

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  JULY 13 2023

Machine learning opens a doorway for microrheology with
optical tweezers in living systems
Matthew G. Smith  ; Jack Radford  ; Eky Febrianto; Jorge Ramírez  ; Helen O’Mahony  ;
Andrew B. Matheson; Graham M. Gibson; Daniele Faccio  ; Manlio Tassieri  

AIP Advances 13, 075315 (2023)
https://doi.org/10.1063/5.0161014

 14 July 2023 09:11:26

https://pubs.aip.org/aip/adv/article/13/7/075315/2902123/Machine-learning-opens-a-doorway-for-microrheology
https://pubs.aip.org/aip/adv/article/13/7/075315/2902123/Machine-learning-opens-a-doorway-for-microrheology?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/adv/article/13/7/075315/2902123/Machine-learning-opens-a-doorway-for-microrheology?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0001-6324-0982
javascript:;
https://orcid.org/0000-0003-4807-1628
javascript:;
javascript:;
https://orcid.org/0000-0002-8946-3786
javascript:;
https://orcid.org/0009-0008-0485-8676
javascript:;
javascript:;
javascript:;
https://orcid.org/0000-0001-8397-334X
javascript:;
https://orcid.org/0000-0002-6807-0385
javascript:;
https://doi.org/10.1063/5.0161014
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2073912&setID=592934&channelID=0&CID=758459&banID=521009778&PID=0&textadID=0&tc=1&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fadv%22%5D&mt=1689325886347208&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fadv%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0161014%2F18041670%2F075315_1_5.0161014.pdf&hc=eb543085b716ed7222f99cd7d080fd6286ce82d7&location=


AIP Advances ARTICLE pubs.aip.org/aip/adv

Machine learning opens a doorway
for microrheology with optical tweezers
in living systems

Cite as: AIP Advances 13, 075315 (2023); doi: 10.1063/5.0161014
Submitted: 7 June 2023 • Accepted: 29 June 2023 •
Published Online: 13 July 2023

Matthew G. Smith,1 Jack Radford,2 Eky Febrianto,3 Jorge Ramírez,4 Helen O’Mahony,1

Andrew B. Matheson,5 Graham M. Gibson,2 Daniele Faccio,2 and Manlio Tassieri1,a)

AFFILIATIONS
1 Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT,
United Kingdom

2School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
3Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT,
United Kingdom

4Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid,
José Gutiérrez Abascal 2, 28006 Madrid, Spain

5School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering,
Heriot Watt University, Edinburgh, United Kingdom

a)Author to whom correspondence should be addressed: Manlio.Tassieri@glasgow.ac.uk

ABSTRACT
It has been argued that linear microrheology with optical tweezers (MOT) of living systems “is not an option” because of the wide gap
between the observation time required to collect statistically valid data and the mutational times of the organisms under study. Here, we have
explored modern machine learning (ML) methods to reduce the duration of MOT measurements from tens of minutes down to one second
by focusing on the analysis of computer simulated experiments. For the first time in the literature, we explicate the relationship between
the required duration of MOT measurements (Tm) and the fluid relative viscosity (ηr) to achieve an uncertainty as low as 1% by means of
conventional analytical methods, i.e., Tm ≅ 17η3

r minutes, thus revealing why conventional MOT measurements commonly underestimate
the materials’ viscoelastic properties, especially in the case of high viscous fluids or soft-solids. Finally, by means of real experimental data,
we have developed and corroborated an ML algorithm to determine the viscosity of Newtonian fluids from trajectories of only one second
in duration, yet capable of returning viscosity values carrying an error as low as ∼0.3% at best, hence opening a doorway for MOT in living
systems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0161014

INTRODUCTION

Since their first appearance in the 1970s,1–3 Optical Tweezers
(OTs) have been employed as extremely sensitive force transduc-
ers across a variety of disciplines within the natural sciences.4–9

OT rigs rely on the ability of a highly focused laser beam to opti-
cally trap in 3D micron sized dielectric particles suspended in a
fluid. This is achieved by optically guiding a monochromatic laser

beam through a microscope objective with a high numerical aper-
ture. Once trapped, the particle experiences a quadratic potential
and therefore a restoring force that is linearly proportional to the
distance of the particle from the trap center, with a constant of
proportionality of the order of a few μN/m. Consequently, by mea-
suring the particle position to a high spatial resolution (i.e., of
a few nm), scientists have successfully measured forces as low as a
few pN, such as those generated by the thermally driven motion of
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water molecules10 or those exerted by single motor proteins.11 Inter-
estingly, accessing particles’ trajectory to high temporal and spatial
resolutions is one of the requirements underpinning microrheology
techniques,12,13 as elucidated in this paper for the specific case of
optical tweezers.

Microrheology is a branch of rheology (the study of the flow
of matter) and is focused on the characterization of the mechani-
cal properties of complex materials by performing measurements at
micron length scales, often with sample volumes as little as a few
microliters or even within living cells.14 This offers an indisputable
advantage over classical bulk rheology techniques, which require
milliliters of samples, especially in biophysical studies where samples
are often rare and/or precious and come in small quantities (e.g., a
few microliters). Microrheology techniques are categorized as either
“passive” or “active” depending on whether the motion of the tracer
particles is thermally driven or induced by an external force field,
respectively. Interestingly, using optical tweezers is one such tech-
nique that can be defined as a hybrid microrheology tool15 because
of the quadratic nature of the optical potential constraining the
motion of the probe particle. Indeed, despite tracer particles being
optically trapped (within the focal plane of a microscope), at short
time scales (i.e., for small displacements), the restoring force exerted
on the probe is weak enough for the particle to experience Brown-
ian motion because of the thermal fluctuations of the molecules of
the suspending media. Nonetheless, active microrheology with OTs
is still possible either (i) by moving the trapping laser, often in a
sinusoidal pattern, as elucidated in Refs. 16 and 17 or (ii) by using
the transfer of spin angular momentum to govern the angular rota-
tion of an optically trapped birefringent probe particle, as pioneered
by Rubinsztein-Dunlop et al.18–20 However, as we shall further cor-
roborate in this work, a necessary condition for executing either
passive or active linear microrheology with optical tweezers (MOT)
measurements is to perform “sufficiently” long measurements, com-
monly of the order of tens of minutes.17,21 This is because most of
the analytical methods used to determine the materials’ viscoelas-
tic properties are underpinned by statistical mechanics principles,
whose accuracy relies on the analysis of a significant number of
independent readings. Therefore, as pointed out by Tassieri,17 it
may not be appropriate to adopt MOT for studies involving liv-
ing systems as biological processes occur at time-scales ranging
from 10−2 to 102 s,22–25 and therefore, the viscoelastic properties
of biological systems may not be considered time-invariant during
the measurements. However, previous studies on microrheology of
active actin-myosin gels26 and of living cells27 demonstrated that
“for time scales less than 1 s,” thermally excited motion dominates
and the generalized Stokes–Einstein relation (that underpins passive
microrheology methods) is still applicable. The above-mentioned
statement was further corroborated in a recent publication by
Hardiman et al.,28 in which (i.e., Fig. 5) the normalized increment
distributions evaluated at different lag-times are reported, which
are near-Gaussian for short lag-times and broad tailed for longer
lag-times.

Hence, the aim of this work is to explore modern Machine
Learning (ML) methods to reduce the duration of MOT measure-
ments and thus allow scientists to perform microrheology measure-
ments in living systems. In order to achieve such a challenging aim,
in this work, we have taken a first step toward a possible solution of
the problem by focusing initially on the analysis of computer simu-

lated trajectories of an optically trapped particle suspended within a
set of Newtonian fluids having viscosity values spanning three deci-
mals, i.e., from 10−3 to 1 Pa s, before looking at some experimentally
obtained trajectories. The goal was to develop a machine learning
(ML) algorithm that would effectively estimate fluids’ viscosity from
relatively short measurements (≤1 s) and compare the outcomes
with those obtained by analyzing the same set of data with con-
ventional methods based on statistical mechanics principles.21,29–31

This study has led to the following key findings: (i) we corrobo-
rate the requirement for MOT studies to perform “sufficiently” long
measurements when using conventional analytical methods for data
analysis; (ii) we provide, for the first time in the literature, a means
for estimating the required duration of the experiment to achieve
an uncertainty as low as 1%; (iii) we provide evidence explaining
why conventional MOT measurements commonly underestimate
the materials’ viscoelastic properties, especially in the case of high
viscous fluids or soft-solids (e.g., gels and cells); (iv) we have devel-
oped an ML algorithm that uses feature extraction on only “one
second” of trajectory data to determine the viscosity of Newtonian
fluids, yet capable of returning viscosity values carrying an error as
low as ∼0.3% at best and of ∼7% at worst, which is five times smaller
than those obtained from conventional analytical methods applied
to the same data.

THEORETICAL BACKGROUND
Passive microrheology with optical tweezers

Passive MOT is typically performed by means of a stationary
optical trap that confines a spherical particle suspended in a fluid
of unknown viscoelastic properties to 3D. At thermal equilibrium,
the Brownian motion of the probe particle is caused by the thermal
fluctuations of the fluids’ molecules, and it is monitored by means
of a high speed motion detection device. The particle trajectory is
typically extracted in 2D, as the one shown in Figs. 1(b) and 1(c). A
statistical mechanics analysis of the particle’s trajectory can return
not only the trap stiffness of the OT but also a good estimation
of the frequency-dependent viscoelastic properties of the suspend-
ing fluid.21,29–35 The latter can be evaluated by solving a generalized
Langevin equation as the following one:

ma⃗(t) = f⃗R(t) − ∫
t

0
ξ(t − τ)v⃗(τ)dτ − κr⃗(t), (1)

where m is the mass of the particle, a⃗(t) is its acceleration, v⃗(t) is
its velocity, r⃗(t) is its position, f⃗R(t) is the Gaussian white noise
term used for modeling the stochastic thermal forces, and ξ(t) is
the generalized time-dependent memory function accounting for
the viscoelastic nature of the fluid.36 The convolution integral repre-
sents the time-dependent friction force exerted by the complex fluid
onto the particle. The term κr⃗(t) is the restoring force of the optical
trap when the confining field E(r⃗) exerted by the optical tweezers is
assumed to have an harmonic form,

E(r⃗) =
1
2

κr⃗ 2, (2)

where κ is the trap stiffness and r⃗ is the particle position from the
trap center. Interestingly, in the case of Newtonian fluids (i.e., for
purely viscous fluids with constant viscosity η) and at low Reynolds

AIP Advances 13, 075315 (2023); doi: 10.1063/5.0161014 13, 075315-2

© Author(s) 2023

 14 July 2023 09:11:26

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

FIG. 1. (a) Schematic representation of an optically trapped bead within a harmonic potential, E(r⃗), where κ is the trap stiffness and r⃗ is the bead position from the trap
center. (b) and (c) Two examples of 2D trajectories of an optically trapped bead of a radius (R) of 1 μm suspended in water for 1024 s (b) and for 1 s (c). Both trajectories
were generated by means of a MATLAB code adapted from the one developed by Volpe.37 (d) The mean square displacement (MSD) curves of a series of 48 simulated
trajectories of 1024 s duration and acquired at 1 kHz of an optically trapped particle experiencing constraining forces ranging from 0.01 to 5 μN/m (see the color bar) and
suspended into four different Newtonian fluids having viscosity values spanning three orders of magnitude (see the legend). The inset shows the same data as in the main,
but with the ordinate axis normalized by twice the variance of the particle trajectory and the abscissa τ replaced by the dimensionless lag-time τ∗, as elucidated in the body
of the article. (e) Four examples of normalized position autocorrelation functions (NPAFs, symbols) of a particle suspended in four Newtonian fluids having viscosities of 10−3,
10−2, 0.1, and 1 Pa s and experiencing constraining forces of 0.25, 1.5, 4, and 5 μN/m [from left to right and color coded based on the color bar in (d)], respectively. The lines
are single exponential decay functions A(τ) = e−λτ drawn with λ = κ/(6πηR) evaluated by using the input (nominal) parameters mentioned above; i.e., λ = 13.26, 7.96,
2.12, and 0.27 Hz, respectively. The inset shows the same data as in the main (symbols only), but the abscissa has been replaced by τ∗ = λτ.

numbers (for which the inertia term can be neglected), Eq. (1) is
simplified as follows:37

W⃗(t)
√

2kBTγ = γv⃗(t) + κr⃗(t), (3)

where the term on the left side represents the fluctuating force due to
random impulses from many neighboring fluid molecules, γ = 6πηR
is the friction coefficient, R is the particle radius, kB is Boltzmann’s
constant, and T is the absolute temperature. In this work, Eq. (3)
has been adopted to generate (thousands of) 2D trajectories of opti-
cally trapped particles suspended into a set of Newtonian fluids
having different viscosity values for machine learning purposes, as
explained in the following sections.

In the general case, i.e., for any generic complex fluid, it has
been shown29,30,32 that Eq. (1) can be solved for the fluids’ complex
shear modulus (G∗(ω)) in terms of either the particle normalized
mean squared displacement (NMSD), Π(τ), or its normalized posi-
tion autocorrelation function (NPAF), A(τ), which are both drawn
in the insets of Figs. 1(d) and 1(e) for some of the cases studied in

this work. These two functions are simply related to each other, and
their expressions are

Π(τ) =
⟨Δr2
(τ)⟩t0

2⟨r2
⟩eq.

≡
⟨[r(t0 + τ) − r(t0)]

2
⟩t0

2⟨r2
⟩eq.

= 1 − A(τ), (4)

where τ is the lag-time (t − t0) and the brackets ⟨⋅ ⋅ ⋅ ⟩t0 represent an
average over all initial times t0. The relationship between the two
above-mentioned time-averaged functions and the time-invariant
fluids’ complex shear modulus is

G∗(ω)
6πa

κ
= (

1
iωΠ̂(ω)

− 1) ≡ (
1

iωÂ(ω)
− 1)

−1

≡
Â(ω)
Π̂(ω)

, (5)

where Π̂(ω) and Â(ω) are the Fourier transforms of Π(τ) and
A(τ), respectively. The inertial term (mω2

) presented in the orig-
inal works29,32 has been neglected here because for micron-sized
particles, it only becomes significant at frequencies of the order of
MHz.
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In the case of Newtonian fluids, the above-mentioned equa-
tions simplify significantly, and the relationship between the fluids’
viscosity and the particle trajectory reads as follows:

Π(τ) = 1 − A(τ) = 1 − e−λτ , (6)

where λ = κ/(6πηR) is the characteristic relaxation rate (also known
as the “corner frequency”38) of the compound system OT plus fluid.
Moreover, it has been shown31 that by plotting Π(τ) and A(τ)
vs a dimensionless lag-time τ∗ = τλ, all the curves having different
values of η would collapse onto a master curve, as shown in the
insets of Figs. 1(d) and 1(e), respectively. Consequently, for Newto-
nian fluids, it is a straightforward step to determine their viscosity
by analyzing the temporal behavior of the NPAF.31 In particular,
by plotting the natural logarithm of A(τ) vs τ, one would obtain
a straight line having a slope equal to −λ, from which the viscos-
ity could be determined by means of a simple linear fit. In this work,
the fitting procedure has been constrained to ordinate values ranging
from 0 and −1 (equivalent to A(τ) = 1 and A(τ) = e−1) to minimize
the error, as discussed hereafter.

METHODS
Simulation of particle trajectories

In order to train and test the machine learning algorithm
discussed in the next section, we have used Eq. (3) to generate thou-
sands of trajectories by means of a MATLAB code adapted from the
one developed by Volpe,37 which is able to simulate a 2D trajectory
of an optically trapped particle suspended into a Newtonian fluid.
The input parameters of the code were the trap stiffness, viscosity,
temperature, particle radius, acquisition rate, and number of indi-
vidual readings required. For instance, in Fig. 1, two examples of
the trajectory having the same input parameters are shown, but the
duration is 103 s in (b) and 1 s in (c).

Moreover, in order to investigate the impact of the measure-
ment duration on the outcomes obtained from both the conven-
tional and the ML enhanced MOT approaches, we generated a set
of particle trajectories suspended into four different Newtonian flu-
ids having viscosity values of 10−3, 10−2, 0.1, and 1 Pa s, respectively,
and trap strengths ranging from 0.01 to 5 μN/m. These trajectories
were simulated for 1024 s at an acquisition rate of 1 kHz, which is
equivalent to a real measurement of circa 17 min in duration. Due to
their stochastic nature, it is possible to split each of these trajectories
into shorter ones of variable duration, down to 0.05 s. All these tra-
jectories were analyzed to calculate the fluids’ viscosity by means of
Eq. (6), and the mean absolute percentage error (MAPE) of the out-
come was calculated for each trajectory by means of the following
equation:

MAPE =
100
N

N

∑
i=1
∣

ηi − η0i

η0i
∣, (7)

where N is the number of trajectories for a given duration, η0 is the
nominal viscosity value (used as input in the simulations), and η is
the measured one.

Optical tweezer rig

Experimental measurements were performed by using an OT
system based on a continuous wave, diode pumped solid state
(DPSS) laser (Ventus, Laser Quantum), which provided up to 3 W
at 1064 nm. A nematic liquid crystal spatial light modulator (SLM)
(BNS, XY series 512 × 512) was used to create and arrange the
desired optical trap. The laser entered a custom-made inverted
microscope that uses a microscope objective lens (Nikon, 100×,
1.3 NA) to both focus the trapping beam and to image the thermal
fluctuations of 4.74 μm diameter silica beads (Bangs Laboratories) at
room temperature, ∼20 ○C. Samples were mounted on a motorized
microscope stage (ASI, MS-2000). A complementary metal–oxide
semiconductor (CMOS) camera (Dalsa, Genie HM 1024 GigE)
acquired high-speed images of a reduced field-of-view. These images
were processed in real-time at up to ∼3 kHz to calculate the center
of mass of the bead by using a particle tracking software devel-
oped in LabVIEW (National Instruments), running on a standard
desktop PC.39,40

Machine learning architecture

In fluid mechanics, machine learning (ML) has been widely
used to translate observational and experimental data into knowl-
edge about the underlying physics of fluids41 and their interactions
with the environment.42 Depending on the information being used
for learning, ML algorithms can be categorized into supervised,
semisupervised, and unsupervised. In this work, we consider a
supervised ML algorithm where the input (i.e., the particle trajecto-
ries) and the respective output (i.e., the viscosity) are used during
learning. Specifically, we consider feed-forward neural networks
(NNs), or multilayer perceptrons,43,44 as the nonlinear function
approximation between the input and output. The standard feed-
forward NNs pass the input information through a network of hid-
den units and activation functions to produce the prediction. Deep
Neural Networks (Deep NNs)45,46 obtain a nonlinear approximation
through the composition of multiple hidden layers. To obtain the
unknown network weights, nonlinear optimization methods, such as
backpropagation,47 are used by minimizing the discrepancy between
the predictions and the known training outputs.

In this paper, we sidestep the conventional method [i.e., Eq. (6)]
of estimating fluids’ viscosity from the trajectories of optically
trapped particles by means of supervised ML. The training dataset
consists of 100 000 particle trajectories, each of 10 s duration, for dif-
ferent fluid’ viscosities. In order to cover the range of the explored
viscosity (i.e., from 0.001 to 1 Pa⋅s), the viscosity values are ran-
domly sampled from a log-uniform distribution ranging from 0.000
8 to 1.2 Pa⋅s. Similarly, the trap strengths are randomly sampled
from a uniform distribution ranging from 0.08 to 0.39 μN/m. Prior
to the training, each trajectory coordinate input is normalized and
flattened into a one-dimensional array. The normalization, i.e., sub-
tracting the coordinates by their initial position, makes sure that
there is no significant shift between the x- and y-component in the
flattened array. Therefore, the flattening will have minimum effect
on the trajectory’s temporal correlation. Moreover, in this work,
we also consider shorter observation times of the trajectories, i.e.,
Tm = {1, 0.5, 0.1, 0.05 s}, which are obtained through subdivision of
the original 10 s datasets.
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Figure 2 shows a schematic representation of the ML archi-
tecture used in this study, consisting of two blocks, i.e., feature
extraction and parameter estimation. The one-dimensional input,
obtained by flattening the coordinates, is first processed through the
feature extraction block, which comprises one-dimensional convo-
lutional neural network (CNN) layers.48,49 These CNN layers serve
as a convolution operator that enhances the local temporal struc-
tures present in the particle trajectories. In this study, two CNN
layers are employed to eliminate the randomness of particle motion
and highlight important features encoded in the trajectory. While
it is possible to add more convolutional layers, we found that two
layers are sufficient for the Newtonian fluid case. In each CNN
layer, two filters with the same kernel width are used to increase the
chances of identifying various features in the data. The filter widths
are 10 and 100 for the first and second layers, respectively, which
correspond to 0.01 and 0.1 s in the particle trajectory. The width
increase in the second layer allows for filtering random motion
with longer periods. Note that, for observation times Tm = 0.1 s and
Tm = 0.05 s, the second convolutional layer filter sizes were adjusted,
due to the shorter vector lengths, to 50 and 25, respectively. The
resulting “feature maps” are transformations of the input data into
latent variables, which highlight important information for the task
of estimating the viscosity.

The feature maps are then concatenated, along with the trap
stiffness and particle radius, to a 1D vector and passed to the para-
meter estimation block to predict the viscosity. The concatenation
of additional variables is crucial to discriminate between fluids that
have different viscosities but similar particle trajectories due to other
dependent variables (e.g., trap stiffness and particle radius). Neural
networks are known to be universal approximators,43 and deeper
layers often lead to a more expressive mapping or approximation.
The number of layers and neurons is selected based on Occam’s
razor principle50 to ensure generalizability and prevent overfitting.

In this study, we identified that six fully connected dense layers pro-
vided a good estimate of the viscosity. Each neuron in the hidden
layers uses a ReLu (rectified linear unit) activation function, while a
linear activation function is used in the output layer. The loss func-
tion was chosen to be the mean absolute percentage error (MAPE)
to prevent bias in training toward minimizing losses for high viscos-
ity values with larger residuals. The hyper-parameters of the model
including the batch size, learning rate, number of epochs, and vali-
dation split were 256, 10−5, 200, and 0.1, respectively. Training has
been performed in triplicate for each model with input trajectories
having an interval Tm from 0.05 to 1 s, using an Adam optimizer,51

and was performed on a desktop PC equipped with an 18-core Intel
i9-10980XE CPU (3 GHz), 256 GB RAM and an NVIDIA GeForce
RTX 3090 with 24 GB memory. The training time for each ML model
increased with decreasing input length due to the increasing number
of training examples, so each model took from 2.5 to 6.5 h to train
depending on the input trajectory.

RESULTS

One of the key features and advantages of using optical tweez-
ers for microrheology purposes is that they can be easily calibrated
without the use of external transducers. Indeed, as we shall discuss
hereafter, it has been assumed21,29–34 that the trap stiffness of sym-
metric OTs can be determined to a high accuracy by appealing to the
principle of equipartition of energy,

d
2

kBT =
1
2

κ⟨r⃗ 2
⟩eq., (8)

where d is the dimension of the motion. This is true as long as
the measurement time is “sufficiently” longer than the characteris-
tic time τOT of the compound system made of an OT (i.e., its trap
stiffness), fluid (i.e., its compliance), and beads (i.e., its radius taken

FIG. 2. Schematic representation of the machine learning architecture used in this work. A single particle trajectory of x-y coordinates is transformed and preprocessed for
feature extraction, the output of which is concatenated with the trap strength (κ) and the particle radius (a). This is used as the input for parameter estimation with a single
output node of viscosity.
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as a characteristic length of the probe), which are not known a priori
in rheological investigations of complex materials.

However, in the case of Newtonian fluids and operational
condition of the instrument being within the micro length- and
time-scales, as mentioned earlier, the compound system has a sin-
gle characteristic time defined as τOT = λ−1, which can be used as a
reference to estimate the minimum measurement duration required
to properly calibrate the trap stiffness. In particular, by defining the
duration of a measurement (Tm) as the ratio between the total num-
ber of readings (N) and the acquisition rate ( f = samples/s) of the
detector used for tracking the particle position, one could define the
Deborah number52 for optical tweezers (DeOT) as

DeOT =
τOT

Tm
=

6πηR f
Nκ

, (9)

which can be further differentiated into “nominal” (DeOT,Nom.) and
“effective” (DeOT,Eff .), depending on whether the trap stiffness used
for determining λ is the nominal value set as the input in the simula-
tion code generating the trajectories or the measured one by means
of Eq. (8), which is affected by Tm, as demonstrated hereafter.

In Fig. 3(a) we report the ratio between the two Deborah num-
bers vs De−1

OT,Nom. for a series of 528 simulated trajectories of variable

duration of an optically trapped particle experiencing various con-
straining forces and suspended in four different Newtonian fluids
having viscosity values spanning three orders of magnitude. Inter-
estingly, the ordinate of such a diagram is equivalent to the ratio
between the two trap stiffnesses κNom./κEff ., while the abscissa is pro-
portional to the measurement duration Tm. From Fig. 3(a), it is
apparent that the existence of a crossover value of DeOT,Nom. ∼ 1,
delimiting two operating ranges of OT rigs, i.e., (i) for De−1

OT,Nom. ≫ 1,
the trap stiffness is determined to a high accuracy via Eq. (8); (ii)
for De−1

OT,Nom. ≪ 1, the constraining force is undetermined, or, more
specifically, κEff . is overestimated as often happens in many real
experiments for which Tm is not sufficiently long. Based on Eq. (5),
consequently, when the trap stiffness is overestimated, the out-
comes of MOT measurements are underestimated, especially when
they are attempted in high viscous fluids or soft-solids (e.g., gels
and cells).53,54 Our findings are further corroborated by the data
shown in Fig. 3(b), where the absolute percentage error (APE) of
κEff . is reported against De−1

OT,Nom. and compared with the exper-
imental results (i.e., the horizontal line) reported by Matheson
et al.,55 representing the threshold value of the APE of κEff . below
which microrheology measurements performed with OTs return
an APE of the fluids’ viscosity lower than circa 5% (see Fig. 5 of
Ref. 55). Consequently, based on a conservative approach, one could

FIG. 3. (a) Ratio between the effective Deborah number for optical tweezers DeOT ,Eff . and the nominal one DeOT ,Nom. vs De−1
OT ,Nom. ∝ Tm for a series of 528 simulated

trajectories of different durations of an optically trapped particle experiencing various constraining forces and suspended into four different Newtonian fluids having viscosity
values spanning three orders of magnitude. (b) The absolute percentage error (APE) of κEff . vs De−1

OT ,Nom. for the same set of trajectories as in (a). The line indicates an
APE value of 30%, as reported in Ref. 55. (c)–(e) The mean absolute percentage error (MAPE) of viscosity vs measurement duration (Tm) determined (c) by using the
conventional analytical method described in the body of the article, (d) by averaging the prediction error from ML algorithms with different input dimensions, and (e) by
averaging the predictions of the three models with 1 s input dimension. [(f), closed symbols] The MAPE of viscosity vs De−1

OT ,Nom. evaluated from the conventional approach
applied to the same set of trajectories used in (a). [(f), open symbols] The MAPE of the optimal ML algorithm with an input measurement time of 1 s. The color bar indicates
trap stiffness used during the generation of the trajectories. The size of the symbols scales with the measurement time as shown in the inset of (f).
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argue that only for DeOT,Eff . ≤ 0.001, an accurate calibration could
be achieved, which implies a minimum measurement duration of
Tm ≥ 1000 × τOT for a given system. For instance, in the case
of two measurements, both performed at room temperature (i.e.,
T = 20 ○C) with a bead of 1 μm in radius and a trap stiffness of
κ = 2 μN/m, but one in water (with η = 0.001 Pa s) and the other
in a fluid having a viscosity thousand times higher than that of
water (e.g., glycerol), the characteristic times of the two compound
systems would be τOT ≅ 0.01 s and τOT ≅ 10 s, respectively. Con-
sequently, in order to achieve an accurate calibration of the OT
(i.e., for DeOT ≤ 0.001), the measurements should last at least 10 s
and 2.78 h, respectively.

At this point, it is important to highlight that optical tweezer
rigs are commonly equipped with either a camera or a quadrant
photodiode (QPD) device for tracking the particle position to a
high acquisition rate, often operating at KHz or MHz, respectively.
Consequently, when microrheology measurements are performed
on materials with a higher viscous character than water, signifi-
cantly longer measurements would be required, and therefore, rigs
equipped with either a QPD or an ultra-high-speed camera would
be more prone to be miscalibrated. This is because they are often
equipped with an insufficient capacity of random access memory
(RAM) to process the high-volume of data (of several MB/s) gener-
ated during the particle tracking procedure (of a possible duration
of Tm = 104 s, which would result in >10 GB RAM occupancy);
thus, they either crash, or, in order to avoid this, measurements
are stopped early, causing DeOT ≫ 1. A possible solution to avoid
memory clogging, but not the length of measurements, is achieved
by equipping the rig with an online digital correlator, which allows
the machine to process high-volume data streams and to compress
the relevant information in real-time, thus minimizing the use of
RAM.56,57

Let us now investigate how Tm affects the evaluation of the fluid
viscosity when it is determined using a conventional method. In par-
ticular, as introduced earlier, in the case of Newtonian fluids, it is a
straightforward step to determine their viscosity by performing a lin-
ear fit of Ln[A(τ)] vs τ, which is executed for ordinate values ranging
from 0 and −1 [equivalent to A(τ) = 1 and A(τ) = e−1, respectively]
to minimize the error. In Fig. 3(c), we report the mean absolute per-
centage error of the fluids’ viscosity evaluated as mentioned above
vs the measurement duration, which varies from 1 to 1024 s. The
simulated trajectories were generated for optically trapped particles
suspended into four fluids having viscosity spanning three orders
of magnitude (i.e., from 0.001 to 1 Pa s), but all the other inputs
have the following values: a trap stiffness of 0.25 μN/m, particle
radius of 1 μm, constant temperature of 19 ○C, and acquisition rate
of 1 kHz. From the diagram, it can be seen that for the short mea-
surement duration (i.e., at Tm = 1 s), all the measurements return
an error as high as circa 33% whereas as the length of the mea-
surement increases, the MAPE decreases to a remarkable value of
only 1% at Tm = 1024 s for the fluid with the lowest viscosity value
of 0.001 Pa s; however, for the other fluids, it would have required
significantly longer measurements to reach a similar accuracy, as
elucidated hereafter. Interestingly, when the same data shown in
Fig. 3(c) are drawn against De−1

OT,Nom. ∝ Tm, all the four curves col-
lapse onto a master curve, as shown in Fig. 3(f) (closed symbols),
together with the outcomes obtained from the same analysis as the

one described above, but applied to all the 528 simulated trajectories
mentioned earlier, thus corroborating the concept introduced earlier
that “the higher the fluid’s viscosity, the longer the measurement must
be.” Moreover, from Fig. 3(f), it can be seen that at relatively low
trap strengths, the MAPE of the viscosity decreases as Tm increases
(i.e., for De−1

OT,Nom. ≫ 1). However, at relatively high trap strengths,
the error increases again, becoming almost independent of the dura-
tion of the measurement. This phenomenon can be explained in
terms of the relative value assumed by the time-dependent fluid’s
shear compliance (J(t)) to that of the “complex” system (Jcs(t))
composed by (i) the OT (whose contribution is purely elastic; i.e., κ),
(ii) the viscoelastic fluid (whose contribution relies on its elastic and
viscous components), and (iii) the particle radius a (which defines
a characteristic length scale). In particular, when the suspending
medium is a Newtonian fluid, J(t) can be expressed as follows:30,58

J(τ) =
τ
η
=
⟨Δr2
(τ)⟩t0 πR
kBT

, (10)

where ⟨Δr2
(τ)⟩t0 is the particle MSD, as introduced in Eq. (4). How-

ever, Jcs(t) is proportional to Π(τ),30 and it assumes the following
analytical expression:

Jcs(τ) = JOT(1 − e−λτ
), (11)

where JOT = 6πR/κ∝ ⟨r2
⟩eq. is the time-independent compliance of

the OT, which is inversely proportional to the trap stiffness and
whose values are presented in Fig. 1(d) by the plateau values of the
MSD curves. Jcs(t) has been derived by combining Eqs. (6), (8),
and (10), and it is presented by the Π(τ) data drawn in the inset
of Fig. 1(d) for the same combination of fluids’ viscosity and trap
stiffness discussed above. From Eqs. (10) and (11), by dividing the
second Maclaurin polynomial of Jcs(t) by J(τ), one would obtain
the following ratio:

Jcs(τ)
J(τ)

= (1 −
τ

τOT
) ≡ (1 −

J(τ)
JOT
), (12)

which provides a means for elucidating the high values of the viscos-
ity MAPE at relatively high trap strengths, as reported in Fig. 3(c).
Indeed, from Eq. (12), one could argue that at short lag-times,
Jcs(τ) ≅ J(τ) if and only if τOT ≫ τ [or equivalently for JOT ≫ J(τ)],
which is true either for vanishing trap strengths [e.g., blue symbols
in Fig. 1(d)] or for increasingly high viscous fluids [e.g., star sym-
bols in Fig. 1(d)]. Therefore, given that the accuracy to which the
viscosity is calculated depends on the number of data points of the
NPAF [or equivalently of the MSD via Eq. (10)] available at lag-
times τ < τOT—i.e., within the time-window ranging from τ1 = 1/ f
[for which A(τ1) ∼ 1] to τ = τOT [for which A(τOT) = e−1], used for
the fitting procedure—the analysis of the particles’ trajectory will
return viscosity values with a high degree of uncertainty at relatively
large κ values, for which τOT → τ1. Indeed, as shown in Fig. 1(d), for
each fluid’s viscosity, the effective time-window [t1, τOT] shortens as
the trap stiffness increases. From a physics perspective, this is simply
because the stronger κ is, the smaller is the particle variance from
the trap center [i.e., Eq. (8)], thus overshadowing the fluid’s con-
tribution to the particle dynamics. The above-mentioned concept
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are in agreement with the Fickian approach adopted by Matheson
et al.59 to estimate the viscosity of Newtonian fluids via MOT mea-
surements by determining the gradient of the MSD at the first two
lag-times (i.e., τ1 = 1/ f and τ2), for which they obtained an aver-
age error of ∼10% [see Eq. (10) and related results in Fig. 5 of their
article].

In order to better understand the optimal modus operandi
of MOT measurements, it is thus important to analyze the rela-
tive position of the system’s characteristic time within the “finite”
experimental time-window. This concept was recently introduced
by Tassieri et al.60 while testing the efficacy of a novel analytical
tool (i-Rheo GT) for converting the time-dependent materials’ shear
relaxation modulus into their frequency-dependent complex shear
modulus. In particular, they introduced a dimensionless parameter
Ta = log(τ/t1)/log(tN/t1) that accounts for the relative position of
the material’s characteristic relaxation time τ to that of the exper-
imental time window [t1, tN], where t1 is the shortest time of the
experimental dataset (Here, t1 = 1/ f and tN is the longest one (here,
tN ≡ Tm = N/ f .). The meaning of Ta is very similar in spirit to that
of the renowned Deborah number (defined as the ratio between the
material’s characteristic time of relaxation and the time of obser-
vation), but it takes into account also the existence of a “finite”
acquisition rate (i.e., of f = 1/t1), and therefore, it can also assume
negative values ∀τ < t1. Interestingly, in the context of this work, Ta
assumes the following form:

Ta =
log ( f τOT)

log (N)
, (13)

and by plotting the MAPE of the viscosity vs Ta, as shown in Fig. 4,
it is possible to identify a value of Ta ≃ 1/3 where MAPE assumes a
minimum. This could be used to express N as a function of DeOT via
Eqs. (9) and (13), i.e., N ≃ De−3/2

OT , thus providing a means of estimat-
ing the number of data points to be acquired to achieve an MAPE of
∼1% for any generic fluid. This is indeed possible if the trap stiffness
of the OT rig is calibrated first in water and it is also assumed not
to vary significantly when measurements are performed on different

FIG. 4. Data taken from Fig. 3(f) for the trajectories with maximum Tm and drawn
vs Ta. The top axis reports the characteristic time of the compound system τOT .
The color bar indicates the nominal trap stiffness used during the generation of
the trajectories. The two lines are guides for the power laws, as indicated in the
legend.

fluids (i.e., when the refractive index of the sample under investi-
gation does not differ significantly from that of water). With these
conditions satisfied, one could write

N ≃ Nwη3
r , (14)

where Nw is the number of positional data points acquired dur-
ing the microrheology measurement performed in water (e.g., here
Nw ≃ 106) and ηr = η/ηw is the relative viscosity of the fluid under
investigation to that of water, of which an estimate is needed to
determine N.

Moreover, from Fig. 4, it is interesting to notice that (i) for Ta
< 1/3, the MAPE of the viscosity decreases with a power law of T−6

a
as Ta → 1/3 from the left and that (ii) the data points adhering to
this scaling law are mostly those obtained from trajectories drawn by
using a low viscosity value as inputs (i.e., 0.001 Pa s) and relatively
high trap stiffness as the outcomes diverge from the minima, thus
implying that the MAPE of the viscosity in this region is governed
mainly by the trap strength. However, for Ta > 1/3, the MAPE of
the viscosity follows a power law of T3

a , and the data points adhering
to this scaling law are mainly related to those trajectories drawn with
a relatively low trap stiffness and relatively high viscosity, for which
the measurement duration is not long enough for the bead to explore
the whole potential well.

In summary, we can argue that microrheology with OT requires
long measurement times with many individual readings to achieve
the fluid’s viscosity measurements with an error of only a few per-
cent, which in practice translates to a measurement duration of the
order of tens of minutes when dealing with fluids having viscosity
close to that of water and OT rigs working at kHz and exerting a trap
stiffness of the order of a few μN/m. When attempting microrhe-
ology measurements of fluids with significantly higher viscosity
than water and under the same experimental conditions mentioned
above, Eq. (14) reveals that the measurement duration would soon
become “unachievable” because Tm scales with the cubic power of
the relative viscosity: Tm ≃ Tm,sη3

r . These conclusions further corrob-
orate Tassieri’s “opinion”17 that conventional passive microrheology
measurements with OT of living systems “are not an option” as bio-
logical processes occur at much shorter time scales than the required
Tm, and therefore, their rheological properties could not be consid-
ered “time invariant” during the measurements. Thus, the aim of
this paper is to employ machine learning algorithms to significantly
shorten the duration of microrheology measurements performed
with OT, as elucidated hereafter.

Enhanced MOT with machine learning

Let us now investigate the efficacy of ML algorithms when used
to enhance the accuracy of viscosity measurement of Newtonian
fluids in passive MOT measurements. It would be prudent here to
highlight the change in language that will occur when discussing
the aforementioned ML algorithms. Indeed, throughout the previ-
ous sections, the attainment of Newtonian viscosity by means of
conventional analytical methods presented in Eqs. (1)–(4) has been
justifiably described as “calculated.” However, the ML algorithms
described in this paper specifically “predict” the viscosity of the New-
tonian fluid in question, and therefore, they will be described as such
here.
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As for the results described in Figs. 3(a), 3(c) and 3(f), the simu-
lated trajectories used for evaluating the ML models were generated
for optically trapped particles suspended into four fluids having vis-
cosity spanning three orders of magnitude (i.e., from 0.001 to 1 Pa s).
Figure 3(d) shows the MAPE of the fluids’ viscosity prediction vs the
measurement time, associated with input segment length, for the ML
algorithms fed with the following inputs: the trap strength, particle
radius, temperature, and acquisition rate have values of 0.25 μN/m,
1 μm, 19 ○C, and 1 kHz, respectively. It can be seen that for measure-
ment times shorter than 1 s, using the architecture described in the
Methods section, the MAPE is as high as 40% depending on fluid
viscosity. Interestingly, for a measurement time of 0.05 s, the MAPE
for the highest viscosity analyzed for η = 1 Pa s is 10%, which is four
times lower than that of the conventional method using 1 s of trajec-
tory. This is a striking result, considering that the characteristic time
for that particular point, τOT ≈ 75, is around 1500 times larger than
the measurement time. However, for Tm = 1 s, the prediction error
drops to between 3% and 6% across the three decades of fluid viscos-
ity explored. Notice that the input measurement times used in this
study did not exceed a value of 1 s because of the demanding com-
putational processes involved in training ML algorithms. Therefore,
in order to obtain consistent predictions of fluid viscosity, to extrap-
olate to 1024 s, the input measurement time used in Fig. 3(e) was
1 s. The extrapolation was carried out by feeding 1 s segments of
particle trajectory into each of the three 1 s input ML models trained
and averaging each of the predictions over increasingly longer times.
The diagram shows the MAPE of the ML viscosity prediction vs the
measurement time extrapolated to 1024 s using the same parameters
described in Fig. 3(d). Generally, as the measurement time increases,
the MAPE, starting at values between 3% and 6%, quickly drops to a
plateau value for each viscosity, reaching as low as 0.4% for a viscos-
ity of 0.1 Pa s. When compared to the conventional method shown in
Fig. 3(c), the viscosity prediction errors displayed in Fig. 3(e) are sig-
nificantly lower for most of the explored time windows, apart from
the MAPE of the conventional approach at the longest times. It is
important to highlight that in machine learning algorithms, the indi-
vidual model accuracy is determined by the model hyper-parameters
as well as the size and quality of training data. Moreover, the ran-
dom initialization of the training process can cause the model to
learn to predict particular viscosity ranges more accurately than oth-
ers. The variability in performance of different instances of the same
model for different viscosity values is indicated by the error bars
in Figs. 3(d) and 3(e). The significant reduction in MAPE from the
conventional approach to the ML prediction occurs over the entire
range of explored viscosity.

As for standard ML studies, we have selected the best perform-
ing 1 s model to be analyzed for a range of trap strengths, as shown in
Fig. 3(f). Here, the MAPE of both the conventional method (closed
symbols) and the ML model (open symbols) is plotted vs De−1

OT,Nom.
for trap strengths ranging from 0.01 to 5 μN/m. Notice that the
range of trap strengths used in ML analysis is 0.01–0.85 μN/m, which
is slightly wider than the range of trap strengths used in training
(0.08–0.39 μN/m). Figure 3(f) shows that the MAPE values of the
ML algorithm are five times smaller than those of the conventional
method for De−1

OT,Nom. < 1, i.e., ∼7% and ∼35%, respectively. It is
argued that ML enhances the accuracy of MOT because the learned
mapping between measured features and predicted parameters can

be arbitrarily complex, and it is not restricted by approximations
about the nature of the physical relationships. However, in the con-
ventional case, there is a loss of information due to integration
operations (e.g., averaging) and/or constraints (e.g., the linear best
fit of the averaged data constituting the NPAF curve). Unlike the
conventional method, the proposed ML-based approach is a funda-
mentally different inference method, which uses prior information
gained from the training data to identify sensitive features in the raw
measurements that are combined in a learned non-linear mapping
to the targets; here, it is the fluid viscosity. From Fig. 3(f), it is also
apparent that, unlike the conventional method, the ML error curves
do not collapse into a master curve when drawn against De−1

OT,Nom..
This is believed to be due to the design of the feature extraction com-
ponent of the ML architecture, which uses convolutional filters that
learn local temporal structures common to both short and long tra-
jectories. Therefore, once the model has learned to extract low- and
high-dimensional local features in the measurements a priori dur-
ing the training process, the CNN can decode the fluids’ viscosity
“directly” from the raw measurements using a statistically relevant
number of steps N′ required to disambiguate the features that are
present in the data, rather than from statistically averaged quanti-
ties over N = Tm f steps used in the standard approach. The number
N′ can be much smaller than N and no longer needs to satisfy the
scaling governed by the Deborah number on the individual mea-
surement as the missing information has been encoded before the
measurement into the learned CNN parameters.

Confident about the effectiveness of the ML algorithm
described above, we have employed it to determine the viscosity
of water from real experimental MOT data obtained by tracking
the position of an optically trapped bead subjected at different laser
powers (i.e., trap strengths). The analysis of the trajectories returned
the MSD curves shown in Fig. 5 having different plateau values at
long lag-times, whose values are equal to twice the variance of the
particle displacement from the trap center. These latter values can
indeed be used to normalize the MSD curves, as shown in the top-left
inset of Fig. 5, thus validating Eq. (11) stating that at long lag-times,
the compliance of the OT overshadows the one of the fluid. In order
to apply the ML algorithm to the raw data of the measurements
described above, the simulated training data and the training of the
model had to be adjusted to match the real experimental parameters,
i.e., (i) an acquisition rate of 2780 fps, (ii) the length of the input
data to 2780, to be consistent with the analysis of 1 s trajectory,
(iii) the viscosity range has been narrowed to 10−3–10−2 Pa s, and
their values were randomly sampled from a log-uniform distribu-
tion, and (iv) the values of the trap stiffness have been increased to
a range of 1–5 μN/m, and they were randomly sampled from a uni-
form distribution. As for the simulated data described earlier, the
ranges of viscosity and trap strength were slightly greater than the
target range to encompass the extremities. When the ML algorithm
was applied to real experimental data of 1 s duration, it returned an
estimation of the fluid viscosity of ηML = 0.986 ± 0.028 mPa s, which
would result in an error as low as 1.1% at best, when compared with
the viscosity value of water obtained by means of bulk rheology mea-
surement, ηwater = 0.997 mPa s (at T = 20 ○C). The effectiveness of
the method is further corroborated by the master curve drawn in
the bottom-right inset of Fig. 5, where the NMSD curves have been
plotted against a dimensionless lag-time τ∗ML = κτ/(6πRηML).
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FIG. 5. (Main) Mean square displacement (MSD) vs lag-time τ of the trajectory of an optically trapped particle suspended in water and subjected to different trap strengths
κ. (Top-left inset) The same data as in the main, but normalized by twice the variance of the particle displacement from the trap center, which returns the normalized mean
square displacement (NMSD) vs τ. (Bottom-right inset) The same data as in the top-left inset, but vs a dimensionless lag-time τ∗ML = κτ/(6πRηML).

Therefore, we can argue that ML has the ability to enhance
the accuracy of passive MOT measurements by significantly reduc-
ing the measurement time from tens of minutes down to 1 s with
a prediction error that is five times smaller than the conventional
analytical method applied to the same data. In addition, the ML algo-
rithm shown here is able to predict the viscosity of a Newtonian fluid
across the range of three decades, and we expect that a less general-
ized model, which is trained on a smaller span of viscosity values,
could further improve the performance of the ML approach.

DISCUSSION

In this article, we provide experimental evidence supporting
the observation made by Tassieri17 in 2015 that conventional lin-
ear microrheology with optical tweezers may not be an appropriate
experimental methodology for studying the viscoelastic properties
of living systems. In particular, we have focused on the analysis
of computer simulated trajectories of an optically trapped particle
suspended within a set of Newtonian fluids having viscosity values
spanning three decimals, i.e., from 10−3 to 1 Pa s. The conventional
statistical mechanics analysis of these simulations has led to the fol-
lowing key findings: (i) we corroborate the requirement for MOT
studies to perform “sufficiently” long measurements when using
conventional analytical methods for data analysis, (ii) we provide,
for the first time in literature, a means for estimating the required
duration of the experiment to achieve an uncertainty as low as 1%,
and (iii) we provide evidence explaining why conventional MOT
measurements commonly underestimate the materials’ viscoelastic
properties, especially in the case of high viscous fluids or soft-solids
such as gels and cells. Moreover, we have developed a machine learn-
ing algorithm that uses feature extraction on only “one second”
of trajectory data to determine the viscosity of Newtonian fluids,
yet capable of returning viscosity values carrying an error as low
as ∼0.3% at best, which is five times smaller than those obtained
from conventional analytical methods applied to the same data. Our

results clearly indicate that machine learning is a valid option to be
explored to perform fast and accurate microrheology measurements
with optical tweezers in living systems.
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