposed KsPC provides
a clear framework to calculate the probability contours of the SUV values and
can readily be used to define an objective strategy for segmenting tumours into
subregions based on metabolic activities, which in turn can be used to design
the IMRT DP strategy.

To address both tumour delineation and corresponding dose painting chal-
lenges, we propose to combine the expressiveness of deep CNNs with the versa-
tility of KsPC in a unified framework, which we call KsPC-Net. In the proposed
KsPC-Net, a CNN is employed to learn directly from the data to produce the
pixel-wise bandwidth feature map and initial segmentation map, which are used
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to define the tuning parameters in the KsPC module. Our framework is com-
pletely automatic and differentiable. More specifically, we use the classic UNet
[17] as the CNN backbone and evaluate our KsPC-Net on the publicly avail-
able MICCAI HECKTOR (HEad and neCK TumOR segmentation) challenge
2021 dataset. Our proposed KsPC-Net yields superior results in terms of both
Dice similarity scores and Hausdorff distance compared to state-of-art models.
Moreover, it can produce contour-based segmentation results which provide a
more accurate delineation of object edges and provide probability contours as a
byproduct, which can readily be used for DP planning.

2 Methods

2.1 Kernel Smoothing based Probability Contour

Kernel-based method and follow up approach of modal clustering [16, 13] have
been used to cluster high-dimensional random variables and natural-scene im-
age segmentation. In this work, we propose to model the pixel-specific SUV as a
discretized version of the underlying unknown smooth process of “metabolic ac-
tivity”. The smooth process can then be estimated as kernel smoothed surface of
the SUVs over the domain of the entire slice. In particular, let Y = (y1, y2, ..., yN )
denote N pixel’s SUV in a 2D PET image sequentially, and xi = (xi1, xi2), i =
1, ..., N denote position vector with xi1 and xi2 being the position in 2D respec-
tively. Note that xi ∈ Rd and d = 2 in our case. We assume that for each position
vector x, the SUV represents the frequency of x appearing in the correspond-
ing grid. The SUV surface can therefore be modelled as kernel density estimate
(KDE) [15, 3] of an estimated point x, which is defined generally as

f̂(x;H) =

(
N∑
i=1

yi

)−1 y1+...+yN∑
t=1

KH(x− xt) , (1)

where K is a kernel function and H is a symmetric, positive definite, d×d matrix
of smoothing tuning parameters, called bandwidth which controls the orientation
and amount of smoothing via the scaled kernel KH(x) = |H|−1/2K(|H|−1/2 x).
On the other hand, since xt is counted yi times at the same position, Equation
1 can be further simplified as

f̂(x;H) =

(
N∑
i=1

yi

)−1 N∑
i=1

KH(x− xi)yi . (2)

A scaled kernel is positioned so that its mode coincides with each data point xi

which is expressed mathematically as KH(x − xi). In this paper, we have used
a Guassian kernel which is denoted as:

KH(x− xi) = (2π)−1/2 |H|−1/2 exp (−1

2
(x− xi)

T H−1(x− xi)),
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which is a normal distribution with mean xi and variance-covariance matrix H.
Therefore, we can interpret f̂ in Equation (2) as the probability mass of the data
point x which is estimated by smoothing the SUVs of the local neighbourhood
using the Gaussian kernel. The resulting surface built by the KDE process can
be visualized in Fig 1(c). By placing a threshold plane, a contour-based segmen-
tation map can naturally be obtained. Note that one can obtain a pixel-based
segmentation map, by thresholding the surface at the observed grid points.

(a) (b) (c)

Fig. 1: A visualization example of how KsPC works: (a) An example of a PET
image (b) Grid-level intensity values as observations (c) The resulting smoothed
surface built by KsPC with a threshold plane.

After delineating the gross tumour volume, a follow-up application of the
kernel smoothed surface is to construct probability contours. Mathematically, a
100ω% region of a density f is defined as the level set L(fω) = {f(x) ≥ fω}
with its corresponding contour level fω such that P(x∈ L(fω) = 1− ω, where x
is a random variable and L(fω) has a minimal hypervolume [11]. In other words,
for any ω ∈ (0, 1), the 100ω% contour refers to the region with the smallest area
which encompasses 100ω% of the probability mass of the density function [11].
In practice, fω can be estimated using the following result.

Result. The estimated probability contour level fω can be computed as the
ω-th quantile of f̂ω of f̂(x1;H), ..., f̂(xn;H) (Proof in supplementary materials).

The primary advantage of utilizing probability contours is their ability to
assign a clear probabilistic interpretation on the defined contours, which are
scale-invariant [5]. This provides a robust definition of probability under the
perturbation of the input data. In addition, these contours can be mapped to
the IMRT dose painting contours, thus providing an alternative prescription
strategy for IMRT. Examples of the application of probability contours will be
demonstrated and explained in Section 4.2.

2.2 The KsPC-Net Architecture

In the KsPC module, the model performance heavily depends on the bandwidth
matrix H and it is often assumed that each kernel shares the same scalar band-
width parameter. However, one may want to use different amounts of smoothing
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in the kernel at different grid positions. The commonly used approach for band-
width selection is cross-validation [4], which is rather time-consuming even in
the simpler scalar situation. In this paper, we instead use the classic 2D-Unet
[17] as our CNN backbone to compute the pixel-level bandwidth feature map,
which informs the KsPc bandwidth. Additionally, we obtain the optimal thresh-
old for constructing the KsPC contour from the initial segmentation map. As
shown in Fig 2 the proposed KsPC-Net integrates the KsPC approach with a
CNN backbone (UNet) in an end-to-end differentiable manner. First, the ini-
tial segmentation map and pixel-level bandwidth parameter map h(xi1, xi2) of
KsPC are learned from data by the CNN backbone. Then the KsPC module
obtains the quantile threshold value for each image by identifying the quantile
corresponding to the minimum SUV of the tumour class in the initial segmen-
tation map. The next step involves transmitting the bandwidth map, quantile
threshold, and raw image to KsPC module to generate the segmentation map
and its corresponding probability contours. The resulting output from KsPC is
then compared to experts’ labels using a Dice similarity loss function, referred
to KsPC loss. Additionally, the initial Unet segmentation can produce another
loss function, called CNN loss, which serves as an auxiliary supervision for the
CNN backbone. The final loss can then be constructed as the weighted sum of
CNN loss and KsPC loss. By minimizing the final loss, the error can be back-
propagated through the entire KsPC architecture to guide the weights updating
the CNN backbone.

CNN loss

Back prop.

Input PET image

Predicted map

Expert’s label

U-Net

Bandwidth map Initial segmentation

Weighted  
loss

KsPC loss

KsPC 
module

Fig. 2: The architecture of KsPC-Net. KsPC-Net is an end-to-end trainable
framework with KsPC module. In contrast to the traditional kernel smooth-
ing process, bandwidth parameters learned by the CNN backbone are pixel-wise
functions h(xi1, xi2) rather than scalars.
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2.3 Loss function

The Dice similarity coefficient is widely employed to evaluate segmentation mod-
els. We utilize the Dice loss function to optimize the model performance during
training, which is defined as:

Ldice(y, ŷ) = 1−
2
∑N

i yiŷi∑N
i yi +

∑N
i ŷi + ϵ

,

where yi is the label from experts and ŷi is the predicted label of i-th pixel. N
is the total number of pixels and ϵ is a small constant in case of zero division.
As shown in Fig 2, we construct the weighted Dice loss to train the model as
follows:

Lfinal = α ∗ LCNN + (1− α) ∗ LKsPC ,

where Lfinal denotes the weighed dice loss while LCNN and LKsPC denotes the
CNN loss and KsPC loss, respectively. In addition, α is a balancing parameter
and is set to be 0.01 in this work.

3 Experiments

3.1 Dataset

The dataset is from the HECKTOR challenge in MICCAI 2021 (HEad and neCK
TumOR segmentation challenge). The HECKTOR training dataset consists of
224 patients diagnosed with oropharyngeal cancer[1]. For each patient, FDG-
PET input images and corresponding labels in binary description (0s and 1s)
for the primary gross tumour volume are provided and co-registered to a size
of 144 × 144 × 144 using bounding box information encompassing the tumour.
Five-fold cross-validation is used to generalize the performance of models.

3.2 Implementation Details

We used Python and a trained network on a NVIDIA Dual Quadro RTX machine
with 64 GB RAM using the PyTorch package. We applied a batch size of 12
and the Adam algorithm [12] with default parameters to minimize the dice loss
function. All models were trained for 300 epochs. Each convolutional layer is
followed by RELU activation and batch normalization.

4 Results

4.1 Results on HECKTOR 2021 dataset

To evaluate the performance of our KsPC-Net, we compared it with the results
of 5-fold cross-validation against three widely-used models namely, the standard
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2D Unet, the 2D residual Unet and the 3D Unet. Additionally, we compare our
performance against newly developed approaches MSA-Net [7] and CCUT-Net
[21] which were reported in the HECKTOR 2021 challenges [1]. To quantify the
performance, we report several metrics including Dice similarity scores, Preci-
sion, Recall, and Hausdorff distance. Table 1 shows the quantitative comparison
of different approaches on HECKTOR dataset. It is worth mentioning that since
our KsPC-Net is in a 2D Unet structure, the Hausdorff distance here was calcu-
lated on slice averages to use a uniform metric across all 2D and 3D segmentation
models. However, the results of 2D Hausdorff distances of MSA-Net and CCUT-
Net are not available and therefore they are omitted in the table of comparison.

Table 1: Mean segmentation results of different models and our proposed model.
The model with best performance for each metric is indicated in bold*.
Method Dice Score Hausdorff Dist Precision Recall

2D-Unet 0.740 0.561 0.797 0.873
Res-Unet 0.680 0.611 0.740 0.841
3D-Unet 0.764 0.546 0.839* 0.797
MSA-Net 0.757 - 0.788 0.785
CCUT-Net 0.750 - 0.776 0.804
KsPC-Net(Ours) 0.768* 0.521* 0.793 0.911*

The results clearly demonstrate that the proposed KsPC-Net is effective in
segmenting H&N tumours, achieving a mean Dice score of 0.768. This repre-
sents a substantial improvement over alternative approaches, including 2D-UNet
(0.740), 3D U-Net (0.764), Residual-Unet (0.680), MSA-Net (0.757) and CCUT-
Net (0.750). While we acknowledge that there was no statistically significant
improvement compared to other SOTA models, it is important to note that our
main goal is to showcase the ability to obtain probability contours as a natural
byproduct while preserving state-of-the-art accuracy levels. On the other hand,
in comparison to the baseline 2D-Unet model, KsPC-Net yields a higher Re-
call (0.911) with a significant improvement (4.35%), indicating that KsPC-Net
generates fewer false negatives (FN). Although the Precision of KsPC-Net is
slightly lower than the best-performing method (3D Unet), it achieves a rela-
tively high value of 0.793. In addition, the proposed KsPC-Net achieves the best
performance on Hausdorff distance among the three commonly used Unet mod-
els (2D-Unet, Res-Unet and 3D-Unet), which indicates that KsPC-Net exhibits
a stronger capacity for accurately localizing the boundaries of objects. This is
consistent with the mechanisms of KsPC, which leverages neighbouring weights
to yield outputs with enhanced smoothness.

4.2 Probability Contours

One of the byproducts of using the kernel-smoothed densities to model the SUVs
is the associated probability contours, which can be readily used to develop a
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comprehensive inferential framework and uncertainty quantification. For exam-
ple, Fig 3 provides two examples of PET image segmentation maps by KsPC-
Net and their corresponding probability contours in the last column. There are
5 contours in each case which is linear in probability space, in the sense that
each contour encloses 10%, 30%, 50%, 70% and 90% probability mass respec-
tively (from inner to outer), thus dividing the density surface into subregions
with attached probability mass.

PET images GTVs KsPC-Net Probability Contours

Fig. 3: Illustrations of the segmentation results and probability contours on two
examples. The four columns are original PET images, ground truth provided
by experts, segmentation maps from KsPC-Net and its probability contours (in
10%, 30%, 50%, 70%, 90% respectively).

These probability contours can provide a rigorous framework for designing
the number and magnitude of SUV thresholds for designing optimal DP strate-
gies. Since the SUVs are smoothed by the kernel density heights, the inner 10%
probability contour corresponds to the subregion with relatively higher SUVs.
In other words, there is an inverse mapping between the probability contours
and the amount of dose boost assigned to subvolumes.

5 Conclusion

In this paper, we present a novel network, KsPC-Net, for the segmentation in
2D PET images, which integrates KsPC into the UNet architecture in an end-to-
end differential manner. The KsPC-Net utilizes the benefits of KsPC to deliver
both contour-based and grid-based segmentation outcomes, leading to improved
precision in the segmentation of contours. Promising performance was achieved
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by our proposed KsPC-Net compared to the state-of-the-art approaches on the
MICCAI 2021 challenge dataset (HECKTOR). It is worth mentioning that the
architecture of our KsPC-Net is not limited to Head & Neck cancer type and can
be broadcast to different cancer types. Additionally, a byproduct application of
our KsPC-Net is to construct probability contours, which enables probabilistic
interpretation of contours. The subregions created by probability contours allow
for a strategy planning for the assigned dose boosts, which is a necessity for the
treatment planning of radiation therapy for cancers.
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