
Available online at www.sciencedirect.com

u
W

z
l

h
0
o

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 414 (2023) 116129
www.elsevier.com/locate/cma

A computational framework for crack propagation along contact
interfaces and surfaces under load

Ignatios Athanasiadisa, Andrei G. Shvartsa, Zahur Ullaha,b, Karol Lewandowskia,
Chris J. Pearcea, Łukasz Kaczmarczyka,∗

a Glasgow Computational Engineering Centre (GCEC), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
b Advanced Composites Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9

5AH, UK

Received 3 February 2023; received in revised form 4 April 2023; accepted 14 May 2023
Available online xxxx

Graphical Abstract

Abstract

We present the first implicit computational framework for simulating crack propagation along contact interfaces and surfaces
nder load in three-dimensional bodies, which is distinct from modelling the contact interaction associated with crack closure.
e restrict ourselves to brittle fracture and frictionless contact and focus on numerical challenges associated with the coupling
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of unilateral constraints emerging from the Griffith’s criterion and the contact conditions. The formulation is based on the
configurational mechanics framework and is solved using the finite element method. The approach utilises a monolithic Arbitrary
Lagrangian–Eulerian formulation permitting simultaneous resolution of crack propagation and unilateral contact constraints.
Contact is embedded in the model using the well-known mortar contact formulation. Evolving cracks are explicitly modelled
as displacement discontinuities within the mesh. Heterogeneous approximation of arbitrary order is used to discretise spatial
displacements, enabling hp-adaptive refinement around the crack front and the contact interfaces traversed by the crack. The
result is a holistic approach which handles issues associated with thermodynamic consistency, numerical accuracy and robustness
of the computational scheme. Several numerical examples are presented to verify the model formulation and implementation;
they also highlight how contact pressure and load applied on surfaces traversed by cracks influence their propagation. The
robustness of the approach is validated by comparison of our simulations with existing numerical results and an industrial
experiment involving cracks of complex morphologies propagating along contact interfaces between multiple deformable bodies.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Configurational forces; Implicit crack propagation; Brittle fracture; Mortar contact; Hierarchical base

1. Introduction

Modelling of brittle crack propagation in elastic solids is an important field of research due to its relevance for
arious engineering applications, from the design of lithium-ion batteries [1] to the assessment of safety–critical
tructures such as nuclear reactors [2,3].

Over the past decades, several methods have been proposed to model crack propagation [4]. The simplest
pproach is associated with node splitting [5]; however, in this case, crack morphology has pathological depen-
ence on the mesh topology. Consequently, a number of methods were proposed to ensure the crack surface
eometry objectivity. One of the prominent classes of such methods is based on the displacement approximation
nrichment [6–8], often utilising the partition of unity property of finite element shape functions [9]. This class of
ethods can provide an accurate representation of stresses in the vicinity of the crack front by enrichment functions

ossessing an appropriate type of singularity. An alternative approach is associated with displacement enhancement
ethods, which enable displacement jump in the finite element without requiring displacement conformity [10].
his class of methods is robust in the case of complex crack morphology, however, it does not provide the accuracy
ffered by approximation enrichment methods.

Issues of objectivity, accuracy and robustness can be targeted by techniques directly changing mesh topology
o resolve crack surface geometry, which include re-meshing or mesh cutting methods [11]. Alternatively, for

aterials with a large fracture process zone compared to characteristic length of a structure, the concept of cohesive
lements can be used [12]. Furthermore, for such cases, methods based on fracture energy, such as the crack band
ethod [13,14], phase field methods [15] and gradient damage methods [16,17] can be utilised. This class of
ethods is exceptionally robust and can handle complex crack patterns, however, it demands high mesh density in

he vicinity of the crack surface. To satisfy this requirement, mesh adaptation is often employed, which may impact
he efficiency of the solution scheme [18].

A separate class of methods is based on discrete models, such as discrete element method [19,20], lattice
ethods [21,22], or peridynamics [23]. In these techniques, the fracture is handled by breaking or softening bonds

etween discrete elements. However, these methods have strong benefits only for problems where the characteristic
ize of the spatial discretisation is much smaller than the size of the fracture process zone.

One of the most rigorous approaches to the modelling of fracture is provided by configurational mechanics,
ffering the means to develop a thermodynamically consistent framework. Configurational forces, which are at the
entre of the present work, were initially defined in the context of material defects [24,25]. This concept was later
xtended to model crack propagation in brittle materials: Maugin and Trimarco [26] and Gurtin and Podio-Guidugli
27] derived equations that describe the motion of the crack driven by configurational forces. Since then, configura-
ional forces were used to find the direction of crack propagation in hyperelastic materials [28] and to solve the crack
ropagation problem in a staggered way for brittle [29–32] and quasi-brittle materials [33]. Configurational-forces-
riven crack propagation and the Griffith criterion were combined by Kaczmarczyk et al. [2,3] who proposed a
ully implicit crack propagation framework within the Arbitrary Lagrangian–Eulerian (ALE) description of motion.
n this approach, the calculation of the crack front extension in 3D bodies from first principles avoids any heuristic

quations dictating crack growth and leads to a continuous resolution of evolving crack path.
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Modelling of brittle crack propagation becomes more complicated in the presence of contact interaction. One
uch example, considered in the present work, is the crack propagation in irradiated graphite bricks in a nuclear
eactor [34]. In this application, one of the main challenges is the resolution of the complex crack morphology in 3D
odies subjected to internal stresses arising from irradiation and material properties’ heterogeneity. The problem is
urther complicated by the contact interaction between different parts of the assembly present in the reactor’s core.
s a result, along with other nonlinearities, the computational framework describing crack extension has to handle
nilateral constraints emerging from the crack propagation and from the contact interaction.

Significant developments have been achieved in the field of computational contact mechanics, see e.g. [35],
specially for approaches which use Lagrange multipliers to take into account unilateral constraints, including the
ugmented Lagrangian method [36] and the active set method with complementarity function [37]. The mortar
ethod is a well established and reliable approach to model contact interaction between solids having non-matching
eshes, see [38,39], while a dual base for approximating the Lagrange multiplier field was proposed in [37].
Extensive computational investigations have been conducted regarding the influence of contact between crack

urfaces on crack propensity and/or propagation [40–48]. In particular, crack propagation has been modelled
onsidering frictional and adhesive contact between crack surfaces [49–54]. Some of the most popular methods for
uch problems are X-FEM [55–57], cohesive elements [49], phase-field [58] and short crack correction models [59].
hese models are often employed to investigate the influence of fretting fatigue on the nucleation of a crack on one
ide of the contact interface and its propagation towards the interior of the body. This class of problem is of great
mportance for the railway industry [57,60–63], as well as for the aviation industry to assess the safety of turbine
lades assembly [64–66].

However, in industrial applications of quasi-static crack propagation considered in this paper, possible closure of
he crack surfaces and contact between them does not have a predominant effect on the solution. At the same time,
ases when the trace of the crack front is located on one of the sides of a contact interface have to be thoroughly
ddressed to model relevant practical cases. In such scenarios, we need a robust numerical tool to assess the influence
f the contact traction on the evolving crack morphology.

There are only a few studies which consider crack propagation predominantly driven by external normal contact
oading. A number of 2D models have been presented [67,68], however, the important case of crack propagation
long contact interfaces cannot be studied in 2D. An explicit 3D framework has been proposed using NURBS to
odel frictional contact and the phase-field approach to represent fracture developing along contact interfaces [69].

mplicit staggered 3D crack propagation approaches were also presented for ductile fracture developed under contact
oad [70,71].

In the present paper, a 3D crack propagation framework based on the configurational mechanics and ALE
ormulation, initially presented for homogeneous materials [2,3] and subsequently for heterogeneous materials [72],
s extended to consider crack propagation along contact interfaces and, more generally, any surfaces under traction.
he key contribution of the present work is the first fully implicit framework for brittle fracture which permits
imultaneous solution of two sets of unilateral constraints: those associated with crack propagation and with contact
onditions, including the cases when the crack front meets a contact interface.

The main advantage of the proposed method compared to the above discussed is the combination of stability,
obustness, thermodynamical consistency and absence of any heuristics and pre-determination of crack paths.
urthermore, the implicit crack propagation algorithm provides error control and can negotiate challenging
eometrical features such as corners. In addition, in the developed framework adaptive hp-refinement techniques are

utilised, permitting to rise approximation order in the vicinity of the crack front where the error is known a priori to
be higher. Accordingly, the contact elements on the interface traversed by the crack front also undergo hp-refinement.
Notably, higher order approximations are particularly efficient in the cases of distorted elements that can emerge
from the mesh evolution in the implicit crack propagation. A possible drawback of the proposed algorithm is the
complexity of its implementation, in particular, linearisation of virtual work terms in the ALE formalism. However,
herein we try to describe the framework in clear and concise manner, outline the implementation and provide
numerical examples which verify one “feature” of the framework at a time.

We propose a theoretical framework for analysing crack propagation within elastic bodies subject to contact
conditions and quasi-static loading, valid for large deformations and large displacements. However, for the
engineering applications considered in the present work, small strains and small displacements are valid assumptions.

Hence, the proposed model was implemented for the case of small strains and small displacements, and all results
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presented involve problems where such assumptions are valid. Moreover, for contact surfaces which are traversed
by the trace of the crack front, the large underlying material displacements arising from crack extension and mesh
quality improvement have been tackled by enforcing consistent integration of contact pressure on both sides of the
contact interface. This can be achieved by either convecting the Gauss points on the contact interface [39], or by
utilising the ALE formulation to preserve the “shadowing” of contact elements originally placed on top of each
other. Such “matching-meshes” approach is a particular case of mortar contact and avoids the need of linearisation
of Gauss points which leads to additional non-linearities [39]. The main consequence of the chosen approach is
that it restricts the model to allow for crack propagation only on contact surfaces that have no initial gap in the
reference configuration.

The rest of the article is organised as follows. Governing equations for crack propagation kinematics in
he Arbitrary Lagrangian Eulerian framework, along with coupling of crack propagation with traction boundary
onditions and contact interface constraints are presented in Section 2. Thereafter, the variational form of the
overning equations is presented in Section 3 and its discrete form is then discussed in Section 4, paying particular
ttention to the cases when contact interfaces and surfaces under traction are traversed by the crack front. In
ection 5 we provide the verification of mortar contact implementation with hierarchical spatially heterogeneous
ase functions and validation of its integration in crack propagation algorithm. Furthermore, several examples are
isted to highlight the effect of the contact pressure and external traction on the crack propagation process. Finally,
n the same section we present an application of the proposed framework to an industrial problem and compare
imulation results to experimental data considering various modelling choices.

. Governing equations

.1. Crack propagation kinematics

For completeness, a detailed description of the thermodynamically-consistent brittle crack propagation framework
s presented in this section. In Section 2.1.1, the ALE decomposition of cracked body motion is described and is
ollowed by the presentation of the crack front increment analysis in Section 2.1.2. Thereafter, a brief expression
egarding energy dissipation in the context of Griffith criterion is given in Section 2.2, while handling of the crack
ropagation constraints is discussed in Section 2.3. Finally, additional boundary conditions and contact constraints
re described in Sections 2.4 and 2.5, respectively.

.1.1. Cracked body kinematics
Analysis of continuous evolution of crack propagation in brittle materials is undertaken by means of the Arbitrary

agrangian–Eulerian (ALE) description as presented in [2,3]. The central concept of ALE approach for crack
ropagation is the decomposition of the body kinematics into current material and current spatial configurations
see Fig. 1). More specifically, propagation of a crack initially placed within an ideally brittle body subject to
oundary conditions in the reference configuration, B0, is decomposed into the crack extension in the current
aterial domain, Bt , and the body deformation described in the current spatial domain, �t .
A different notation than the one used in [2,3] was consciously chosen here to allow for better clarity regarding

he configuration to which a particular term belongs. In the present manuscript, lower case Greek subscripts will
efer to the reference configuration, while upper and lower case Latin subscripts will refer to the material and the
patial configurations, respectively, see also [73,74].

A schematic representation of the ALE decomposition is illustrated in Fig. 1, where mapping at time t of
eference coordinates, χα , to the current material coordinates, X I , is achieved via vector-valued function ΞI (χα, t)

defined as:

ΞI : B0 → Bt , X I = ΞI (χα, t). (1)

Mapping of material coordinates, X I , onto spatial coordinates, xi , is achieved via the deformation mapping ϕi (X I , t)
defined as:

ϕi : Bt → �t , xi = ϕi (X I , t). (2)

he physical displacements are denoted as:

u = x − δ X , (3)
i i i I I

4
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Fig. 1. Decomposition of crack propagation kinematics in an elastically deforming body into spatial and material displacements.

here Kronecker delta, δi I , acts as the shifter operator [73]. Note that in Eq. (3) and hereinafter the summation
ver the repeated indices is assumed unless otherwise stated.

Therefore, current spatial quantities can be obtained by subjecting reference quantities to ΞI mapping followed
by ϕi mapping. Alternatively, the mapping from B0 to �t can be directly achieved via Φi (χα, t) mapping:

Φi : B0 → �t , xi = Φi (χα, t). (4)

wo other displacement fields are defined with respect to the reference configuration:

WI = X I − δIαχα and wi = xi − δiαχα, (5)

here WI and wi are the current material and current spatial displacements, respectively.
Gradients of all aforementioned mappings and the relationship that connects them can be computed as shown

n [2]:

HIα =
∂ X I

∂χα

, hiα =
∂xi

∂χα

, Fi I =
∂xi

∂ X I
= hiα H−1

Iα , (6)

where the gradient of deformation, Fi I , is related to the gradient of material map, HIα , and the gradient of spatial
map hiα by the inverse of transformation from B0 to Bt , i.e. H−1

Iα , followed by the transformation from B0 to �t

(multiplication by hiα). Moreover, time derivatives of the displacement and the gradient of deformation at a point
X I = const can be evaluated as:

u̇i = ẇi − Fi J ẆJ , Ḟi J =
∂ ẋi

∂ X J
=

∂ u̇i

∂ X J
=

∂ẇi

∂ X J
− Fi K

∂ẆK

∂ X J
, (7)

ee [2] for more details.

.1.2. Crack front kinematics
To analyse crack front kinematics, a crack surface 0cr ∈ Bt is considered to be a 2D surface embedded in 3D

pace. We will distinguish between two sides of 0cr representing two crack lips/sides 0+
cr and 0−

cr , whose outward
ormal vectors are N+

I and N−

I , respectively (see Fig. 2). Furthermore, let us consider a surface 00
cr that encircles

he crack front denoted by ∂0cr. Surface 00
cr can be seen as a cylindrical-like surface that results from a sweep of

circle of radius r with ∂0cr located at its centre (see Fig. 2). In the limit r → 0, the surface 00
cr reduces to the

crack front ∂0cr, while the crack surface is obtained as 0+
cr, 0

−
cr → 0cr.

The areas of oriented crack surfaces can be calculated based on the intrinsic parametrisation (ξ1, ξ2), which is
+ − 0
ommon to 0cr, 0cr and 0cr. Local tangent vectors on the oriented crack surfaces (covariant bases) are evaluated

5
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Fig. 2. Crack surface and crack front definition. Source: Adapted from [3]

as derivatives of the material location vector R(m)
I (ξ1, ξ2) with an arbitrary origin, where m ∈ {0, +, −}:

T (m),ξ1
I =

∂ R(m)
I (ξ1, ξ2)
∂ξ1

and T (m),ξ2
I =

∂ R(m)
I (ξ1, ξ2)
∂ξ2

. (8)

Hence, the crack surface normal vectors N (m)
I can be defined as:

N (m)
I = εI J K T (m),ξ1

J T (m),ξ2
K , (9)

where εI J K is the Levi-Civita symbol. Using (9), the crack surface area can be evaluated as:

A0cr = lim
r→0

1
2

0,+,−∑
m

A0
(m)
cr = lim

r→0

1
2

0,+,−∑
m

∫
0

(m)
cr

(
N (m)

I N (m)
I

)1/2
d0, (10)

hile the crack surface increase rate is:

Ȧ0cr =
1
2

lim
r→0

0,+,−∑
m

∂ A0
(m)
cr

∂WJ

dWJ

dt
=

1
2

lim
r→0

0,+,−∑
m

∫
0

(m)
cr

(
N (m)

I N (m)
I

)−1/2
N (m)

I
∂ N (m)

I

∂WJ
ẆJ d0

=
1
2

lim
r→0

0,+,−∑
m

∫
0

(m)
cr

A0
(m)
cr

J ẆJ d0.

(11)

he vector A0
(m)
cr

J is defined as:

A0
(m)
cr

J := N̂ (m)
I

∂ N (m)
I

∂WJ
, (12)

here N̂ (m)
I is the unit normal vector:

N̂ (m)
I =

N (m)
I

∥N (m)
I ∥

. (13)

t is important to note that any increase of the crack surface area can occur only at the crack front, i.e. the material
elocity ẆJ is non-zero only on ∂0cr. Therefore, the expression (11) can be rewritten as:

Ȧ0cr =
1
2

lim
r→0

∫
00

cr

A00
cr

J ẆJ d0 =

∫
Lt

1
2

lim
r→0

∮
Ln

A00
cr

J ẆJ dLndLt =

∫
Lt

A∂0cr
J ẆJ dLt, (14)

here we used parametrisation Lt(ξ1) = 00
cr(ξ1, ξ2)|ξ2=const and Ln(ξ2) = 00

cr(ξ1, ξ2)|ξ1=const (see Fig. 2). Since the
aterial velocity Ẇ does not change with respect to ξ parameter when |L | → 0, we introduced in (14) a unitless
J 2 n

6
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kinematic state variable A∂0cr
J that defines the direction of the crack front extension:

A∂0cr
J :=

1
2

lim
r→0

∮
Ln

A00
cr

J dLn. (15)

.2. Power balance in a cracked body

The crack propagation problem can be considered as a thermodynamic system including a solid deformable body
ith an imperfection. Traction applied on the boundary of the body ∂Bt performs the work on the system. We may

xpress the power input into the body in terms of spatial velocity u̇i and traction ti = δi J TJ as:

P :=

∫
0σ

u̇i ti d0 =

∫
0σ

(
ẇi ti − ẆK FK i ti

)
d0, (16)

here (7) was used, and TJ is a traction defined on the surface 0σ ⊂ ∂Bt in the material configuration.
Following the first law of thermodynamics, the power of external work on elastic body must be balanced by the

um of the crack energy release rate, U̇0cr , and the rate of change of the internal body energy, U̇Bt :

P = U̇0cr + U̇Bt , (17)

here the terms on the right-hand side are defined as:

U0cr := γcr A0cr and UBt :=

∫
Bt

Ψ (Fi J )dV, (18)

ith γcr and Ψ being the surface energy and the free energy density function, respectively. Substituting ex-
ressions (16) and (18) into (17) and taking into account time derivatives presented in (7) and (14), given that
V̇ = ∂ẆI /∂ X I dV , yields:∫

0σ

(
ẇi ti − ẆJ FJ i ti

)
d0 = γcr

∫
∂0cr

A∂0cr
I ẆI d∂0 +

∫
Bt

(
Pi J

∂ẇi

∂ X J
+ ΣK J

∂ẆK

∂ X J

)
dV, (19)

where

Pi J :=
∂Ψ (Fi J )

∂ Fi J
and ΣK J := Ψ (Fi J )δK J − FK k Pk J (20)

re first Piola–Kirchhoff stress tensor and Eshelby stress tensor [26,75], respectively. By applying the divergence
heorem, Eq. (19) can be rewritten as:

γcr

∫
∂0cr

A∂0cr
I ẆI d∂0 =

∫
Bt

(
ẇi

∂ Pi J

∂ X J
+ ẆK

∂ΣK J

∂ X J

)
dV

+

∫
0σ

ẇi

(
ti − Pi J N̂J

)
d0 −

∫
0σ

ẆK

(
FK i ti + ΣK J N̂J

)
d0

−

∫
∂0cr

ẇi

(
lim
r→0

∮
Ln

Pi J N̂J dLn

)
d∂0 −

∫
∂0cr

ẆK

(
lim
r→0

∮
Ln

ΣK J N̂J dLn

)
d∂0.

(21)

The conservation of linear momentum, complimented by the equilibrium of stress with external forces on the
urface of the body, reads:

∂ Pi J

∂ X J
= 0 in Bt , Pi J N̂J = ti on 0σ . (22)

Note that inertia terms are neglected and we restrict ourselves to quasi-static problems. Moreover, linear material
momentum balance is similarly expressed as:

∂ΣK J

∂ X J
= 0 in Bt , ΣK J N̂J = −FK i ti on 0σ , (23)

ccording to the derivation presented in [26,76]. Making use of (22)–(23) and noting that the surface Ln surrounding
he crack front is traction-free, (21) reduces to:

γcr

∫
A∂0cr

K ẆK d∂0 +

∫
ẆK

(
lim

∮
ΣK J N̂J dLn

)
d∂0 = 0. (24)
∂0cr ∂0cr r→0 Ln

7
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Therefore, the equilibrium equation for the crack front takes the form:

ẆK

(
γcr A∂0cr

K − G∂0cr
K

)
= 0, (25)

where

G∂0cr
K := − lim

r→0

∮
Ln

ΣK J N̂J dLn (26)

is the configurational (material) force resulting from external loads.
Three possible cases emerge from (25) for the crack front to be in equilibrium. The first case involves the crack

front material velocities, ẆK , to be zero and therefore the crack is not propagating. The second case results in
crack propagation when ẆK ̸= 0 and the scaled crack extension vector, γcr A∂0cr

K is equal to the configurational
force G∂0cr

K . The third case is when the ẆK is perpendicular to γcr A∂0cr
K − G∂0cr

K , i.e. crack does not propagate.
The following subsection is devoted to the discussion of the crack propagation constraints permitting to select the
appropriate case from these three possibilities.

2.3. Crack propagation constraints

To be able to select between the cases resulting from (25), we will use an appropriate criterion for linearly elastic
fully brittle material. Following [2,3], we consider a generalisation of the classic Griffith’s criterion for the case of
a non-straight crack front in a 3D body:

f (G∂0cr
K ) := A∂0cr

K

(
G∂0cr

K − A∂0cr
K gcr/2

)
≤ 0, (27)

where the material parameter gcr = 2γcr is the so-called Griffith energy that represents the threshold surface energy
which the crack front ∂0cr can withstand before the crack can propagate.

The dissipation of energy per unit length of the crack front can be evaluated as D := G∂0cr
K ẆK . For the solution

branch where the crack is propagating, we need to enforce an admissible thermodynamic process with positive
energy dissipation, i.e. D ≥ 0. Furthermore, from all admissible processes we will choose the one which dissipates
energy maximally and at the same time fulfils the Griffith criterion (27). Such process can be expressed as the
solution of the following saddle point problem:

min
G∂0cr

K

max
κ̇

L, L := −G∂0cr
K ẆK + κ̇ f (G∂0cr

K ), (28)

where a Lagrange multiplier field κ̇ ≥ 0 is a kinematic variable, dual to a static variable G∂0cr
K . The saddle point

problem (28) is associated with the following Karush–Kuhn–Tucker (KKT) conditions:

κ̇ ≥ 0, f (G∂0cr
K ) ≤ 0, κ̇ f (G∂0cr

K ) = 0. (29)

It is important to note that the numerical implementation of KKT conditions (29) is inconvenient: one would
need to compute G∂0cr

K at the crack front. This could be calculated numerically using the path-independent
J -integral [7,8,77], or by integration of Eshelby stress in the volume [28,29]. However, both approaches lead to
implementation challenges, especially for an implicit crack propagation scheme.

Instead, we transform the KKT conditions (29) to remove the dependence on G∂0cr
K while preserving a single

Lagrange multiplier field to maintain the well-posedness of the saddle point problem (28). This transformation is
based on two observations. The first follows from the Griffith’s criterion (27) and involves the force balance at the
crack front which can be expressed as (see also Fig. 3):

G∂0cr
K − (gcr/2 − ρ)A∂0cr

K = 0, (30)

where ρ is a new variable which scales A∂0cr
K such that (30) is fulfilled. Three cases following from (30) can be

distinguished: (i) ρ = gcr/2 when the body is not loaded, i.e. G∂0cr
K = 0; (ii) ρ = 0 when the crack propagates; and

an intermediate state (iii) when G∂0cr
K ̸= 0 and ρ > 0. Moreover, (30) implies that G∂0cr

K is co-linear to A∂0cr
K : when

the crack propagates in case (ii), collinearity is already dictated by the equilibrium equation for the crack front (25),
while the collinearity of G∂0cr

K and A∂0cr
K for the case (iii), when the crack does not propagate, is an assumption we
introduce.

8
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Fig. 3. Schematic of the forces in balance at the crack front.

The second observation follows from finding the stationary point of the Lagrangian in (28) with respect to G∂0cr
K ,

which leads to the following identity:

ẆK = κ̇ A∂0cr
K . (31)

Note that A∂0cr
K A∂0cr

K ≥ 0, and hence for κ̇ ≥ 0, κ̇ A∂0cr
K A∂0cr

K = A∂0cr
K ẆK ≥ 0. Following these two observations,

the KKT conditions (29) can be transformed into the new form:

A∂0cr
K ẆK ≥ 0, ρ ≥ 0, ρ A∂0cr

K ẆK = 0. (32)

The KKT conditions (32) can be enforced by the active set method with a complementarity function similar to
the one proposed for frictionless contact constraints [37]:

Ccr(ρ, ẆK ) := ρ − max
(

0, ρ − ccr A∂0cr
K ẆK

)
, (33)

where ccr is the stability/complementarity parameter, controlling convergence of the Newton–Raphson method and
is chosen in range of the Griffith energy of a given material. In the developed framework, equation Ccr(ρ, ẆK ) = 0
is solved together with the crack front balance equation (30).

2.4. Additional boundary conditions in the material domain

To impose shape preservation of the cracked body in the material configuration [3], we consider additional
essential boundary conditions which complement (23) on the whole boundary except the crack front:

[X I − χαδα I ] N̂I = 0 on (∂Bt ∪ 0+

cr ∪ 0−

cr) \ ∂0cr, (34)

see also Fig. 4(a). Furthermore, since sliding of material points along the boundary surfaces does not generate
configurational changes in a homogeneous material, additional natural boundary conditions are applied as follows:

ΣK J N̂J (δK L − N̂K N̂L ) = {0, 0, 0} on (∂Bt ∪ 0+

cr ∪ 0−

cr) \ (∂0cr ∪ 0σ ), (35)

i.e. on the whole boundary except the trace of the crack front and the regions where the natural boundary conditions
are imposed.

2.5. Contact constraints

Unilateral contact of two 3D elastic bodies is schematically presented in Fig. 4(b). Two contacting bodies are
termed as slave and master, and associated quantities are denoted by superscripts (1) and (2), respectively, e.g. the

(i) (i)
two bodies are denoted by � , where i = 1 or 2. Furthermore, each body’s surface, ∂� , is divided into three sets

9



I. Athanasiadis, A.G. Shvarts, Z. Ullah et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116129

a

d

Fig. 4. Schematic representation of 3D bodies: (a) a cracked body with traction and displacements boundary conditions and (b) a cracked
nd an intact body coming into contact (presented as separated to provide a clearer visual impression).

epending on the boundary conditions applied to its regions, i.e. essential boundary 0(i)
u , natural boundary 0(i)

σ and
contact boundary 0(i)

c . Following assumptions presented in [39,78], these boundary sets are considered as disjoint.
In the schematic example in Fig. 4(b), point X (1)

J , located on the slave surface, and point X (2)
J , located on the

master surface, are in contact. Since applications considered in this work can be studied under small displacements
and small strains assumptions, current and material configurations are considered to be indistinguishable. Therefore,
the outer normal vector, NI , and tangent vectors, T ξ1

I and T ξ2
I , are chosen to be functions of the material coordinates

X (1)
J . The normal is then defined as:

NI (X (1)
J ) = εI K L T ξ1

K T ξ2
L , (36)

and the unit normal N̂I (X (1)
J ) is evaluated according to Eq. (13). However, it is important to note that all previously

discussed theoretical formulations are valid for large strains and large displacements. In order to make the contact
formulation presented below valid for these cases, one would only need to consider normal and tangent vectors as
functions of the spatial coordinates x j .

The gap between the two bodies is evaluated based on the current position of two points x (1)
j and x (2)

j and is
defined using a scalar gap function:

gcon(x (i)
j , X (1)

J ) = −N̂I

(
X (1)

J

)
δI j

[
x (1)

j − x (2)
j

]
, (37)

and as the gap function and normal vector will always be defined on the slave surface, the superscript (1) is dropped
for these terms.

Since the present paper focuses on frictionless contact, only normal component, pcon, of current contact traction,
tc

j , over the slave surface area is taken into account and evaluated as

c ˆ
pcon = t j δ j J NJ . (38)

10



I. Athanasiadis, A.G. Shvarts, Z. Ullah et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116129

w

w
w

w

3

t

w

3

a

Then, the conditions that describe frictionless contact in the absence of adhesion can be expressed in the form of
the Karush–Kuhn–Tucker (KKT) conditions as

gcon ≥ 0, pcon ≤ 0, pcongcon = 0, (39)

where the tension-positive convention is considered. We follow [37] and enforce KKT conditions by considering
the complementarity function:

Ccon(λ, x (i)
j , X (1)

J ) := λ − max (0, λ − cngcon) , (40)

where cn is a stabilisation/complementarity parameter that has a similar sense to the augmentation parameter in the
augmented Lagrangian method [36,79]. Moreover, λ is a scalar Lagrange multiplier function which is introduced to
fulfil the KKT conditions and is defined with respect to contact normal traction as λ = −pcon. The KKT conditions
are then fulfilled when Ccon(λ, x (i)

j , X (1)
J ) = 0.

3. Variational expression for governing equations

This section presents the variational form of the governing equations for crack propagation, traction and
contact conditions, presented in Section 2. Note that a quasi-static formulation was chosen to be developed. The
discretisation versions of the terms shown here are discussed in subsequent Section 4.

3.1. Variational formulation for crack propagation problem

First, we will consider the weak form of the crack front balance equation (30). The virtual work of the material
force can be computed as the integral of G∂0cr

K along the crack front, see Eq. (26), weighted by the variation of
material displacements:

δF := −

∫
∂0cr

δX K

(
lim
r→0

∮
Ln

ΣK J N̂J dLn

)
d∂0 = −

∫
Bt

∂δX K

∂χβ

δβ JΣK J d�, (41)

here the divergence theorem was applied and then (23) was used.
The virtual work of the material resistance force at the crack front is computed similarly as:

δM :=

∫
∂0cr

δX K A∂0cr
K (ρ − gcr/2)d∂0, (42)

here A∂0cr
K was defined in (15). Finally, to obtain the variational form of the crack front propagation conditions (32),

e integrate the complementarity function (33) multiplied by the variation of the variable ρ:

δCcr :=

∫
∂0cr

δρ Ccr(ρ,∆W t
I )d∂0, (43)

here ∆W t
I = X t

I − X t−1
I is the crack front displacement increment at load step t .

.2. Variational form of surface traction terms

Traction BCs are presented in Eqs. (22) (spatial forces) and (23) (material forces). The virtual work input of
raction can be expressed with two terms associated with variations of spatial and material positions as:

δT sp
:=

∫
0σ

δxi ti d0, δT mat
:= −

∫
0σ

δX K FK i ti d0, (44)

here δT sp and δT mat represent the virtual work of traction in spatial and material configurations, respectively.

.3. Variational formulation of contact constraints

First, the virtual work terms of the contact pressure associated with variation of spatial positions on the master
nd slave bodies are expressed as:

δQ(1)
:=

∫
(1)

δx (1)
i δi I λN̂I d0, δQ(2)

:= −

∫
(2)

δx (2)
i δi I λN̂I d0. (45)
∂0con ∂0con

11
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Furthermore, the complementarity function presented in (40) is weighted by the test functions, δλ, of contact
agrange multipliers, and the corresponding variational form is defined as:

δCcon :=

∫
∂0

(1)
con

δλCcond0. (46)

imilarly to the additional term associated with virtual material displacements in (44), the virtual work of contact
ressure in the material configuration is defined as:

δR(i)
:= (−1)i

∫
0

(i)
con

δX (i)
I FI iδi J λN̂J d∂0, (47)

here i = 1 or 2 when the crack front is propagating along the slave or master contact surface, respectively.

. Problem discretisation and implementation

In this section we will discretise the problem using finite elements by means of the Galerkin method for the case
f tetrahedral FE meshes. The assembly of the emerging system of equations is denoted here by various assembly
perators A. While degrees of freedom (DOFs) of multiple unknown fields considered here correspond to certain

algebraic entries of the resulting system of equations, these DOFs are also associated with certain mesh entities.
Therefore, to clarify the description, for each assembly operator we will specify the associated geometric entities.
For instance, operator A∂Bh

t ∩∂0h
cr

denotes the assembly of algebraic entries corresponding to DOFs associated with
he geometric entities on the intersection between the discretised boundary of the body and the crack front. This is
ventually the trace of the crack front on the body surface. Note that the superscript h is used hereinafter to denote
iscretised versions of geometrical entities.

Note also that the theoretical formulations presented in Sections 2 and 3 are general, however, the finite element
mplementation described below is done under the assumption of small strains and small displacements.

.1. Crack propagation problem discretisation and resolution of propagating crack

The spatial and material position fields are approximated according to the finite element method as:

xh
i =

nsp∑
s=1

Ss x̃ s
i , Xh

I =

nmat∑
m=1

Mm X̃m
I , (48)

here superscript h refers to the field approximation and ˜(·) denotes degrees of freedom. Moreover, Ss, Mm
∈

H 1(�h) are spatial and material polynomial scalar base functions, respectively, which are conforming within the
E mesh. For spatial positions, hierarchical basis functions proposed in [80] for tetrahedral elements are chosen in

he present work to allow for spatially heterogeneous approximation order. This feature is particularly useful for
olving the crack propagation problem since approximation order can be seamlessly increased near the crack front
o improve approximation quality. At the same time, in the present work, first order of approximation is chosen for

aterial positions which is sufficient to approximate the geometry of the crack front. Therefore, the total number
f spatial base functions is greater or equal to the material base functions, i.e. nsp ≥ nmat in Eq. (48). Accordingly,
he discretised versions of the three gradients of deformation presented in (6) are:

H h
Iα =

nmat∑
m=1

∂ Mm

∂χα

X̃m
I , hh

iα =

nsp∑
s=1

∂Ss

∂χα

x̃ s
i , Fh

i I =

( nsp∑
s=1

∂Ss

∂χα

x̃ s
i

)(
nmat∑
m=1

∂ Mm

∂χα

X̃m
I

)−1

. (49)

.1.1. Crack propagation problem discretisation
Contribution to the residual vector from the virtual work term (41) of the crack front balance equation can be

xpressed as:

F m
I := −A

h

∫
Bh

t,cf

∂ Mm

∂ X K
Σ h

I K d�h, (50)

∂0cr

12
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Fig. 5. Schematic of: (a) initial mesh used for crack propagation analysis where the discretised body is generated independently from the
cutting surface used to seed the crack, (b) mesh seeded with initial crack based on the cutting surface, (c) a zoom at the vicinity of the crack
front after mesh cutting has been performed where only the resulting crack surface and smoothing bubble (see definition in Section 4.1.2)
are presented and (d) only the crack surface with highlighted triangles adjacent to crack front.

where the integration domain Bh
t,cf represents a single layer of tetrahedral elements adjacent to the crack front,

while the assembly is done to algebraic entries of the system associated with the nodes of the crack front. Note
that the integration domain presented in (41) is reduced to Bh

t,cf since it is the support for test functions δXh
I .

The contribution of the term (42) of the crack front balance equation reads:

M m
I := A

∂0h
cr

∫
∂0h

cr

Mm Ah,∂0cr
I (ρh

− gh
cr/2)d∂0h

= A
∂0h

cr

∫ 1

−1
Mm Mc Ã∂0cr,c

I (ρh
− gh

cr/2)dη, (51)

where ρh
:=

∑nfr
c=1 Mcρ̃c, ρ̃c is the value of the DOF for the crack front Lagrange multiplier, nfr is the total

number of crack front nodes and gh
cr is the approximated Griffith energy value which depends on the material

coordinates for heterogeneous materials [72]. Since only homogeneous materials are considered in this work, no
further consideration of gh

cr is needed as it is constant throughout the material domain.
Moreover, in the discrete setting of finite elements approximation, crack surface is represented by face elements,

.g. triangles. As a consequence, we cannot directly represent A∂0cr
I in (15) since the limit for discrete representation

of the crack surface cannot be calculated. Instead, we introduce a nodal quantity Ã∂0cr,c
I , as proposed in [2], which

provides the connection between the variation of the crack surface area δA0cr and the variation of the material
displacement of nodes:

δA0cr =

ncr∑
c=1

Ã∂0cr,c
I δ X̃ c

I , Ã∂0cr,c
I :=

1
2

+,−∑
n

∫
0

h,(n)
cr,f

N̂ h,(n)
J

∂ N h,(n)
J

∂ X̃ c
I

d0, (52)

here the integration is performed on both sides of the crack surface over the triangles adjacent to the crack front
0h

cr, which are denoted as 0
h,(n)
cr,f , see Fig. 5(d). The determinant of the Jacobian (i.e. the length of the crack front

dge) is not present under the parent space integral in (51) since this length is already accounted in the term Ã∂0cr,c
I

defined in (52). Furthermore, the direction of the crack front extension in the continuum representation in (15) can
change non-smoothly, however, in the discrete setting (52), crack front can extend only in a smooth manner. The
normal vector N h

J (Xh
J ) and the unit normal vector N̂ h

J (Xh
J ) to the triangular surface on ∂Bh

t are calculated as:

N h
I (Xh

J ) = εI K L T h,ξ1
K T h,ξ2

L = εI K L

(
nmat∑
m=1

∂ Mm

∂ξ1
X̃m

K

)(
nmat∑
m=1

∂ Mm

∂ξ2
X̃m

L

)
and N̂ h

I (Xh
J ) =

N h
I (Xh

J )
∥N h

J (Xh
J )∥

, (53)

espectively.
13
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Finally, the contribution to the residual vector from the virtual work associated with elastic stress in the whole
olume of the body reads:

f sp,s
i := A

Bh
t

∫
Bh

t

∂Ss

∂ X J
Ph

i J d�h, (54)

which results from the standard finite element procedure applied to the balance of linear momentum equation in (22).

4.1.2. Resolution of propagating crack
In the present work, a new procedure is proposed for resolving mesh evolution caused by propagating crack. It is

important to note, that the implementation of the presented approach has immediate implications on resolving crack
propagation which is linked to the handling of traction and contact boundary conditions in the ALE formalism; the
details will be described in Section 4.2.

At the start of the crack propagation analysis a mesh of an ideally brittle body and a separately discretised
cutting surface are provided, see Fig. 5(a). Thereafter, the cutting surface is used to cut the mesh of the brittle body
following the strategy described in [3]. Once the intact mesh is cut, the crack propagation analysis proceeds by
keeping the same mesh topology for nsteps number of steps chosen by the user. After these steps, the mesh cutting
is repeated again, now using an updated crack surface for the cutting, which is followed by another nsteps steps of
rack propagation. This cyclic procedure is repeated while the crack propagation is topologically possible.

It is important to highlight the distinction between evolution of the current material configuration and that
f the mesh topology. When the crack propagates, it passes through current material points Xh

I resulting in a
discontinuity in the mapping between current material configuration ΞI (χh

α , t) and spatial configuration ϕi (Xh
I , t).

This is an evolution of the material configuration. However, during the nsteps of propagation, mesh topology is not
evolving, i.e. connectivity of the mesh entities does not change. More precisely, as crack front nodes advance, mesh
connectivity is invariant, and the crack surface extension splits the approximated material domain (see Fig. 3(a) and
(b) in [72]). This leads to the aforementioned material configuration evolution and therefore to the discontinuity of
ϕi (Xh

I , t). After each nsteps of propagation, mesh cutting is performed, which changes the mesh topology (see Fig.
(c) in [72]).

Furthermore, we need to include certain mesh quality control, which will have immediate implications on the
mplementation of the virtual work contribution of traction and contact BCs, discussed in the following subsections.
ote that mesh quality control is necessary since as crack propagates through a fixed mesh topology, some of the

etrahedrals adjacent to the crack front, ∂0h
cr, are elongated while others are squashed. To overcome this issue, for

ach of the nsteps steps, quality control constraints are applied in a monolithic fashion to several layers of volume
lements located around the crack front ∂0h

cr as presented in Fig. 5(b) and (c). This set of elements will be referred
o as smoothing bubble and denoted by S h

B .
To account for the mesh quality control, a stabilising material force f qual,m

I is added to the system of equation
nd is defined as follows:

f qual,m
I := A

S h
B\∂0h

cr

∫
S h

B

∂ Mm

∂χα

QTET
α I d�h, (55)

here QTET
α I represents a pseudo-stress at the tetrahedron-level and is defined as the counterpart of the first Piola–

irchhoff stress, see [3]. This additional term operates solely in the material configuration and does not affect the
olution of the crack propagation problem since no contribution is assembled to algebraic entries corresponding to
rack front nodes.

.2. Discretisation of boundary conditions when traversed by the crack front

In this section, the discretised versions of traction and contact boundary conditions for the case of crack

ropagation in the ALE formulation are presented.

14
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Fig. 6. Schematic presentation of traction elements in the ALE formulation for crack propagation.

Fig. 7. Schematic presentation of the approximation of the deformation gradient tensor Fh
i J on the element boundary.

4.2.1. Traction boundary conditions
The standard discretised version of the residual component for traction, T

sp,s
i is evaluated according to the

expression δT sp in (44) as

T
sp,s

i := A
0h

σ

∫
0h

σ

Ss t̄i d0h, (56)

here Ss
∈ H 1(0h

p) is a vector of nsp basis functions for approximating spatial positions and t̄i is the prescribed
raction.

To the best of our knowledge, here, it is the first time that implicit consideration of the surface pressure boundary
onditions is presented for crack propagation in ALE formulation. During the crack propagation analysis, the crack
ront can come close to or even traverse the surface where pressure is applied. To take this into account, an additional
xpression corresponding to δT mat in (44) has to be added to the residual vector:

T mat,m
I := − A

∂0h
cr∩0h

σ

∫
0h

σ,cf

Mm FI i t̄i d0h, (57)

here Mm
∈ H 1(0h

σ ) is a vector of nmat basis functions for approximating material positions. The integration
omain in (57) is represented by a single layer of triangular elements adjacent to the trace of the crack front ∂0h

cr
n the traction surface 0h

σ . Moreover, the assembly is performed only to the algebraic entry of the system associated
ith the single node corresponding to ∂0h

cr ∩0h
σ , see Fig. 6. Since the material positions can change not only at the

rack front but rather in the whole smoothing bubble (see Section 4.1.2), additional considerations will be required
or a consistent linearisation of the residual components (56) and (57) on 0h

σ,sb, see details in Appendix A.
Furthermore, evaluation of Fh

J i on the traction boundary requires a special technology for computing the trace
f fields approximated in the volume at the Gauss points located on the surface of a tetrahedron, see Fig. 7. We
mplemented a technology similar to the one used in discontinuous Galerkin [81–83] and discontinuous Petrov–
alerkin [84,85] approaches. However, instead of evaluating volume quantities as traces on the mesh skeleton, here
hey are evaluated on the boundary of the mesh as it is also done for computing traction in the Nitsche method in
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Fig. 8. Gap definition for non-matching meshes contact elements.

contact mechanics [86,87]. The consistent linearisation of the transpose of the deformation gradient tensor, Fh
J i , is

riefly discussed in Appendix B.

.2.2. Coupling contact constraints with crack propagation in the ALE formulation
The mortar contact approach was chosen here for solving the problem of crack propagation along contact

nterfaces since it is an insignificantly variationally inconsistent approach [88]. Two types of face-to-face contact
ethods were considered: the standard mortar method for non-matching meshes and its special case for treating the

ase of matching meshes. As will be detailed below, the former, non-matching meshes contact approach is used for
urfaces where crack will not pass while the latter, matching-meshes contact is considered for surfaces which the
rack front can reach in the course of the propagation analysis.

To include the non-matching meshes contact, an approach similar to [38,39] was implemented to generate Gauss
oints between two overlapping triangles, one being on the slave surface and the other on the master surface.
hen two triangles overlap, a special contact prism is created that has no physical volume, i.e prisms are allowed

o intersect. Each prism is then used to integrate the contact constrains on the triangular surfaces in the standard
anner via clipping and triangulation procedure. However, since the developed framework is built using hierarchical

ase functions [80], which allow for spatially heterogeneous order of approximation, a non-standard approach has
een chosen for evaluating the gap.

Commonly, the gap is evaluated at nodes of the slave side [38,39,78,89,90]. In this work, the gap is evaluated
t each Gauss point of the slave side as the normal distance between a pair of Gauss points emerging from the
lipping and the triangulation procedure. The approximated gap, gh

con, between e.g. the first pair of Gauss points of
he contact prism with coordinates (ξ (1),g1

1 , ξ
(1),g1
2 ) and (ξ (2),g1

1 , ξ
(2),g1
2 ) is computed as

gh
con(xh,(1)

i , xh,(2)
i ) = −N̂ h

I δi I (xh,(1)
i − xh,(2)

i ), (58)

where superscript g1 refers to the first Gauss point pair (see Fig. 8), and the unit normal N̂ h
I is computed as was

shown in (53). The evaluation of the Gauss point-wise gap permits to consider gap-related quantities corresponding
to a single contact element when performing numerical integration, in contrast to the commonly used node-wise
weighted gap evaluated as a mean of contributions from all elements adjacent to a node on the contact surface [39].

When one of the contacting surfaces is traversed by the trace of the crack front, triangles located on the surface
cut by the crack will move in the material domain with respect to the triangles located on the intact contact surface.
Furthermore, material displacements arising from crack extension and mesh quality improvement can be large even
if the spatial displacements are assumed small. In such cases, consistent integration of contact pressure on both
sides of the contact interface can be achieved by convecting the contact Gauss points [39,78]. However, this would
necessitate linearisation of the Gauss point coordinates generated by the clipping procedure, in addition to coupled
KKT conditions of contact (39) and Griffith criterion (32) in this framework. Therefore, we propose here a more

suitable approach, utilising the ALE formulation to preserve the “shadowing” of contact elements originally placed
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Fig. 9. Schematic presentation of matching-meshes contact elements in the ALE crack propagation formulation.

n top of each other in the material configuration, which we will refer to as the matching meshes contact. This can
e achieved by imposing a simple constraint on the material positions of nodes of the contact interface, enforcing
odes of the intact surface to follow the nodes of the cut surface in the material domain, as will be shown below.

In the current approach, in order to generate matching meshes on the potential contact surfaces, the bodies are
nitially meshed having common vertices, edges and faces along matching-meshes contact interfaces. Thereafter,
he meshes are disconnected by replacing the common triangles of the two meshed bodies with zero volume prism
lements where one triangle is part of the master body and the other triangle is part of the slave. Hence, in the
atching-meshes case prisms are not overlapping and therefore no clipping is needed since the triangles of the two

risms sides are fully coinciding in the reference configuration. Nevertheless, the gap evaluation is performed in
xactly the same fashion as for non-matching meshes contact presented in Eq. (58).

A schematic of two meshed bodies where only one is cracked is presented in Fig. 9. The bodies are in contact
ut are shown separated for visual clarity. The triangular faces are coinciding, and there are edges not shown here
onnecting the matching vertices located on the two separate faces. It should be noted that the contact elements
djacent to the crack front, 0

h,(i)
con,cf, are present only on the one of the contacting surfaces since the crack front is

located only on one of the two bodies coming into contact. However, the rest of the elements of 0h,(i)
con and 0

h,(i)
con,sb

are located on both sides of the contact surface. It must be clarified also that for contact surfaces where crack is
not expected to pass, non-matching meshes mortar contact is applied.

The common formulation of both matching and non-matching meshes contact elements includes the residual
components associated with the contact traction on slave Q(1),s

i and master Q(2),s
i sides and with the contact

complementarity constraint C c
con, following contributions in Eqs. (45) and (46):

Q(1),s
i := A

0
h,(1)
con

∫
0

h,(1)
con

Ss N̂J δi J λ
hd0h, Q(2),s

i := − A
0

h,(2)
con

∫
0

h,(2)
con

Ss N̂J δi J λ
hd0h,

C c
con := A

0
h,(1)
con

∫
0

h,(1)
con

ΛcCh
cond0h,

(59)

here λh
=

∑nλ
c=1 Λ

cλ̃c is the approximated Lagrange multipliers scalar field and Ch
con is the approximated

complementarity function (40) defined as:

Ch
con := λh

− max
(
0, λh

− cngh) , (60)

ith Ss
∈ H 1

(
0h,(i)

)
, Λc

∈ H 1
(
0h,(i)

)
and λ̃c being contact Lagrange multiplier DOFs.
con con
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The residual contribution of the additional virtual work term presented in (47) is evaluated either on the master
r the slave side depending on where the trace of the crack front lies, and is expressed as:

R(i),m
I = (−1)i A

∂0h
cr∩∂0

h,(i)
con,cf

∫
0

h,(i)
con,cf

Mmλh FJ i N̂J δi I d0h, (61)

here i = 1 if the slave body is cracked and i = 2 otherwise.
Since material positions can change in the whole smoothing bubble (see Section 4.1.2), additional considerations

ill be required for a consistent linearisation of the residual components (59) and (61) on 0h
con,sb. The treatment

of these components will be similar to the linearisation of the terms (56) and (57) discussed in Section 4.2.1, see
details in Appendix C.

To ensure the “shadowing” of the contact elements on the cut contact surface by the corresponding elements on
the intact surface, an additional constraint can be added on the relatively small number of material nodes located on
0

h,(i)
con,sb. The constraint is then imposed via a set of vectorial Lagrange multipliers λ̃mat

I enforcing the nodes on the
ntact surface side to follow the corresponding shadowed nodes on the cracked body surface. Therefore, the extra
esidual contributions from the constraints on material nodes read:

N m
I := λ̃

mat,m
I on 0

(η)
con,sb and rλmat,h,w

I := [X̃ (η)
I − X̃ (η′)

I ]w on 0
(η)
con,sb, (62)

here (η) denotes the intact surface and (η′) denotes the cracked surface.1

.3. Constraints for crack propagation

The residual contribution from the KKT conditions for Griffith’s criterion (43) is implemented in the nodal sense
ince the first order approximation is adapted for material positions:

C q
cr := A

∂0h
cr

Ccr(ρ̃q , X̃q
I ), (63)

here Ccr(ρ̃q , X̃q
I ) is the nodal value of (43).

.4. Constraints for shape preservation

In [3], the shape-preserving constraints were enforced on the boundaries intersected by the smoothing bubble
i.e. on ∂Bh

t ∩ ∂S h
B ) via additional Lagrange multipliers field β. Here, the associated residuals are presented for

the sake of completeness:

Om
I := A

∂Bh
t ∩∂S h

B

∫
∂S h

B

βh N̂ h
I Mmd0h, rv

sh := A
∂Bh

t ∩∂S h
B

∫
∂S h

B

Bv N̂ h
I (Xh

I − χh
αδα I )d0h, (64)

where βh
:=

∑Btot
v=0 Bvβ̃v is the approximated field for shape-preserving Lagrange multipliers, with Bv

∈

H 1
(
∂Bh

t ∩ ∂S h
B

)
being the shape functions for β field and β̃v being the associated DOFs.

4.5. Monolithic solution via arc-length control

At each step of the crack propagation analysis, the linearised system of equations is solved to fulfil global
equilibrium in a monolithic fashion, i.e. as a fully coupled problem by means of the Newton–Raphson method.
The arc-length control was adopted to control crack propagation by constraining the crack surface to monotonically
increase at each step by a prescribed amount. This is expressed through the following residual:

r arc,τ
:=

nfr∑
c=1

Ã∂0cr,c
I

([
X̃ c

I

]t
−

[
X̃ c

I

]t−1
)

− ∆Ah,0cr , (65)

1 In addition to the constraints for preserving shadowing of contact elements, we also use similar constraints to tie material positions of
the nodes of triangles lying on the two crack surfaces. This is done since a unique definition of the discretised crack surface in material
configuration is required for mesh cutting.
18



I. Athanasiadis, A.G. Shvarts, Z. Ullah et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116129

4

t
m

Table 1
List of fields in the coupled problem and the associated DOFs and basis functions.

Field names DOF symbols Basis function symbols

Spatial positions x̃i S
Material positions X̃ I M
LM for contact constraints λ̃ Λ

LM for shape preservation β̃ B
LM for matching-mesh contact “shadowing” preservation λ̃mat node-based
LM for crack front extension ρ̃ node-based
LM for arc length τ̃ not approximated field

where Ã∂0cr,c
I is defined in (52), ∆Ah,0cr is the area increment prescribed for the arc-length control scheme, ncf is

the number of nodes on ∂0h
cr, superscript t stands for the current step and t − 1 for the previous one.

.6. Linearised system of equations

In Table 1 we collected all DOF and basis function symbols used to approximate various field appearing in
he coupled problem. To present the linearised system of equations, first the residuals for the spatial positions and

aterial positions are defined below:

r sp,s
i := f sp,s

i + τ̃T
sp,s

i + Q(1),s
i + Q(2),s

i ,

rmat,m
I := τ̃T mat,m

I + F m
I + N m

I + M m
I + f qual,m

I + R(i),m
I + Om

I .
(66)

The linearised system of equation for the coupled problem reads:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f sp,s
i

∂ x̃ j

∂r sp,s
i

∂ X̃ J

∂As
i

∂λ̃
0 0 0 T

sp,s
i

∂Bm
I

∂ x̃ j

∂Cm
I

∂ X̃ J

∂R(i),m
I

∂λ̃

∂Om
I

∂β̃

∂N m
I

∂λ̃mat
J

∂M m
I

∂ρ̃
T mat,m

I

∂C c
con

∂ x̃ j

∂C c
con

∂ X̃ J

∂C c
con

∂λ̃
0 0 0 0

0
∂rλmat,h,w

I

∂ X̃ J
0 0 0 0 0

0
∂C q

cr

∂ X̃ J
0 0

∂C q
cr

∂ρ̃
0 0

0
∂rv

sh

∂ X̃ J
0 0 0 0 0

0
∂r arc,τ

∂ X̃ J
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆x̃i

∆X̃ I

∆λ̃

∆λ̃mat

∆ρ̃

∆β̃

∆τ̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r sp,s
i

rmat,m
I

C c
con

rλmat,h,w
I

C q
cr

rv
sh

r arc,τ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (67)

where the sums appearing on the left-hand side are denoted as:

As
i := Q(1),s

i + Q(2),s
i

Bm
I := τ̃T mat,m

I + F m
I + R(i),m

I

Cm
I := τ̃T mat,m

I + F m
I + M m

I + f qual,m
I + R(i),m

I + Om
I ,

(68)

and the components of the vector with ∆ symbol represent increments of the unknown values on an iteration of a
non-linear solver.
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p

w

Fig. 10. Matching-meshes contact verification: (a) schematic of one-eighth of two hollow conforming spheres coming into contact due to
ressure p on the inner surface of the inner sphere (see input parameters in Table 2), (b) radial stress distribution and (c) L2 error of contact

pressure with decreasing mesh element size h.

The proposed framework was entirely developed using the open source finite element software MoFEM2 [91]
which integrates the open source libraries PETSc (Portable, Extensible Toolkit for Scientific Computation) [92]
and MOAB [93]. The system of equations presented in is solved using routines available with PETSc package
in a parallel distributed-memory environment. Furthermore, the mesh-oriented database MOAB is used to process
mesh data and perform all operations for mesh cutting and matching-meshes/non-matching-meshes contact prisms
generation presented in Sections 4.1.2 and 4.2.2, respectively.

5. Numerical examples

In this section, several numerical examples are presented to verify the model formulation and implementation, and
to highlight the effect of surface traction on the crack propagation process. The robustness of the developed approach
is validated by comparison with previous numerical results and with experimental data for a civil nuclear industry
application which involves a crack of complex morphology propagating along contact interfaces between multiple
deformable bodies. Input mesh files, parameter files and output files for examples considered in Sections 5.4–
5.6 and crack propagation animations for the industrial application discussed in Section 5.6 are available in the
Supplementary material [94].

5.1. Verification of contact formulation

We verify matching-meshes contact element implementation with hierarchical base functions by analysing results
for a problem involving conforming contact interface between two hollow spheres, see Fig. 10. Pressure p is applied
on the inner surface of the inner sphere. The numerical solution is compared with an analytical formula for radial
stress, σrr, that is:

σrr(r ) =
r3

1

r3
3 − r3

1

r3
3 − r3

r3 p, (69)

here r1 and r3 are the inner radius of the inner sphere and the outer radius of the outer sphere, respectively.
The L2 error of the pressure on the contact surface 0h

con at r = r2 is evaluated as:

eλ :=

(∫
0h

con

(σrr(r ) − λh)2d0h
)1/2

, (70)

where λh is the value of the contact Lagrange multipliers field.

2 The source codes of the implementation of the proposed framework can be found in the three following repositories: https://bitbucket.
org/likask/mofem-cephas/src/Version0.14.0 (MoFEM core library), https://bitbucket.org/likask/mofem um fracture mechanics/src/Version0.14.
0 (fracture mechanics module) and https://bitbucket.org/mofem/mortar contact/src/Version0.14.0 (mortar contact module). The version of the
code used to obtain results presented in Section 5 can be installed through Spack package manager (https://spack.io) by running terminal
command spack install mofem-fracture-module@0.14.0 (see http://mofem.eng.gla.ac.uk for installation instructions).
20

https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem-cephas/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/likask/mofem_um_fracture_mechanics/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://bitbucket.org/mofem/mortar_contact/src/Version0.14.0/
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
https://spack.io
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk
http://mofem.eng.gla.ac.uk


I. Athanasiadis, A.G. Shvarts, Z. Ullah et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116129

s
s

w
e

w

b
N
f

Table 2
Input parameters used for two hollow spheres contact test (matching-meshes).

r1 [m] r2 [m] r3 [m] E [Pa] ν p [Pa]

40 30 20 2000 0.3 25

Table 3
Input parameters used for Hertz contact test (non-matching-meshes).

E1 [Pa] ν1 E2 [Pa] ν2 R [m] P [N] p [Pa]

103 0.4 104 0.2 20 0.0712 0.0178

Fig. 11. Verification for non-matching-meshes contact (Hertz problem), see input in Table 3: (a) schematic of one-eighth of a deformable
sphere coming into contact with a deformable cube due to applied pressure p on the top of the eighth-sphere; a zoom-in at the vicinity of
phere’s apex in contact with the flat surface of the cube that is the actual problem solved, (b) vertical stress distribution for the problem
olved at 1.0P and (c) comparison between analytical and numerical solutions for the problem.

Results are presented in Fig. 10(c) for three combinations of contact Lagrange multipliers approximation order,
pλ, and spatial positions approximation order px. Approximation order pλ is kept equal to unity based on the
findings of [95], where it was presented that higher order basis for Lagrange multipliers in H 1(0h

con) space can
result in spurious oscillations. Furthermore, linear mesh geometry was used for all analyses. A significant increase
in convergence rate can be observed for order increment between px = 1 and px = 2, explained by sheer locking
for the 1st order of approximation, however, no change is observed between px = 2 and px = 3.

Non-matching-meshes contact is verified by analysing contact between a deformable sphere and deformable body
ith flat surface (see Fig. 11). The results are compared to the analytical Hertz solution, according to which the

ffective Young’s modulus, E∗, the maximum contact pressure pc,max and the radius of the contact area, a, are
defined as [96]:

E∗
=

E1 E2

(1 − ν2
1 )E2 + (1 − ν2

2 )E1
, pc,max =

(
6P E∗2

π3 R2

)1/3

, a =

(
3P R
4E∗

)1/3

, (71)

where P is the total load applied to the deformable sphere. The subscripts 1 and 2 refer to material parameters for
sphere and cube, respectively. For the quarter problem presented in Fig. 11(a) the load P is uniformly applied to
the upper flat surface of unit area as P/4. All input parameters are presented in Table 3. For this problem, contact
pressure profile pc(dr) is expressed as:

pc(dr) = pc,max

√
1 − (dr/a)2, (72)

here dr is the radial distance from the centre of the contact area.
Numerical results coincide with the analytical solution everywhere except for the vicinity of the boundary

etween contact and non-contact zones, where oscillations of the contact pressure are observed, see Fig. 11(c).
ote that such oscillations of contact pressure at the boundaries of contact zones are typical for mortar-based

ormulations which use continuous approximation of contact pressure, see e.g. [38] and discussions in [97]. At the
21
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Fig. 12. Schematic of the problem setup for verification of the traction term in the material domain (57): (a) 2D schematic of an infinite
ody under plane strain conditions with a crack of length 2b and far-field normal traction σ0; a unit cube is considered having faces aligned
ith x ′

1, x ′

2, x ′

3 coordinate system, the crack surface penetrates the cube until its centre; (b) 3D schematic of the same plate with unit cube
otated anticlockwise by angle ω about x ′

2 axis; (c) zoom-in view of the unit cube after rotation where one face has displacement BCs
rescribed and the rest of the faces have traction BCs prescribed; locations of two crack front nodes on cube’s faces are highlighted.

ame time, due to their localisation, these oscillations do not have any significant effect in applications considered
elow, and, therefore, the H 1(0h

con) approximation of contact Lagrange multipliers was deemed acceptable for the
resent work. However, we note that these oscillations can be avoided if dual approximation of Lagrange multipliers
s used [37,39], or, more generally, if the contact pressure is approximated in H−1/2(0h

con) space. Such modification
f the present framework is the subject of future work.

.2. Verification of the crack energy release rate on a surface under load

In this section, we verify the implementation of the virtual work of surface traction in the material domain,
.e. of the term T mat in (44) (see (57) for the discretised setting), which contributes to configurational forces
riving crack propagation. The verification is based on comparison of the crack energy release rate computed in
imulation and from an analytical solution for the stress state around the crack tip in an infinite body under plane
train conditions [98], see Fig. 12(a). Since in the analytical solution the tangential traction is equal to zero on
ny surface perpendicular to the crack front, we consider a unit cube originally aligned with the crack surface and
hen rotated anticlockwise by an angle ω about the x ′

2 axis. As a result of this rotation, the crack front is inclined
y angle ω with respect to two surfaces of the rotated cube, see Fig. 12(b); therefore, both normal and tangential
raction components are non-zero on cube’s surfaces intersected by the crack front.

For the case when the Poisson’s ratio ν = 0, the traction components on cube’s surfaces after the rotation can
e computed as:⎡⎣t1

t2

⎤⎦ =

⎡⎣ σ1 cos2(ω) τ12 cos(ω) σ1 sin(ω) cos(ω)
τ12 cos(ω) σ2 τ12 sin(ω)

2

⎤⎦⎡⎣n1
n2

⎤⎦ , (73)

t3 σ1 sin(ω) cos(ω) τ12 sin(ω) σ1 sin (ω) n3

22
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where n1, n2 and n3 are the components of the unit normal vector to the surfaces of the rotated cube. The stress
components σ1, σ2 and τ12 are evaluated according to the original solution as:

σ1 =
K I

√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)
,

σ2 =
K I

√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
,

τ12 =
K I

√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
,

(74)

here K I = σ0
√

πb is the Mode-I stress intensity factor, while the radial distance from the crack front r and the
polar angle θ in the original coordinate plane x ′

1x ′

2 are evaluated as:

θ (x1, x2, x3) = tan−1
(

x2

x1 cos(ω) + x3 sin(ω)

)
, r (x1, x2, x3) =

√
(x1 cos(ω) + x3 sin(ω))2

+ x2
2 . (75)

In the verification analysis, traction boundary conditions (73) are prescribed on all surfaces of the cube except for
he surface opposite to the fully cracked one (see Fig. 12(c)), where displacement boundary conditions are defined
ccording to the analytical solution [98]:

x1 − X1 = K I
1 + ν

E

(
r (X1, X2, X3)

2π

)1/2

cos
θ

2
(3 − 4ν − cos θ) cos(ω),

x2 − X2 = K I
1 + ν

E

(
r (X1, X2, X3)

2π

)1/2

sin
θ

2
(3 − 4ν − cos θ ),

x3 − X3 = K I
1 + ν

E

(
r (X1, X2, X3)

2π

)1/2

cos
θ

2
(3 − 4ν − cos θ ) sin(ω).

(76)

The verification test does not require the crack propagation analysis since nodal values of crack energy release
ate, Gn , can be understood as values of nodal Lagrange multipliers that prevent the crack area change. The
onstraints for crack area change can be expressed as:

nfr∑
m=1

3∑
J=1

Cnm
I J

(
X̃m

J − χ̃m
J

)
= {0}, Cnm

I J = δnmδI J Ã∂0cr,m
J (no summation on m and J ), (77)

here Ã∂0cr,m
J was defined in (52) and δmn and δI J are Kronecker delta functions. Constraints presented in (77) can

e expressed using a 3nfr × 3nfr matrix of the following form:

C = Cnm
I J . (78)

ollowing Ainsworth [99], the crack energy release rate at crack front nodes can be computed as:

Gfront
=

[
CT(CCT)

−1
]T

fmat, (79)

here Gfront stands for the vector of Gn and fmat refers to the vector notation of F m
J + T mat,m

J which is the sum of
he terms presented in (50) and (57).

It should be noted that the constraint (77) is not added to the system of equations when solving the problem,
ut is used as post-processing means to compute crack energy release rate at crack front nodes. The units of the
lements of C matrix are [m2] and the units of the elements of the vector fmat are [Nm], hence the units [N/m] are
reserved for Gh. Furthermore, in this test we used tetrahedral [100] and triangular [101,102] quarter-point elements
or integration in the volume around the crack front and on traction surfaces, respectively. These elements provide
he appropriate approximation of the singularity in stress and strain fields, increasing the precision of the stress
ntensity factor computation, see [72] for more details.

Parameters for the verification test are presented in Table 4, where E is Young’s modulus, ν is Poisson’s ratio, pg

tands for the order of approximation for spatial positions used globally, while pr refers to the order of approximation
ocally increased in the vicinity of the crack front (as a result of hp-refinement) where a higher accuracy is
23
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Table 4
Parameters for verification of material traction term.

E [N/m2] KI [N/m3/2] ν Gref [N/m] ω [rad] pg pr

105 1 0 10−5 π/5 2 3

Table 5
Relative error of approximated crack energy release rate with full term (57) considered, without the normal
or the tangential traction contributions to the virtual work in the material domain, and without the term (57)
completely. The error is evaluated at the crack front nodes 1 and 2 as presented in Fig. 12.

Relative error (80) With full (57) w/o normal part of (57) w/o tangent part of (57) w/o (57)

eGh node 1 2.9 × 10−2 3.33 × 101 5.639 × 103 0.5672 × 104

eGh node 2 1.92 × 10−2 0.6308 × 101 1.3631 × 104 1.3677 × 104

Table 6
Input parameters for analyses with setup presented in Fig. 13.

gcr [N/mm] Egr [N/m2] νgr pg pr

0.23 10.9 × 109 0.2 2 4

needed [72], and Gref = K 2
I E is the analytical crack energy release rate. The relative error of approximated Gh

value at nodes 1 and 2 (see Fig. 12) is evaluated as:

eGh =

⏐⏐⏐⏐Gh
− Gref

Gref

⏐⏐⏐⏐ . (80)

The verification results are presented in Table 5. It can be observed that when the full contribution of the term (57)
is considered, the relative error of the numerical result is below 3% for both nodes of the crack front trace, which
is satisfactory and can be further decreased with mesh refinement. However, if the normal part of (57) is omitted in
the formulation, the error increases by 3 orders of magnitude. Furthermore, when the contribution of the tangential
traction in the material domain is omitted, the error increases by 3 more orders of magnitude, highlighting the more
pronounced effect of the tangential component of traction on the crack energy release rate computation. It should
be noted though that for the rest of the nodes along the crack front, the relative error of Gh is not significant in
both presence and absence of (57).

5.3. Importance of consistent formulation of traction for crack propagation

According to the example presented in Section 5.2, the absence of material forces term (57) results in high
errors of the crack energy release rate G at the trace of the crack front on surfaces with traction. In this section,
we investigate further the effect of the material traction term on crack propagation.

For this, a comparison is performed of two crack propagation analyses of thin plate subjected to tangential
traction on the cracked surface (Fig. 13): in the absence and in the presence of the surface traction term (57). The
input parameters are presented in Table 6. The plate was chosen to be thin to reduce the influence of the material
forces arising in the volume and increase the importance of the material traction on the crack front trace. Note that
we did not use in the propagation analysis the quarter-point element mentioned in Section 5.2, since in previous
work it was shown that while this element improves the precision of computed crack energy release rate, it does
not have any significant effect on the crack propagation process [72].

The final crack surface for each case is presented in Fig. 14. For the case where term (57) is absent, the crack has
extended predominantly on one side which impedes the propagation analysis as seen in Fig. 14(a). As presented in
Section 5.2, the absence of (57) results in high errors of G at the trace of the crack front on surfaces with tangential
traction. Therefore, the overestimation of G drives the crack front to propagate predominantly on one side of the
plate which is a non-physical behaviour. This result highlights the importance of considering the effect of tangential
traction acting on the end of the crack front. Such situation is naturally appearing when considering crack traversing
a contact interface with friction taken into account, which is not studied in the present paper but is the topic of
future work.
24



I. Athanasiadis, A.G. Shvarts, Z. Ullah et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116129

h

P
t

Fig. 13. Schematic of thin plate with seeded notch subject to tangential traction on cracked surface and normal traction applied on the
orizontal faces opening the crack.

Fig. 14. Last step for crack propagation analysis with BCs presented in Fig. 13: (a) excluding (with a zoom-in of the crack surface) and
(b) including (57).

On the other hand, when the term (57) is considered in the formulation, the error in the crack energy release
rate is significantly reduced and the crack propagates, on average, symmetrically on both sides until the plate is
fully cracked as presented in Fig. 14(b). It should be noted also that despite the symmetry of the loading, the crack
propagated towards the bottom face of the plate as the crack path can bifurcate due to numerical errors.

5.4. Validation of integration of contact formulation within the crack propagation framework

Numerical analyses of fracture of a graphite cylinder slice (see Fig. 15) previously presented in [3] are used
here to validate the integration of contact model within the ALE crack propagation framework. The original results
involved modelling the interface between graphite and steel components by tied meshes i.e. by having both normal
and tangential traction transferred between the two bodies. In this work, we compare results for tied mesh and
solutions with contact formulation for matching and non-matching contact interfaces. The material input parameters
used in these analyses (presented in Table 7 with Est and νst being the steel components Young’s modulus and

oisson’s ratio, respectively) and the geometry of the mesh are the same as those presented in [3]. Furthermore,
he global order of approximation of spatial positions pg = 2, while the increased order pr = 3 which provides a

sufficient accuracy for this problem [3].
Comparison of curves of elastic energy versus crack area is presented in Fig. 16(a) for the three aforementioned

analyses of non-matching, matching and tied meshes and the tied mesh presented in [3] for Order-2 as corrected

in [103]. It can be seen that the results of the present framework for tied mesh almost coincide with that

25
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t

Fig. 15. Brick slice fracture analysis: (a) schematic of the setup and boundary conditions and (b) mesh of the 3D problem and zoom at the
location of the initial cutting surface used to seed the crack.

Fig. 16. Comparison of crack propagation for brick slice problem presented in [3] (post-process correction in [103]) between models with
ied mesh, matching-meshes contact and non-matching-meshes (mortar) contact.

Table 7
Input parameters brick slice analyses with setup presented in Fig. 15.

gcr [N/mm] Egr [N/m2] νgr Est [N/m2] νst pg pr

0.23 10.9 × 109 0.2 21.0 × 1010 0.3 2 3

of Kaczmarczyk et al. [3]. Furthermore, all four analyses result to the same curve after the crack surface area reaches
0.5 × 10−3 m2 indicating that the modelling choice of tied meshes is valid to investigate this particular problem.
Furthermore, the dependence of the load on the generalised displacement, defined in [3], is presented in Fig. 16(b)
and permits to compare the peak load, for all four cases, which can be associated with the crack initiation load. While
matching and non-matching-meshes cases demonstrate similar results, the generalised displacement corresponding

to the peak load for the case of tied meshes is different. The reason for such difference is the ability of the tied

26
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Table 8
Input parameters for Case 1 and Case 2 in Fig. 17.

gcr [N/mm] Egr [N/m2] νgr Es [N/m2] νs pg pr

0.23 10.9 × 109 0.2 10.9 × 106 0 1 3

Fig. 17. Crack propagation in hollow cylinder where pressure is directly applied to the bore wall in Case 1 or in Case 2 through a thin,
oft, hollow, inner cylinder having a conforming contact interface with the outer graphite cylinder.

nterface to transfer tangential traction between the bodies, which is absent in frictionless contact, resulting in a
tiffer response of the tied mesh. Therefore, contact condition representation is important to better investigate the
oad–displacement paths of such structures.

.5. Fracture of hollow cylinder under surface pressure on the bore

Validation of the developed framework for crack propagation along contact interfaces and surfaces under traction
s performed using a test which involves fracture of a hollow graphite cylinder. Such cylinder is subjected to uniform
urface pressure on the bore, while the initial crack is seeded on the outer surface. Furthermore, Rigid Body Motion
s restrained by fixing displacements at 3 points, see Fig. 17. For this validation, two analyses are performed: the
rst involves only surface pressure boundary conditions and the second one involves surface pressure applied to a
ollow soft thin cylinder which has a conforming contact interface with the graphite cylinder with identical material
nd geometry parameters to that of the first analysis. Details on the geometry of the graphite cylinder and the hollow
hin soft cylinder can be found in Fig. 17.

The input parameters for this example are presented in Table 8 where Egr, Es, νgr and νgr are Young’s modulus
nd Poisson’s ratio for the graphite and soft cylinder respectively. The material of the inner cylinder in Case 2 was
hosen to be soft since it was found that when crack propagates on the contact interface between stiff materials, high
trains generated around the crack tip result in gap opening. Therefore, when a non-soft material is used, contact
onditions are not active at the crack tip and the first and second case are not fully equivalent. After numerical
xperimentation, it was found that the thickness of the soft cylinder is not important to acquire the full contact
ffect.

As the problem is fully symmetric, in both cases the crack propagates vertically along the height of the cylinder.
oad versus crack area curve is presented in Fig. 19 and highlighted marks refer to crack surface evolution snapshots
27



I. Athanasiadis, A.G. Shvarts, Z. Ullah et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116129

p

s
d
i

t
c

Fig. 18. Crack propagation in a hollow graphite cylinder. In Case 1 - (a), (b), (c) - crack propagates along a surface subjected to normal
traction applied at the bore; in Case 2 - (d), (e), (f) - crack front traverses a contact interface between the outer (graphite) and inner (soft)
cylinders. Shown snapshots correspond to steps highlighted in Fig. 19.

Fig. 19. Dependence of the load on the crack area for hollow graphite cylinder test where marks correspond to crack surface snapshots
resented in Fig. 18. The inset shows zoom-in of the plots around points (a) and (d).

hown in Fig. 18. The load is evaluated by multiplying the pressure value by the surface area which slightly
iffers between the two cases, nevertheless, the results match very well which highlights the robustness of the
mplementation of the framework.

The vertical jumps of the load marked by (a) and (d) correspond to time steps when crack meets the edge of
he inner bore. It is important to note that the present model assumes smooth crack evolution. However, when the
rack meets a boundary for the first time (i.e. when percolation occurs), a non-smooth transition takes place and a
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Fig. 20. (a) Overview of the test rig for Seal Ring-Groove Wall (SRGW) experiment: brick slice of unirradiated graphite subjected to radial
oading via steel collar; (b) Experimental results: failure of the groove wall on the lateral side of the brick slice and separation of two
ragments (the brick slice has been turned over for inspection). Source: Adopted from [104].

Table 9
Input parameters used for seal ring-groove wall problem.

Egr [MPa] νgr gcr [N/mm] Est [MPa] νst P [MPa] pg pr

10.9 × 103 0.2 0.23 210 × 103 0.3 1 1 3

non-differentiable jump of the load is present after which the crack continues to smoothly propagate. The higher the
amount of crack front length present on the newly cracked boundary at the time of percolation, the higher the jump
observed in the analysis. Furthermore, an oscillation of the curve for the Case 2 (i.e. with the contact interface)
is observed due to further mesh topological complexities arising when contact is present. As crack approaches the
contact interface, smaller steps are required to resolve complex crack surface morphology until the crack successfully
percolates.

5.6. Civil nuclear power generation industry application

The final numerical example involves crack propagation within unirradiated nuclear graphite to simulate an
xperiment designed and conducted by Hutchinson [104]. The experiment involves fracture of a graphite brick slice
having roughly a hollow cylinder shape) which has a part of its circumference cut and a wedge placed between
he two cut surfaces, see Fig. 20(a). The graphite brick slice has a circular groove on the bottom base surface with
our ring segments fitted inside. These ring segments are used in practice to seal interfaces between neighbouring
ricks stacked in arrays inside the nuclear reactor’s core. In the experiment, a steel collar with a groove (similar
o that of the brick) is positioned under the brick slice so that the ring segments fit between the two components
ithin their grooves. Radial loading pointing towards the brick centre is applied to the steel collar and transferred

o the graphite brick’s groove wall through the seal ring segments, causing cracks to start from the inner corners
f the groove walls located at the two sides of the wedge. This experiment, called seal ring-groove wall (SRGW)
est, results in the generation of two symmetric cracks and detachment of two groove wall fragments of the similar
hape presented in Fig. 20(b).

Two analyses were performed to understand the importance of boundary and contact conditions for the crack
ropagation. In both cases, only half of the problem is analysed taking advantage of the symmetry along axis A–A′

(see Fig. 21). In the first analysis, contact interaction is not taken into account; instead, a uniform pressure is applied
on the surfaces where the seal ring segments meet the groove wall. Accordingly, seal ring segments and the loading
29
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Fig. 21. (a) The experimental setup for crack propagation in graphite brick slice where load applied on the steel collar is transmitted through
the seal ring; (b) side view of the A–A’ cut of the experimental setup analysed assuming symmetry; (c) steel collar and seal ring components
are omitted and pressure is applied directly on the groove wall of the brick (Case 1) and (d) all components and multiple contact interfaces
between them are considered and pressure is applied at the exterior part of the steel collar (Case 2).

collar are not present in the Case 1 model. In the second analysis, all components present in the experiment are
considered, and the loading is applied on the collar, while multiple contact zones are considered around the seal
ring segments as demonstrated in Fig. 21(d), see Table 9 for input parameters.

The load–displacement path for the two setups is presented in Fig. 22. For the case where pressure is applied
directly to the groove wall, higher load is needed for the same crack surface increase for the majority of the
propagation analysis. This is caused by the increased stiffness of the structure when the steel collar is considered.
Note that the drops in Case 2 curve arise from the adjustments of the load factor to allow for crack front rotation
due to mesh cutting in challenging configurations. Once the correct crack configuration is found, the load factor
30
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s

Fig. 22. Load versus crack surface area curves for the SRGW test, Cases 1 and 2. Marks on curves correspond to the crack propagation
napshots presented in Fig. 23.

Fig. 23. Crack surface development for points presented in Fig. 22. Case 1: (a), (b), (c); Case 2: (d), (e), (f). Full animated solutions for
the crack propagation analysis in both cases can be found in the Supplementary material [94].
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Fig. 24. Deformed shape of last step of seal ring analysis showing detached groove wall fragment for: (a) pressure-induced (Case 1) and
(b) contact-induced crack propagation (Case 2). Colourmaps represent the displacement magnitude in mm.

Fig. 25. Geometry of the fragment detached from the groove wall in the experiment [104] and simulation for both cases 1 and 2 (note that
he geometry obtained in simulation was mirrored for visual comparison with one of the two almost identical fragments detached from two
ides of the brick in the experiment).

eturns to approximately the same value as it was before such drop. Furthermore, in Fig. 23, three snapshots of crack
urface are shown for each of the models corresponding to marks in Fig. 22. Note that during crack propagation
n Case 1, the crack traverses the pressure zone on the groove wall, see Fig. 23(b), while in Case 2, the crack
ropagates along the contact interface between the groove wall and the seal ring, see Fig. 23(d). The developed
ramework enables robust analysis for both cases.

The deformed shape of the setup corresponding to the last step of the SRGW fracture analyses is presented in
ig. 24 for both Cases 1 and 2. Furthermore, the geometry of the fragment detached from the groove wall observed

n the experiment is compared in Fig. 25 with the results of simulation. In both cases, the overall fragment geometry
s similar to the experimental one, however, the fragment produced in Case 2 simulation has dimensions closer to
he experimental observation. Therefore, it is evident that for the this problem, consideration of all components and

ultiple contact interfaces (as was done in Case 2 analysis) is essential to bring the simulation results closer to the
xperimental observations.
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6. Conclusions

In this paper we proposed an implicit and thermodynamically consistent formulation for simulating brittle fracture
long contact interfaces and surfaces under load. The problem involves two coupled unilateral constraints: for crack
ropagation and for contact interaction. All governing equations and constraints are solved monolithically using the
ewton–Raphson method.
The discretisation of equations resulting from the interaction between the crack and surfaces under load were

iscussed. The contribution of the surface traction to the configurational forces was shown to be crucial for the
orrect computation of the crack energy release rate and, consequently, for the correct simulation of the evolution
f the crack surface. Furthermore, a novel approach for handling the distortion of the contact elements in the
eighbourhood of the crack front was shown to be effective for modelling the interaction of the crack and the
ontact.

The implementation was verified via several examples, including comparison with existing analytical solutions,
ublished computational and experimental results. The robustness of the implementation was demonstrated on
everal challenging examples, including crack propagation along contact interfaces and surfaces under pressure.

The framework was used to simulate an industrial problem involving brittle fracture of graphite components
imilar to those found in Advanced Gas-cooled Reactors. Two cases were considered: one neglecting contact
nteraction and the second one considering multiple contact zones. In the first case, the crack traversed a pressure
urface; in the second case, the crack propagated along a contact interface. The results obtained, including the
hapes of the detached graphite fragments, compared favourably to those observed in experiments. However, the
econd model, which included contact interactions, better approximated the physical reality.

This framework can be used to solve a class of problems involving fracture, where the crack is propagating
long contact interfaces between components. The generality of the presented framework enables the further
xtension to dynamic cases of crack propagation and ductile fracture. In the future, the model will be extended to
onsider frictional contact, large strains and large displacements. Moreover, Lagrange multipliers enforcing contact
onstraints will be approximated using a variationally consistent functional space. Furthermore, concepts proposed
n this paper related to ALE formulation can be used for a broader class of problems, such as Fluid–Structure
nteraction, rolling contact and wear.

The proposed numerical scheme offers a unique combination of the thermodynamically consistent simulation
f crack surface evolution, fully coupled with crack propagation along the contact interfaces and surfaces under
raction, an implicit formulation and error control provided by hp-adaptivity.
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Appendix A. Surface traction element in the ALE description

The linearisation of the surface traction element for ALE formulation reads:⎡⎢⎢⎢⎣
0

∂T
sp,sr

i

∂ X̃mc
I

∂T mat,mr
I

∂ x̃ sc
i

∂T mat,mr
I

∂ X̃mc
I

⎤⎥⎥⎥⎦
[
∆x̃ sr

i

∆X̃mr
I

]
= −

[
T

sp,sr
i

T mat,mr
I

]
(A.1)

where superscripts mr, mc, sr and sc refer to materials rows, material columns, spatial rows and spatial columns

indices, respectively. The LHS term,
∂T

sp,sr
i

∂ X̃mc
I

, is non-zero only for the elements located at the trace of the smoothing

bubble on the surface of the body, 0h
σ,sb. It is important to clarify that the derivative with respect to degrees of

freedom
∂T

sp,sr
i

∂ X̃mc
I

does not imply that surface pressure offers any work input to the material nodes. The emergence

f this LHS term is due to the movement of material nodes caused by mesh smoothing which in turn generates
ariation of N̂ h

J that must be accounted for.

ppendix B. Linearisation of transpose of deformation gradient tensor

The linearisation of the transpose of the deformation gradient tensor, Fh
J i , in (49) is given by

∂ Fh
i J

∂ X̃m
K

= hh
iα

∂
(
H h

Jα

)−1

∂ X̃m
K

with
∂
(
H h

Jα

)−1

∂ X̃m
K

= −
(
H h

Jα

)−1 ∂ Mm

∂χβ

(
H h

Kβ

)−1
, (B.1)

as described in Chapter 4 in [105].

Appendix C. Mortar contact element in the ALE description

The linearisation of the contact element for ALE formulation reads:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
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(C.1)

Rows corresponding to either R(1),mr
I or R(2),mr

I are zero depending on whether the crack crosses the master or the
slave surface, respectively. Furthermore, rows related to R(2),mr

I and Q(2),sr
i have derivatives in the tangent matrix

for both X̃ (1),mr
I and X̃ (2),mr

I as the unit normal N̂ h
J is defined on the slave side and integration is performed on the

material side and therefore the determinant of the Jacobian is differentiable with respect to the master side degrees
of freedom.
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