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1 Introduction

They say good things come in pairs. This is certainly true in the search for new particles,
where a second Higgs doublet has long been a quintessential candidate for physics beyond
the Standard Model (BSM). The resulting two Higgs doublet model (2HDM) has been
a subject of active study since its introduction in the 1970’s (the original goal was to
provide a model with spontaneous CP violation that could explain the CKM phase) [1, 2].
Two Higgs doublet models arise in many motivated extensions of the Standard Model and
provide perhaps the simplest realization of a spin-0 sector that matches the richness of the
observed spin-1/2 and spin-1 sectors. Subsequent exploration of the many facets of 2HDMs
has given rise to a vast literature; see e.g. [3] for a classic review.

The model predicts the addition of four new physical degrees of freedom to the Stan-
dard Model. The existence of these BSM states may be inferred from both their direct
production and their indirect imprints on the couplings of the already observed Higgs bo-
son. Over time, dedicated searches for these experimental signatures have been used to
constrain the allowed parameter space. This has engendered the generic expectation that
the extra Higgs bosons in the 2HDM are likely to be at least several hundreds of GeV
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(barring a number of known loopholes in certain regions of parameter space). If the new
states in the 2HDM are heavy compared to the electroweak scale, an Effective Field Theory
(EFT) description becomes a useful way to characterize the resulting deviations from the
Standard Model at low energies.

Subtleties arise when matching a 2HDM onto an EFT with only one light Higgs boson.
Integrating out the BSM Higgs bosons generically leads to an EFT for the observed Higgs
boson h in which electroweak symmetry is nonlinearly realized, often referred to as the
Higgs EFT (HEFT). Alternately, integrating out an SU(2)L doublet of approximate mass
eigenstates can lead to an EFT for a Higgs doublet H in which electroweak symmetry is
linearly realized, often referred to as the Standard Model EFT (SMEFT). In this case, the
misalignment between the gauge and mass eigenstates is encoded by irrelevant operators
in the EFT. Whenever SMEFT is admissible, it is often the preferred framework due to its
compact parameterization and more transparent power-counting in the decoupling limit.

In a general 2HDM, there is a global U(2) flavor symmetry acting on the two Higgs
doublets. Hence, there are infinitely many different basis choices one can specify in the UV
description from which an infinite number of EFTs can be derived by integrating out one
doublet. These EFTs are only formally equivalent when the full tower of effective operators
are included; different choices lead to different EFT Wilson coefficients and potentially
different linearly realized symmetries.

Given the freedom to choose a UV basis, what constitutes a good choice? Among many
possible criteria, two stand out. First, the relative advantages of SMEFT over HEFT makes
it preferable to choose a basis in which the low-energy theory is SMEFT, provided such a
basis exists. Second, a good basis should allow the resulting EFT to accurately reproduce
the effects of the full theory with as few operators as possible (e.g. at low orders in the
EFT expansion).

In previous literature [4–9], satisfying the first criterion has favored a particular basis
for constructing 2HDM EFTs. Integrating out a doublet that acquires a vacuum expecta-
tion value implies that the low-energy theory does not in general contain an electroweak
symmetric point and thus requires HEFT instead of SMEFT. This fate can be avoided
by using the Higgs basis [10], for which the light doublet contains all of the vacuum ex-
pectation value that breaks electroweak symmetry.1 Furthermore, the Higgs basis and the
mass eigenstate basis become approximately aligned in the decoupling limit [11, 12] of CP-
conserving 2HDMs, making the Higgs basis sensible for constructing the 2HDM SMEFT
in this limit. However, exclusive use of the Higgs basis to meet our first criterion often
makes it hard to meet the second criterion. The Higgs basis typically results in a poorly-
convergent EFT expansion away from the decoupling limit even when SMEFT is formally
appropriate for describing the low-energy theory. A more convergent EFT expansion can
be obtained away from the decoupling limit by integrating out heavy mass eigenstates,
but this generically yields HEFT. This tension has been a long-standing obstruction to the
general EFT treatment of 2HDM.

1As emphasized in [6], this definition of the Higgs basis leaves a U(1)PQ subgroup of the original U(2)
flavor symmetry intact, leading to a U(1) family of Higgs bases.
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For better insight, it helps to recognize that the two criteria involve different points
in field space. The origin in field space (where electroweak symmetry is restored) is es-
sential for determining whether SMEFT can describe the low-energy theory, while our
physical vacuum determines the composition of the mass eigenstates. It is therefore useful
to rethink the basis choice in terms of a trajectory in field space that connects the origin,
where electroweak symmetry is linearly realized, to the physical vacuum. This motivates
interpreting the field space of the theory in a geometric language where the EFT defines a
submanifold of the UV description, as detailed in [13]. The submanifold picture presents
a new perspective on matching calculations: instead of integrating out approximate mass
eigenstates or fields without vevs, one instead attempts to find a basis in the full theory
that yields a simple parameterization of the EFT submanifold.

In this paper, we follow this strategy and identify a new basis for the 2HDM that
simplifies integrating out the BSM states and matching to SMEFT (when possible) while
also vastly improving convergence away from the decoupling limit. The key observation
is that when there is a charge-preserving global minimum, there exists a basis choice for
which (the zero-derivative part of) the classical solution of the heavy Higgs doublet is a
linear function of the light Higgs doublet; this defines what we call the “straight-line” (SL)
basis.2 This basis — which can be defined in any 2HDM with a charge-conserving global
minimum — unsurprisingly simplifies the matching calculation.

Whether the EFT that results from matching in the SL basis can be SMEFT-like
(linearly realizing electroweak symmetry) or must be HEFT-like depends on the parameters
of the 2HDM itself; the SL basis is useful in either case. Since the vev of the heavy Higgs
doublet vanishes at the same point as the vev of the light Higgs doublet (preserving an
electroweak symmetric point in the EFT even though the heavy doublet acquires a vev
elsewhere on the EFT submanifold), the SL basis satisfies our first criterion by enabling
matching onto a SMEFT-like EFT whenever the parameters of the 2HDM admit it. This
is not guaranteed in the Higgs basis, for which matching may lead to a HEFT-like EFT
even if the 2HDM admits a SMEFT-like description.

As we will see, matching in the SL basis also satisfies our second criterion by resum-
ming the zero-derivative Higgs field dependence to all orders in the Wilson coefficients of
the EFT, similar to the so-called “vev-improved matching” prescription introduced in [5].
When the 2HDM allows it, the resultant EFT is SMEFT-like in the sense that it linearly
realizes electroweak symmetry, but it has a power-counting expansion determined by count-
ing derivatives and SM fermion fields.3 The resummation of Higgs field dependence leads to
improved convergence away from the decoupling limit. In the decoupling limit, one can of
course expand the field dependence contained in these Wilson coefficients, thereby obtain-

2While SL nominally denotes “straight-line,” four of the five authors would prefer to think of it as
standing for “SutherLand”, after its discoverer. The fifth author is too modest to contemplate naming a
basis after himself. We leave it to the reader to decide.

3This combination of symmetries and power-counting is reminiscent of geoSMEFT [14], although our
matching procedure incorporates higher-derivative structures that lie outside the scope of geoSMEFT (and
Riemannian field-space geometry in general), and we do not organize the field dependence of Wilson coef-
ficients geometrically.
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ing a conventional SMEFT expansion (which is understood to involve both linearly-realized
electroweak symmetry and a power-counting expansion in operator dimensions). We con-
cretely demonstrate the advantages of the SL basis by comparing the predictions for three
pseudo-observables — the Higgs coupling to gauge bosons, the Higgs self-coupling, and the
Higgs coupling to fermions — between the full theory and EFTs obtained from matching
in the Higgs basis and the SL basis, finding that the SL basis generically outperforms the
Higgs basis by a significant margin away from the decoupling limit.

The rest of this paper is organized as follows. In section 2 we begin by reviewing
the general 2HDM parameterization and conditions for charge conservation. We then
define the SL basis and the transformation relating it to the Higgs basis and explore the
circumstances under which each basis admits a SMEFT expansion. We carry out tree-level
matching in the SL basis using functional methods in section 3. Matching in the SL basis
involves an expansion in powers of derivatives and fermions, which we carry out up to
six derivatives and/or fermions, and all orders in the light Higgs doublet. Matching to
all orders in the light Higgs doublet — a feat enabled by the simplicity of the SL basis
— effectively resums zero-derivative terms in the SMEFT expansion associated with the
physical masses of the heavy Higgs bosons. In section 4 we compare numerical predictions
for key Higgs pseudo-observables between the full theory, the EFT obtained from matching
in the Higgs basis, and the EFT obtained from matching in the SL basis, demonstrating
the improved precision of the SL basis. We illustrate aspects of the mapping between EFTs
obtained from the Higgs basis and the SL basis in appendices A and B.

2 More Higgses, more bases

The goal of this section is to introduce the general 2HDM and to provide a discussion
of its vacuum structure. Many intricacies of the 2HDM stem from the ability to change
basis by mixing the two doublets with each other. This freedom allows us to define the
straight-line (SL) basis, for which (the zero-derivative part of) the classical solution of the
“heavy” Higgs doublet will be proportional to the “light” doublet. We will then provide a
map between the SL basis and the Higgs basis, which will facilitate a comparison between
the convergence properties of the EFTs that result when integrating out the BSM states
for these two basis choices.

2.1 Defining the 2HDM

The 2HDM is defined as the most general renormalizable Lagrangian built out of the
Standard Model fermions and gauge bosons along with two SU(2)L doublet complex scalar
fields with U(1)Y hypercharge 1/2. We denote them by Φα

a , together with their conjugate
Φ†aα. There are two types of indices on the Higgs fields: a flavor index a = 1, 2 differentiates
between the two doublets and the upper gauge index α transforms in the fundamental
representation of SU(2)L.

The Lagrangian comprises a set of kinetic terms (including the minimal coupling to
gauge bosons through the covariant derivative Dµ), the scalar potential, and Yukawa cou-
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plings,

L = L2 + L0 + LJ , (2.1a)
L2 =

(
DµΦ†a

)(
DµΦa

)
, (2.1b)

−L0 = Yab
(
Φ†aΦb

)
+ 1

2Zabcd
(
Φ†aΦb

)(
Φ†cΦd

)
, (2.1c)

−LJ = yDijaQidjΦa + yU†ija ui(εQj)Φa + yEija LiejΦa + h.c.

≡ J†aΦa + h.c. , (2.1d)

where we have suppressed SU(2)L gauge indices and omitted terms that are independent
of the Φ fields for brevity. The Q, d, u, L, and e represent the three families of Standard
Model fermions. We have expressed the scalar potential in terms of the mass-dimension-2
couplings Yab and dimensionless couplings Zabcd introduced in [15] (see also [16, 17]), which
satisfy

Yab = Y∗ba , Zabcd = Zcdab = Z∗badc . (2.2)

These can be related to the standard 2HDM notation,

(Y11,Y12,Y22) =
(
m2

1,−m2
12,m

2
2

)
, (2.3a)

(Z1111,Z1112,Z1122,Z1221,Z1212,Z1222,Z2222) = (λ1, λ6, λ3, λ4, λ5, λ7, λ2) . (2.3b)

The Yukawa matrices y are a priori arbitrary complex matrices, and together with the SM
fermions they are subsumed into the SU(2)L doublet scalar currents Jαa , which couple to
the Higgs fields.

The kinetic term L2 is invariant under a U(2) flavor symmetry,

Φa → Uflavor
ab Φb , with Uflavor ∈ U(2) . (2.4)

Under this transformation, the couplings Yab, Zabcd, and ya rotate accordingly. One conse-
quence of this freedom is that, starting from the 14 real parameters in the scalar potential
(of which 4 are phases), only 11 (of which 2 phases) are physical.4

Within the 11-dimensional physical parameter space of the scalar potential, one can
identify phenomenologically viable subspaces. Requiring explicit CP conservation amounts
to turning off the 2 physical phases, which is equivalent to demanding that there exists
a basis, accessed by flavor rotations, where all Yab and Zabcd parameters are real [18]. If
we further require explicit custodial symmetry conservation in the scalar potential, then
this is equivalent to further requiring Z1221 = Z1212 in the basis with real valued Yab and
Zabcd [19] (see also [20]). In spite of their explicit conservation, CP and custodial symmetry
may yet be spontaneously broken by the vacuum configuration of the two Higgses.

Electric charge can be spontaneously broken by the vacuum configuration of the 2HDM
with or without explicit CP conservation. It is understood that a vacuum configuration

4Note that the central U(1) subgroup of the U(2), which just rephases both doublets equally, leaves the
parameters invariant.
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conserves charge if and only if a unitary gauge rotation can be found to simultaneously set
the upper components of both Higgs vevs to zero [21, 22],

Φ1
∣∣
vev = 1√

2

(
0
v1

)
, Φ2

∣∣
vev = 1√

2

(
0
v2

)
. (2.5)

We introduce a complex number (assuming w.l.o.g. that v1 is real)

k ≡ v2
v1
∈ C , (2.6)

where |k | = tan β. This allows us to recast the above criterion in a general gauge basis
as the requirement that the two Higgs vevs are multiples of each other (i.e. aligned in the
gauge space),

Φα
2
∣∣
vev = k Φα

1
∣∣
vev . (2.7)

On phenomenological grounds, we work with the 2HDM parameter space for which this
criterion is satisfied. Note that if this criterion is satisfied in one flavor basis, it is satisfied
in any flavor basis, but the ratio k is different in different bases.

2.2 The straight-line basis

We assume that we are working in a region of parameter space where the BSM Higgs
states are sufficiently heavy for it to be useful to integrate them out. There then exists
a direction in flavor space such that the second Higgs doublet Φ2 is “heavy,” meaning
that its components are sufficiently well aligned with the larger eigendirections of the mass
matrix at the global minimum. Our goal is then to integrate out Φ2 in order to obtain
an EFT describing the low energy behavior of the “light” doublet Φ1. Here, we employ
the functional approach for matching onto the EFT by integrating out the heavy states
in the path integral in the semiclassical approximation (see [23, 24] for recent reviews of
functional matching and implementation). At tree level this amounts to finding a classical
solution, Φ2,c[Φ1], to the equations of motion for the heavy doublet,

D2Φ2 + Y2bΦb + Z2bcdΦb

(
Φ†cΦd

)
+ J2 = 0 , (2.8)

and substituting the classical solution back into the 2HDM action to yield the tree-level
EFT. This generates the EFT operators and their Wilson coefficients together and facili-
tates working to all orders in the field Φ1.

Eq. (2.8) is solved by working order-by-order in powers of derivatives and fermions.
First, we require that the zero-derivative-and-fermion part of the classical solution,

Φ2,c[Φ1] = Φ(0)
2,c(Φ1) +O

(
∂2, J

)
, (2.9)

solves the zero-derivative-and-fermion part of Φ2’s equation of motion, namely,

− ∂L0

∂Φ†2

∣∣∣∣
Φ2=Φ(0)

2,c(Φ1)
= Y2bΦb

∣∣
Φ2=Φ(0)

2,c(Φ1) + Z2bcdΦb

(
Φ†cΦd

)∣∣
Φ2=Φ(0)

2,c(Φ1) = 0 . (2.10)
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This is a cubic equation in Φ2; in a generic 2HDM basis it yields an EFT submanifold
curve Φ(0)

2,c(Φ1) that is a complicated function. Now we will show that one can find a
special 2HDM basis in which the solution curve Φ(0)

2,c(Φ1) is simply a straight line as long
as the 2HDM has a global minimum that preserves electric charge. We refer to this basis
as the SL basis.

We begin by noting that eq. (2.10) must be satisfied at the point corresponding to the
global minimum because by definition this is a point that minimizes the potential,

Y2bΦb

∣∣
vev + Z2bcdΦb

(
Φ†cΦd

)∣∣
vev = 0 . (2.11)

Let us focus on the first term. The key observation is that it is the lower component of the
“vector”

YabΦb

∣∣
vev , (2.12)

which transforms in the fundamental representation of the flavor rotation group in eq. (2.4).
Therefore, one can always find a flavor basis such that its lower component vanishes,

Y2bΦb

∣∣
vev = 0 (SL basis condition) . (2.13)

This defines our SL basis. We adopt a convention of Roman letters Yab, Zabcd, va, and k
to denote quantities Yab, Zabcd, va, and k evaluated in the SL basis. In the SL basis, the
two terms in eq. (2.11) both vanish independently,

Y2bΦb

∣∣
vev = Z2bcdΦb

(
Φ†cΦd

)∣∣
vev = 0 . (2.14)

Note that if a homogeneous function of Φa vanishes at a certain charge-conserving point
(where their values are multiples of each other), then it vanishes on the whole (charge-
conserving) straight line that connects that point with the origin. Since the two terms in
eq. (2.10) are both homogeneous functions of Φa, eq. (2.14) implies that they both also
vanish on the straight line,

Y2bΦb

∣∣
Φ2=kΦ1

= Z2bcdΦb

(
Φ†cΦd

)∣∣
Φ2=kΦ1

= 0 . (2.15)

Therefore, in the SL basis the EOM eq. (2.10) has the straight line solution

Φ(0)
2,c(Φ1) = kΦ1 , with k ≡ v2

v1
∈ C in the SL basis. (2.16)

Although in the SL basis eq. (2.16) is always a solution to the EOM in eq. (2.10),
this straight-line EFT submanifold can only correspond to a well-behaved SMEFT when
Y22 > 0 in the SL basis; see section 2.4.

2.3 Mapping between the straight-line and Higgs bases

Let us write the doublets in the SL basis as Φa (a = 1, 2), and the doublets in the Higgs
basis as Φȧ (ȧ = 1̇, 2̇), adopting a convention of dotting Higgs-basis indices on the fields
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and the corresponding parameters Yȧḃ and Zȧḃċḋ.5 We seek the unitary matrix Uȧb that
relates the two sets of doublets,

Φȧ = UȧbΦb . (2.17)

The vevs in the two bases are similarly related,

vȧ = Uȧbvb . (2.18)

As the vevs in the respective bases are defined as

vȧ =
(
v

0

)
, va =

(
v1
v2

)
= v√

1 + |k|2

(
1
k

)
, (2.19)

where v2 = v2
1 + |v2|2, it follows that

Uȧb = 1√
1 + |k|2

(
1 k∗

−k 1

)
. (2.20)

Rearranging the definition of the SL basis in eq. (2.13) allows us to define k in terms
of quadratic pieces of the SL basis potential,

k = v2
v1

= −Y21
Y22

. (2.21)

As U relates the quadratic parameters in the SL and Higgs bases via

Yȧḃ = Uȧc Ycd U
†
dḃ
, (2.22)

k can also be written in terms of Higgs basis quantities,

− k = Y2̇1̇
Y1̇1̇

= Z2̇1̇1̇1̇
Z1̇1̇1̇1̇

. (2.23)

The last equality comes from the vev conditions in the Higgs basis, which relate

− v2 = 2Y1̇1̇
Z1̇1̇1̇1̇

= 2Y2̇1̇
Z2̇1̇1̇1̇

. (2.24)

The map between other SL and Higgs basis quantities that appear in the EFT matching
is provided in appendix A.

We note that both the SL and the Higgs basis are actually a U(1) family of bases.
This corresponds to the freedom to rephase the second Higgs doublet, without affecting
the respective bases’ vev conditions of eq. (2.13) and v2̇ = 0. The above procedure details
a one-to-one map between equivalent SL and Higgs bases. This means that real scalar
potential parameters unaffected by this rephasing — in the SL basis as in the Higgs basis
— are physical.6

5Note that k = 0 in the Higgs basis, and k always refers to ratio of vevs in the SL basis, see eq. (2.16).
6We thank H. Haber for pointing this out.
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2.4 Prospects for matching onto SMEFT

As we emphasized in the introduction, SMEFT is the EFT extension of the Standard Model
that is expressed about the origin in field space where |Φ1| = 0 such that electroweak
symmetry can be linearly realized. For SMEFT to be well defined, the EFT must be built
from analytic functions of Φ1, which admit a convergent expansion of local operators at
this point. If it is not, then the UV theory must be matched onto HEFT [13]. This invites
the question: is it possible to determine which regions of the 2HDM parameter space can
be matched onto SMEFT? Crucially, the answer depends on the (basis-dependent) value
of Y22.

Figure 1 visualizes the charge conserving solutions Φ(0)
2,c(Φ1) of Φ2’s zero-derivative

EOM, eq. (2.10), by plotting

Re
(
Φ†1Φ(0)

2,c

)√
2

|Φ1| v
versus |Φ1|

√
2

v
. (2.25)

In these coordinates, the global minimum lies at (cosβ, sin β), and in the SL basis, one of
the solutions is a straight line of gradient Re k. Figure 1 shows two different custodially
symmetric UV parameter points in both their respective Higgs and SL bases; custodial
symmetry guarantees that Im

(
Φ†1Φ(0)

2,c

)
= 0 and Im k = 0. Black contours show the 2HDM

potential in the space of Φ1 and Φ(0)
2,c. The global minimum is shown by a black dot. The

potential contours and global minimum are rotated between the Higgs and SL bases.
The multiple solutions for Φ(0)

2,c are the paths that extremize the potential in the vertical
direction. The solutions shown in blue are stable — the mass matrix of the Φ2 modes about
blue solutions is positive definite; those shown in orange are not. Notably, the solutions
Φ(0)

2,c in the Higgs and SL basis EFTs are not simple rotations of each other. Even when
starting from the same UV parameter point, the resulting Higgs and SL basis EFTs are
generally different (truncated to zero derivative order) and are not both guaranteed to
admit a SMEFT expansion.

Following the treatment of [13], consider the behavior of the EFTs in the |Φ1| → 0
limit. Y22 < 0 is a sufficient criterion for a given basis’ EFT not to match onto SMEFT.
In the SL basis, Y22 < 0 leads to tachyonic Φ2 modes in the |Φ1| → 0 limit. This EFT
does not have a region of small p2 where the effects of Φ2 are purely virtual. The sickness
is most apparent when matching at loop level: when |Φ1| → 0 the Lagrangian would
have an anti-Hermitian component corresponding to a rate for tunneling out of the false
vacuum Φ(0)

2,c.
In the Higgs basis, Y2̇2̇ < 0 generally leads to Φ(0)

2,c approaching a non-zero constant as
|Φ1| → 0. This does not yield a SMEFT, as can be verified by substituting Φ(0)

2,c back into
the kinetic term eq. (2.1b). As |Φ1| → 0, the W mass remains non-zero, which cannot be
reproduced using SMEFT operators.

Of course, whether Y22 < 0 can be a basis dependent statement. If both eigenvalues of
the matrix Yab are negative, then Y22 < 0 in all bases, and it is therefore guaranteed that
both Y2̇2̇ < 0 (in the Higgs basis) and Y22 < 0 (in the SL basis). This is the case for the
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0 1

0

1

Higgs basis

0 1

SL basis

0 1

0

1

Higgs basis

0 1

SL basis

Figure 1. The Higgs and SL basis behavior for two example custodially symmetric 2HDM models.
Black contours show the potential, and a black dot shows the global minimum, which has coordinates
(cosβ, sin β) on these axes. The zero-derivative solutions of Φ2’s EOM, Φ(0)

2,c, are shown in blue if
the Φ2 mass matrix is positive definite and in orange otherwise. Top: an example where Y22 < 0
and Y2̇2̇ < 0, and neither basis matches onto SMEFT. Bottom: Y22 > 0 in the SL basis, whereas
Y2̇2̇ < 0 in the Higgs basis.
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potential in the top half of figure 1. However, if only one eigenvalue of Yab is negative, the
sign of Y22 varies. In this case, eq. (A.1a) guarantees that in the SL basis,

Y22 = 1
1 + |k|2

detY
Y1̇1̇

> 0 , (2.26)

because Y1̇1̇ < 0 in the Higgs basis.
When Y22 > 0, the SL basis EFT formally admits a SMEFT expansion, in the sense

that our expressions can be expanded in terms of local operators with powers of the positive
Y22 in the denominator, and powers of |Φ1|2 in the numerator. However, this does not
necessarily result in a useful SMEFT, because such an expansion may not converge at the
global minimum. In other words, the effects of dimension 8 operators in observables may
not be smaller than dimension 6 operators, and so on. Note also that such an expansion is
in any case impossible if Y22 = 0.

Even if only one eigenvalue of Yab is negative, and therefore Y22 > 0 in the SL basis, it
is still possible that Y2̇2̇ < 0 in the Higgs basis, as shown in the bottom example of figure 1.
Thus, working in the SL basis improves the chances of matching onto SMEFT as Y22 > 0
whenever possible. As we will see in section 4, working in the SL basis also improves the
convergence of the resulting EFT expansion.

3 Matching in the SL basis

We will now use the classical solution to the equation of motion of the second Higgs doublet
to integrate out Φ2 at tree level. In section 2.2, we saw how the SL basis vastly simplifies the
zero-derivative-and-fermion solution of the equation of motion. Here, this zero-derivative-
and-fermion part is used to iteratively construct the higher order terms in the classical
solution, which are in turn vastly simpler in the SL basis. In the end, we will include terms
in the EFT up to six- derivative-and/or-fermion order and to all orders in the light field Φ1.

3.1 Organizing the EFT expansion

Since we need to derive terms involving as many as six derivatives and/or fermions in the
EFT, we begin by setting up the expansion of the UV action on the classical equations of
motion for the heavy doublet. We write the UV action derived using the Lagrangian in
eq. (2.1) as

SUV[Φ2] = S0[Φ2] + ε
(
S2[Φ2] + SJ [Φ2]

)
= S0[Φ2] + εSε[Φ2] , (3.1)

where Sε[Φ2] is implicitly defined here, S0[Φ2] contains the zero-derivative scalar terms,
S2[Φ2] contains the two-derivative scalar terms, SJ [Φ2] contains the Yukawa interactions,
and ε is an order parameter which we use to track the sum of the number of fermions and
derivatives,

2ε = # of derivatives + # of fermions . (3.2)

Ultimately, we will set ε = 1. Note that we are only writing the explicit functional depen-
dence on Φ2 here for brevity, but of course SUV also depends on the light Standard Model
fields.
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We will denote the Higgs doublet we are integrating out at tree level as

Hx =
(

Φα
2 (x)

Φ†2α(x)

)
, (3.3)

where the x label simultaneously stands for 1) the spacetime coordinate, 2) the SU(2)L
index, and 3) the Higgs doublet versus its conjugate, as we need to vary with respect to
all of them. We want to find Hc,x, the classical solution to the equation of motion for Hx,
order-by-order in ε,

Hc,x =
∞∑
n=0

εnH(n)
c,x . (3.4)

This allows us to derive the EFT action as a semiclassical expansion,

Stree
EFT = SUV[Hc,x] . (3.5)

Substituting the expansion defined in eq. (3.4) into eq. (3.1), we find

Stree
EFT = ε0S0

+ ε1
[
Sε + (δS0)xH(1)

c,x
]

+ ε2
[1

2 (δ2S0)xyH(1)
c,xH(1)

c,y + (δSε)xH(1)
c,x + (δS0)xH(2)

c,x

]
+ ε3

[1
2 (δ2Sε)xyH(1)

c,xH(1)
c,y + 1

6 (δ3S0)xyzH(1)
c,xH(1)

c,yH(1)
c,z

+ (δ2S0)xyH(1)
c,xH(2)

c,y + (δSε)xH(2)
c,x + (δS0)xH(3)

c,x

]
+O

(
ε4
)
. (3.6)

We use a bar to denote quantities evaluated on the zeroth-order classical solution H(0)
c,x,

and we have defined the shorthand

(δS)x ≡
δS

δHx
, (δ2S)xy ≡

δ2S

δHxδHy
, (δ3S)xyz ≡

δ3S

δHxδHyδHz
. (3.7)

Note that a repeated index implies an integral over the associated spacetime coordinate as
well as a sum over the components of the Higgs doublet and their conjugates.

To find Hc,x, we expand the equation of motion in powers of ε ,

0 = δSUV
δHx

∣∣∣∣
Hx=Hc,x

= ε0 (δS0)x + ε1
[
(δSε)x + (δ2S0)xyH(1)

c,y
]

+ ε2
[
(δ2Sε)xyH(1)

c,y + (δ2S0)xyH(2)
c,y + 1

2 (δ3S0)xyzH(1)
c,yH(1)

c,z

]
+O

(
ε3
)
. (3.8)
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Each order in ε must independently be zero. This gives

(δS0)x = 0 , (3.9a)

(δSε)x + (δ2S0)xyH(1)
c,y = 0 , (3.9b)

(δ2Sε)xyH(1)
c,y + (δ2S0)xyH(2)

c,y + 1
2(δ3S0)xyzH(1)

c,yH(1)
c,z = 0 , (3.9c)

which can be solved to give Hc,x order-by-order in ε. Note that eqs. (3.9) imply an imme-
diate simplification of eq. (3.6),

Stree
EFT = ε0 S0 + ε1 Sε + ε2

[
− 1

2 (δ2S0)xyH(1)
c,xH(1)

c,y

]
+ ε3

[1
2 (δ2Sε)xyH(1)

c,xH(1)
c,y + 1

6 (δ3S0)xyzH(1)
c,xH(1)

c,yH(1)
c,z

]
. (3.10)

We thus only need to compute H(1)
c,x, which amounts to solving eq. (3.9b). This requires

inverting the mass matrix (δ2S0)xy, as described in the next section.

3.2 Inverting the mass matrix

The general expansion derived in the preceding subsection is valid in a general flavor basis.
As mentioned above, deriving the EFT to the desired order requires solving eq. (3.9b).
We therefore must invert the mass matrix. To do so, we now specialize to the SL basis as
defined in eq. (2.16), for which

(δ2S0)xy =−δ(4)(x− y)
(

Z1Φ†1αΦ†1β (Y22 + Z2|Φ1|2)δβα + Z3Φ†1αΦβ
1

(Y22 + Z2|Φ1|2)δαβ + Z3Φ†1βΦα
1 Z∗1Φα

1 Φβ
1

)
,

(3.11)

where

Z1 = Z1212 + 2k∗Z1222 + (k∗)2Z2222 =
(
1 k∗

)(Z1212 Z1222
Z1222 Z2222

)(
1
k∗

)
, (3.12a)

Z2 = Z1122 + 2 Re
[
kZ1222

]
+ |k|2Z2222 =

(
1 k∗

)(Z1122 Z1222
Z2122 Z2222

)(
1
k

)
, (3.12b)

Z3 = Z1221 + 2 Re
[
kZ1222

]
+ |k|2Z2222 =

(
1 k∗

)(Z1221 Z1222
Z2122 Z2222

)(
1
k

)
. (3.12c)

Note that Z2 and Z3 are real valued. Note also that, if Y22 < 0, the eigenvalues of the mass
matrix are negative in the |Φ1| → 0 limit, as mentioned in section 2.4.

Consistency with the SU(2)L structure implies an ansatz for the inverse,

(δ2S0)−1
yz = −δ(4)(y − z)

(
AΦβ

1 Φγ
1 B δβγ + C Φ†1γΦβ

1
B δγβ + C Φ†1βΦγ

1 A∗Φ†1βΦ†1γ

)
, (3.13)

with B = B∗ and C = C∗. The solution is given by

A = − Z∗1[
Y22 + (Z2 + Z3)|Φ1|2

]2 − |Z1|2|Φ1|4
, (3.14a)
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B = 1
Y22 + Z2|Φ1|2

, (3.14b)

C = − 1
Y22 + Z2|Φ1|2

Z3
[
Y22 + (Z2 + Z3)|Φ1|2

]
− |Z1|2|Φ1|2[

Y22 + (Z2 + Z3)|Φ1|2
]2 − |Z1|2|Φ1|4

, (3.14c)

as can be checked by explicit matrix multiplication. With the result in eq. (3.13), we obtain
an O(ε) solution to the EOM,

Φ(1)
2,c = −

[
A
(
Φ†1R

)∗
+ C

(
Φ†1R

)]
Φ1 −BR , with R ≡ kD2Φ1 + J2 . (3.15)

These results simplify in the custodial limit, for which, without loss of generality, all
potential parameters and therefore k are real, and Z1221 = Z1212 [19] (implying Z1 = Z3).
The coefficients of the inverse mass matrix defined in eqs. (3.14) therefore simplify to

A = C = − Z1
(Y22 + Z2|Φ1|2) [Y22 + (Z2 + 2Z1)|Φ1|2] , (3.16a)

B = 1
Y22 + Z2|Φ1|2

, (3.16b)

when the UV 2HDM respects custodial symmetry.

3.3 The EFT result

We now have everything we need to determine an EFT action for the light doublet Φ1.
Combining eq. (3.10) with eqs. (2.16) and (3.15), we have

LEFT = −
(
1 + |k|2

)
m2

eff |Φ1|2 −
1
2
(
1 + |k|2

)2
λeff |Φ1|4

+
(
1 + |k|2

)
|DµΦ1|2 −

[(
J†1 + kJ†2

)
Φ1 + h.c.

]
+B |R|2 + C

∣∣Φ†1R∣∣2 + 1
2

[
A∗
(
Φ†1R

)2
+ h.c.

]
+
∣∣∣DµΦ(1)

2,c

∣∣∣2
−
[
Z4
(
Φ†1Φ(1)

2,c

) ∣∣∣Φ(1)
2,c

∣∣∣2 + h.c.
]
, (3.17)

where A,B,C are given in eqs. (3.14); Φ(1)
2,c and R are given in eq. (3.15). We have also

introduced the notation m2
eff and λeff,

(
1 + |k|2

)
m2

eff = Yab

(
1
k∗

)
a

(
1
k

)
b

, (3.18a)

(
1 + |k|2

)2
λeff = Zabcd

(
1
k∗

)
a

(
1
k

)
b

(
1
k∗

)
c

(
1
k

)
d

, (3.18b)

as well as Z4, which populates the elements of (δ3S0)xyz,

Z4 = Z1222 + k∗Z2222 =
(
1 k∗

)(Z1222
Z2222

)
. (3.19)
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3.4 EFT predictions for benchmark pseudo-observables

We will use the matching result eq. (3.17) to compute three pseudo-observables: the shift
in the hW+W− coupling relative to the Standard Model κV , the shift in the Higgs self-
coupling h3 relative to the Standard Model κλ, and the shift in the hf̄f coupling relative
to the Standard Model κf . We will compute all of these to the leading order in ε at which
a correction to the Standard Model value appears. In the SL basis, these corrections are
suppressed by powers of m2

h

M2
SL
, where M2

SL is a characteristic heavy mass scale defined in
eq. (3.29).

We can drop the last line of eq. (3.17) — which originates from the second O
(
ε3
)
term

in eq. (3.10) — because it does not contribute to our pseudo-observables at the truncation
order imposed in this section. Note also that the kinetic term for Φ1 is not canonically
normalized. Rewriting with the normalized field,

H ≡
(
1 + |k|2

)1/2
Φ1 , (3.20)

we get

LEFT ⊃ |DµH|2 −m2
eff |H|

2 − 1
2λeff |H|

4 −
(
1 + |k|2

)−1 [(
Ĵ†1 + kĴ†2

)
H + h.c.

]
+ B̂

∣∣R̂∣∣2 + Ĉ
∣∣H†R̂∣∣2 + 1

2
[
Â∗
(
H†R̂

)2 + h.c.
]

+
(
1 + |k|2

) ∣∣∣DµΦ̂(1)
2,c

∣∣∣2 , (3.21)

with a variety of rescaled quantities,

Ŷ22 ≡
(
1 + |k|2

)
Y22 , (3.22a)

Ĵi ≡
(
1 + |k|2

)1/2
Ji , (3.22b)

Â ≡
(
1 + |k|2

)−2
A = − Z∗1[

Ŷ22 + (Z2 + Z3)|H|2
]2 − |Z1|2|H|4

, (3.22c)

B̂ ≡
(
1 + |k|2

)−1
B = 1

Ŷ22 + Z2|H|2
, (3.22d)

Ĉ ≡
(
1 + |k|2

)−2
C = − 1

Ŷ22 + Z2|H|2
Z3
[
Ŷ22 + (Z2 + Z3)|H|2

]
− |Z1|2|H|2[

Ŷ22 + (Z2 + Z3)|H|2
]2 − |Z1|2|H|4

, (3.22e)

R̂ ≡
(
1 + |k|2

)1/2
R = kD2H + Ĵ2 , (3.22f)

Φ̂(1)
2,c ≡

(
1 + |k|2

)−1/2
Φ(1)

2,c = −
[
Â
(
H†R̂

)∗ + Ĉ
(
H†R̂

)]
H − B̂R̂ . (3.22g)

We see that when restricted to two-derivative/fermion order, i.e., the first line of eq. (3.21),
the matching result is the Standard Model. This is peculiar to the SL basis, where Φ(0)

2,c =
kΦ1. Working in a different basis would involve substituting a more complicated function
Φ(0)

2,c(Φ1) into the ε1 piece of eq. (3.10), resulting in higher dimension operators at two-
derivative/fermion order. Instead, in the SL basis, corrections to the pseudo-observables
come from terms at the four- and six-derivative/fermion orders presented in the second line
of eq. (3.21). To compute these corrections, we will take eq. (3.21) and expand around the
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physical vacuum where H has a non-zero vev. We will only keep terms that are relevant for
κV (to six-derivative/fermion order), κf (to potentially six-derivative/fermion order), and
κλ (to four-derivative/fermion order). We also need the propagator residue factors for all
the external legs of these amplitudes. It is clear that the four- and six-derivative/fermion
terms in eq. (3.21) do not yield nontrivial corrections to the propagator residues of the
gauge bosons or the fermions, but they do modify the Higgs propagator residue factor Zh.

In summary, when we expand eq. (3.21), we would like to keep all the terms of the
forms

h2 ∂n , h3 ∂n , W+
µ W

−
ν h ∂

n , ĵi h ∂
n , (3.23)

where ∂n denotes an arbitrary power of derivatives (up to our truncation order) and ĵi are
the neutral components of Ĵi,

Ĵi ⊃
(

0
ĵi

)
. (3.24)

Note that all the four- and six-derivative/fermion terms in eq. (3.21) are quadratic in R̂.
For finding the terms listed in eq. (3.23), it is therefore sufficient to keep only part of R̂ ,

R̂ = kD2H + Ĵ2 ⊃
(

0
k√
2

[(
∂2h

)
− 1

2 g
2
2vW

+
µ W

−µ
]

+ ĵ2

)
, (3.25)

and make the replacement

H → 1√
2

(
0

v + h

)
, (3.26)

for all the other factors of H fields in the four- and six-derivative/fermion terms in eq. (3.21)
(including the implicit ones in Â, B̂, Ĉ). Performing these substitutions, we obtain

LEFT ⊃
1
2(∂h)2 − 1

2m
2h2 − m2

2v h
3 + 1

2 g
2
2vW

+
µ W

−µh− 1√
2
v + h

1 + |k|2
(
ĵ1 + k∗ĵ2 + h.c.

)
+ b4

1
2 (∂2h)

[
(∂2h)− g2

2vW
+
µ W

−µ
]

+
[
f4√
2k∗

ĵ∗2 (∂2h) + h.c.
]

+ c4
2 h

(
∂2h

)2

+ b6
1
2 (∂µ∂2h)

[
(∂µ∂2h)− g2

2v ∂
µ(W+

ν W
−ν)

]
−
[
f6√
2k∗

ĵ∗2 (∂4h) + h.c.
]
, (3.27)

where the coefficients are

m2 = λeff v
2 = −2m2

eff , (3.28a)

b4 = 1
M4

SL

{
|k|2

[
Ŷ22 + (Z2 + Z3)v

2

2

]
− Re

(
k2Z1

v2

2

)}
, (3.28b)

Re f4 = b4 , (3.28c)

Im f4 = 1
M4

SL
Im
(
k2Z1

v2

2

)
, (3.28d)

c4 = ∂

∂v
b4 , (3.28e)
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b6 = 1
M8

SL

(
1 + |k|2

) ∣∣∣∣∣k
[
Ŷ22 + (Z2 + Z3)v

2

2

]
− k∗Z∗1

v2

2

∣∣∣∣∣
2

, (3.28f)

Re f6 = b6 , (3.28g)

Im f6 = 1
M8

SL

(
1 + |k|2

) [
Ŷ22 + (Z2 + Z3)v

2

2

]
Im
(
k2Z1v

2
)
. (3.28h)

Note the appearance of the mass scale

M4
SL =

[
Ŷ22 + (Z2 + Z3)v

2

2

]2

− |Z1|2
v4

4 , (3.29)

which is closely related to the determinant of the mass matrix for the heavy Higgs dou-
blet. (The only difference is the factor of (1 + |k|2) in Ŷ22, which comes from canonically
normalizing Φ1 to H using eq. (3.20).) MSL includes both the explicit mass parameter Y22
and the vev-dependent contributions to the mass through the quartic couplings.

From eq. (3.27), the terms that are quadratic in h with no other fields determine that
the dispersion relation for h is

−m2 + p2 + b4p
4 + b6p

6 +O
(
p8) = 0 , (3.30)

which implies that the pole mass m2
h can be determined by solving

m2 = m2
h + b4m

4
h + b6m

6
h +O

(
p8) , (3.31)

and that the residue is

Z−1
h = ∂

∂p2

(
−m2 + p2 + b4p

4 + b6p
6 +O

(
p8)) ∣∣∣

p2=m2
h

= 1 + 2b4m2
h + 3b6m4

h +O
(
p6) . (3.32)

Note that by including higher order momentum terms in the dispersion relation, we are
effectively resumming a class of EFT corrections into the propagator. This is one of the
systematic improvements that is facilitated by working in the SL basis. Using eq. (3.27),
we have

κV = Z
1/2
h (1 + b4m

2
h + b6m

4
h) +O

(
m6
h

)
= 1− 1

2m
4
h

(
b6 − b24

)
+O

(
m6
h

)
, (3.33)

and
κλ = 1− 2m2

h

∂

∂v2

(
v2b4

)
+O

(
m4
h

)
. (3.34)

In particular, we note that the quantity appearing in κV is non-negative,

b6 − b24 = 1
M8

SL


∣∣∣∣∣k
[
Ŷ22 + (Z2 + Z3)v

2

2

]
− v2

2 k
∗Z∗1

∣∣∣∣∣
2

+
[
v2

2 Im(k2Z1)
]2
 ≥ 0 , (3.35)

which guarantees that the correction κV − 1 ≤ 0 has the correct sign. Observe also that
the correction in eq. (3.33) is formally O(ε4): b24 is the square of an O(ε2) piece, whereas
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the b6 term is an O(ε3) piece multiplied by the 1 in Z
1
2
h , which is the uncorrected residue

coming from the O(ε1) kinetic term.
Determining κf is complicated by the fact that there are different possibilities for the

fermion couplings to the two doublets. It is most transparent to write the couplings to
fermions in the Higgs basis, for which the neutral components of the currents are

J1̇ =
(

0
j1̇

)
, J2̇ =

(
0
j2̇

)
. (3.36)

Using the mappings given in appendix A, the SL basis currents are then

Ja = 1√
1 + |k|2

(
1 −k∗

k 1

)
aḃ

Jḃ . (3.37)

This implies

ĵ1 = j1̇ − k
∗j2̇ , (3.38a)

ĵ2 = kj1̇ + j2̇ . (3.38b)

The part of eq. (3.27) containing fermions can be expressed in terms of Higgs basis cur-
rents as

Leff ⊃ −
1√
2
j1̇

(
v + h− f∗4∂2h+ f∗6∂

4h
)
− 1√

2
j2̇
k

(
−f∗4∂2h+ f∗6∂

4h
)

+ h.c. . (3.39)

We see that matching the fermion masses determines j1̇ and places no constraint on j2̇;
this is why it is useful to write the Lagrangian in terms of these quantities. The amplitude
for a Higgs to decay to a particular chirality of fermions is then proportional to the matrix
element of the unconjugated currents,

Ah→f̄LfR
= −〈j1̇〉√

2
Z

1/2
h

(
1 + f∗4m

2
h + f∗6m

4
h

)
− 〈j2̇〉
k
√

2
Z

1/2
h

(
f∗4m

2
h + f∗6m

4
h

)
+O

(
m6
h

)
= −〈j1̇〉√

2

[
1− 1

2
(
b6 − b24

)
m4
h

]
+ i
〈j1̇〉√

2

[
m2
h Im f4 +m4

h

(
Im f6 − b4 Im f4

)]
− 〈j2̇〉
k
√

2

[
b4m

2
h +

(
b6 − b24

)
m4
h

]
+ i
〈j2̇〉
k
√

2

[
m2
h Im f4 +m4

h

(
Im f6 − b4 Im f4

)]
+O

(
m6
h

)
, (3.40)

where we are using a shorthand 〈j〉 =
〈
f̄LfR|j|0

〉
.

To calculate κf , we then need to specify j2̇. There are a wide variety of possibilities with
rich phenomenological implications, including conventional choices satisfying the Glashow-
Weinberg condition [25]. In this work, we consider two specific choices. For both, we
require the UV 2HDM potential to be CP-preserving; this means Im f4 = Im f6 = 0. For
our first example, we set j2̇ = 0, such that the fermion currents only couple to the linear
combination of Higgses that gets a vev. In this case,

κf = 1− 1
2
(
b6 − b24

)
m4
h = κV . (3.41)
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In other words, to this order in the EFT expansion there is simply a universal rescaling
of all Higgs couplings for this scenario. This is the unique choice for which κf does not
receive a contribution at leading order. For our second example, we set j2̇ = j1̇, in which
case,

κf = 1 + b4
k
m2
h , (3.42)

where we have truncated to the leading order correction. Note that both of the possibilities
we consider automatically ensure that there are no FCNC’s at tree level.

4 Numerical comparison

We will now provide the results of a scan in the 2HDM parameter space in order to compare
the efficacy of the SL basis EFT with the Higgs basis EFT. We will provide results for the
three pseudo-observables derived in the previous section: the shift in the hW+W− coupling
κV , the shift in the h3 coupling κλ, and the shift in the hf̄f coupling κf . For κf , we consider
specifically the case when the Yukawa couplings of both doublets are the same in the Higgs
basis; see eq. (3.42). We will present the results in terms of the fractional error of the EFT
prediction as compared to the UV prediction,

δκi,EFT ≡
κi,EFT − κi,UV
κi,UV − 1 , (4.1)

where κi,UV use the couplings computed in the full 2HDM; both the UV and the Higgs
basis EFT results are taken from [6].

To make this comparison, we reduce the general 2HDM down to a four-parameter
space of models. We first impose custodial symmetry and work in the resulting Higgs basis
for which all parameters are real and Z1̇2̇1̇2̇ = Z1̇2̇2̇1̇. We then scan over the 4 parameters

Y1̇2̇ , Y2̇2̇ , Z1̇1̇1̇1̇ , Z1̇1̇2̇2̇ . (4.2)

Of the remaining parameters, Y1̇1̇ and Z1̇1̇1̇2̇ are fixed by the Higgs basis vev conditions
eq. (2.24); the others we fix to satisfy

Z1̇2̇2̇2̇ = Z1̇2̇1̇2̇ = 0 ; Z2̇2̇2̇2̇ = Z1̇1̇1̇1̇ , (4.3)

for simplicity. Note that it is important that Y1̇2̇ 6= 0 for the Higgs and SL bases to be
distinct.

The four free parameters, eq. (4.2), are scanned in units of v = 246 GeV via a Markov
Chain Monte Carlo (MCMC) method, which samples from the Gaussian likelihood of
approximate current experimental constraints on mh and κV ≡ sin(β − α). Here α is the
familiar Higgs mixing angle and sin(β − α)→ 1 is known as the alignment limit. Explicitly,
we take

m2
h

v2 = 0.2587± 0.0007 , (4.4a)

κV = 1.0± 0.1 . (4.4b)
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The κV constraint assumes a Standard Model central value, and a 10% error based on the
order-of-magnitude of ATLAS and CMS Run 2 1σ errors on κW and κZ , in the absence
of invisible or untagged decays [26, 27]. Note that κV ≤ 1 in the 2HDM. The MCMC is
seeded on a grid of inert 2HDMs, where

Y1̇2̇ = 0 , (4.5a)
Y2̇2̇ = m2

H(1− f) , (4.5b)
Z1̇1̇1̇1̇ = 0.2587 , (4.5c)

Z1̇1̇2̇2̇ = 2f m
2
H

v2 , (4.5d)

where m2
H is the heavy Higgs mass at the global minimum and f is the fraction of it which

comes through the cross quartic interaction 1
2Z1̇1̇2̇2̇v

2. We sample m2
H and f from the

discrete sets

m2
H

GeV = {400, 500, 600, 700, 800} , (4.6a)

f = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} . (4.6b)

We discard all models whose quartic couplings either make the potential unbounded or
violate the perturbative unitarity constraints of [28]. This leaves ∼ 7000 2HDM model
points in the following analysis.

The performance of the SL basis EFT can be understood primarily by looking at two
parameters: the alignment of the 2HDM and the mass scale from the mass matrix of the
heavy doublet, MSL, defined in eq. (3.29). Recall from section 3.1 that the SL basis EFT
is an expansion in powers of derivatives (and fermions). We thus expect the nth order
corrections to our pseudo-observables to scale as(

D2
)n
∼ m2n

h ∼ v2n . (4.7)

By dimensional analysis, the nth order corrections must also scale as some mass scale to the
power of −2n. From eqs. (3.9), these powers of mass dimension come from the inverse of
the mass matrix for the heavy doublet; the nth order corrections to our pseudo-observables
thus scale as M−2n

SL . The corrections therefore scale as

SL basis power counting ∼
(

v

MSL

)2n
, (4.8)

and we expect that the SL EFT expansion will provide a good approximation when MSL
is large.

We plot our pseudo-observables in the cos(α− β) versus MSL plane in figures 2 to 4 ,
where α is the Higgs mixing angle, β = arctan(v2/v1), and the combination cos(α− β) is
a measure of the alignment limit for the 2HDM. In the figures, we separate the points into
those for which the fractional error is above or below 10% to provide a proxy for when the
SL basis EFT prediction is accurate. As expected, we find better performance for larger
values ofMSL. In addition, κV and κf are highly correlated with the measure of alignment;
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Figure 2. This figure shows for which models the SL basis EFT makes an accurate estimate of κV .
Blue points are those for which δκV,SL < 0.1 and orange points (shown on top of the blue points)
are those for which δκV,SL > 0.1.
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Figure 3. This figure shows for which models the SL basis EFT makes an accurate estimate of κλ.
Blue points are those for which δκλ,SL < 0.1 and orange points (shown on top of the blue points)
are those for which δκλ,SL > 0.1.
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Figure 4. This figure shows for which models the SL basis EFT makes an accurate estimate of κf .
We have taken the Yukawa couplings to the two Higgs doublets to be equal. Blue points are those
for which δκf,SL < 0.1 and orange points (shown on top of the blue points) are those for which
δκf,SL > 0.1. If the Yukawa couplings of the heavy doublet are instead set to zero, κf = κV .

this is because κV,UV and κf,UV depend only on the alignment of the 2HDM (and, for κf ,
the Yukawa couplings of the Higgs doublets, which we have fixed). For κλ, the behavior is
more complicated as a larger number of parameters affect the value of κλ.

A comparison of the performance for the SL basis EFT against the Higgs basis EFT is
given in figures 5 to 7 . The SL basis EFT typically outperforms the Higgs basis EFT by
a significant margin (around 1-2 orders of magnitude smaller fractional error) for all three
pseudo-observables; this is the case whether the SL basis EFT performs relatively well or
relatively poorly. We do find parameter points for which the Higgs basis EFT outperforms
the SL basis EFT, so the SL basis EFT is not universally better. In addition, for a
significant minority of points the Higgs basis EFT catastrophically fails with a fractional
error of several orders of magnitude; these catastrophic failures include many points on
which the SL basis EFT performs quite well. By contrast, while points exist for which the
SL basis EFT performs poorly, the Higgs basis tends to perform poorly as well, and none
of the points included in our scan show a catastrophic failure of the SL basis.

The difference in performance of the two EFTs can be understood by looking at the
mass scales involved in the power counting. As we saw in eq. (4.8), higher-order corrections
in the SL basis EFT are suppressed by powers of MSL; this mass scale is comparable to
the physical mass of the second Higgs doublet, so the EFT produces reliable results when
the second Higgs doublet is heavy. The higher-order corrections in the Higgs basis EFT
are suppressed by powers of Y2̇2̇. If the second Higgs doublet receives a large contribution
to its mass from the vev, then Y2̇2̇ can be significantly smaller than the mass of the second
Higgs. We show how the relative performance of the two EFTs depends on the ratio of
their respective mass scales in figures 8 to 10 . We indeed see that when the mass scale
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Figure 5. This figure shows the accuracy in computing κV for each of the EFTs. The straight
orange line denotes equality between the accuracy of the two EFTs, with points above the line being
those for which the SL basis EFT performs better than the Higgs basis EFT.
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Figure 6. This figure shows the accuracy in computing κλ for each of the EFTs. The straight
orange line denotes equality between the accuracy of the two EFTs, with points above the line being
those for which the SL basis EFT performs better than the Higgs basis EFT.
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Figure 7. This figure shows the accuracy in computing κf . We have taken the Yukawa couplings to
the two Higgs doublets to be equal. The straight orange line denotes equality between the accuracy
of the two EFTs, with points above the line being those for which the SL basis EFT performs better
than the Higgs basis EFT. If the Yukawa couplings of the heavy doublet are instead set to zero,
κf = κV .

of the Higgs basis EFT is significantly smaller than that of the SL basis EFT, the Higgs
basis EFT is significantly less accurate. In addition, for all those points on which the Higgs
basis EFT is more accurate than the SL basis EFT, the mass scales of the two EFTs are
comparable, as expected.

Finally, we remark on the decoupling limit where the extra Higgs bosons are very
heavy. As the quartic couplings of the 2HDM are constrained by perturbative unitarity to
be O(8π), this requires taking the quadratic couplings large, namely, in the Higgs basis,
Y2̇2̇ → ∞ with Y1̇1̇, Y1̇2̇ fixed (see [29] for a recent discussion). By eqs. (3.29) and (A.1a),
this means both Ŷ22 and M2

SL in the SL basis approach the value of Y2̇2̇. In appendix B,
we show that the SL basis EFT can be expanded in this limit to reproduce known results.

5 Conclusions

In this paper, we have derived the tree-level matching coefficients by integrating out the
BSM states in the 2HDM. The novel aspect of this work is the introduction of the SL basis,
which is an optimal choice for performing the matching calculation. Working with the SL
basis allows us to match a far broader parameter space of 2HDM models onto SMEFT and
to resum all orders of the light Higgs field into the EFT Wilson coefficients in a systematic
way. This leads to significantly improved predictions when compared to the computation
performed using the Higgs basis in the UV across most of the 2HDM parameter space. This
demonstrates the utility of the EFT derived using the SL basis. In particular, this is the
basis to use if one is interested in exploring the EFT predictions for the 2HDM for models
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Figure 8. This figure shows how the performance of the SL basis EFT and the Higgs basis EFT
prediction for κV depends on the ratio of the mass scales in the two EFTs.
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Figure 9. This figure shows how the performance of the SL basis EFT and the Higgs basis EFT
prediction for κλ depends on the ratio of the mass scales in the two EFTs.
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Figure 10. This figure shows how the performance of the SL basis EFT and the Higgs basis EFT
prediction for κf depends on the ratio of the mass scales in the two EFTs. We have taken the
Yukawa couplings to the two Higgs doublets to be equal. If the Yukawa couplings of the heavy
doublet are instead set to zero, κf = κV .

that have alignment away from the decoupling limit. This brings the 2HDM fully into the
EFT fold, extending the validity of EFT interpretations of Higgs coupling measurements
across a wider range of 2HDMs.

There are many future directions to explore. As we have worked strictly at tree level,
extending the SL basis EFT matching calculation to loop level (potentially with functional
matching techniques) is a natural next step. Although we have focused our numerical
studies on CP-conserving 2HDM, the SL basis is applicable in the fully general CP-violating
2HDMs, where further numerical studies are likely to be informative. It would also be
instructive to extend the SL basis to models with extra scalar fields beyond the 2HDM.

There are also more phenomenological studies that could be done. Our expressions
shed light on the physical combinations of parameters that can appear in the low energy
virtual effects of the heavy doublet. However, since we only explored the properties of
pseudo-observables here, it would be important to compute a set of full LHC observables
which would serve as inputs to provide constraints on the 2HDM parameter space. It
is possible that one could then identify novel indirect searches that could be performed
which would be particularly sensitive to the effects of the 2HDM. And in the event that an
indirect signal of BSM physics would be discovered, the results here would facilitate our
ability to interpret such a signal in terms of the 2HDM parameter space.
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A Mapping EFT quantities from SL to Higgs basis

Using eqs. (2.20), (2.21) and (2.23), quantities appearing in the EFT derived using the SL
basis can be written in terms of Higgs basis parameters as

Ŷ22 = (1 + |k|2)Y22 = Y2̇2̇ + k∗Y2̇1̇ + kY1̇2̇ + |k|2Y1̇1̇

= Y2̇2̇ −
|Y1̇2̇|

2

Y1̇1̇
= Y2̇2̇ − |k|

2Y1̇1̇ , (A.1a)

Z1 = (1 + |k|2)Z1̇21̇2

= Z1̇2̇1̇2̇ −
Z2

1̇1̇1̇2̇
Z1̇1̇1̇1̇

= Z1̇2̇1̇2̇ − (k∗)2Z1̇1̇1̇1̇ , (A.1b)

Z2 = (1 + |k|2)Z1̇1̇22

= Z1̇1̇2̇2̇ −
|Z1̇1̇1̇2̇|

2

Z1̇1̇1̇1̇
= Z1̇1̇2̇2̇ − |k|

2Z1̇1̇1̇1̇ , (A.1c)

Z3 = (1 + |k|2)Z1̇221̇

= Z1̇2̇2̇1̇ −
|Z1̇1̇1̇2̇|

2

Z1̇1̇1̇1̇
= Z1̇2̇2̇1̇ − |k|

2Z1̇1̇1̇1̇ , (A.1d)

Z4 =
√

1 + |k|2Z1̇222

= 2|k|2Z1̇1̇1̇2̇ + k∗Z1̇2̇2̇1̇ + k∗Z1̇1̇2̇2̇ + kZ1̇2̇1̇2̇ + Z1̇2̇2̇2̇
1 + |k|2

, (A.1e)

m2
eff = Y1̇1̇ , (A.1f)
λeff = Z1̇1̇1̇1̇ . (A.1g)

In terms of the more conventional 2HDM parameters in Higgs basis (see eq. (2.3)), the
map is given by

k = −λ
∗
6
λ1
, (A.2a)

Ŷ22 = m2
2 − |k|

2m2
1 , (A.2b)

Z1 = λ5 − (k∗)2λ1 , (A.2c)
Z2 = λ3 − |k|2λ1 , (A.2d)
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Z3 = λ4 − |k|2λ1 , (A.2e)

Z4 = 2|k|2λ6 + k∗λ3 + k∗λ4 + kλ5 + λ7

1 + |k|2
(A.2f)

m2
eff = m2

1 , (A.2g)
λeff = λ1 . (A.2h)

Armed with these expressions, we can expand our expressions for our pseudo-observables
in the SL basis EFT and check that they agree with the Higgs basis EFT. The Higgs
basis EFT is an expansion in inverse powers of m2

2; from eq. (A.2b), we see that this is
equivalent to an expansion in inverse powers of Ŷ22 (to leading order), so we should expand
our expressions for κV , κλ, κf in the SL basis EFT to leading order in Ŷ22 and then convert
to Higgs basis quantities. We have

b4 '
1
Ŷ22
|k|2 , (A.3)

b6 '
1
Ŷ 2

22
|k|2(1 + |k|2) , (A.4)

c4 ' −v
1
Ŷ 2

22

[
|k|2(Z2 + Z3) + Re

(
k2Z1

) ]
, (A.5)

which gives

κV,SL = 1− 1
2
(
b6 − b24

)
m4
h ' 1− 1

2
|k|2λ2

eff v
4

Ŷ 2
22

' 1− 1
2
|λ6|2v4

m4
2

, (A.6)

κf,SL = 1 + b4
k
m2
h ' 1 + k∗

Ŷ22
λeff v

2 ' 1− λ6v
2

m2
2
, (A.7)

κλ,SL = 1− 2b4m2
h − c4vm

2
h ' 1− 2 |k|

2λeff v
2

Ŷ22
= 1− 2 |k|

2λ2
eff v

4

Ŷ22m2
h

' 1− 2 |λ6|2v4

m2
2m

2
h

, (A.8)

all of which agree with the corresponding Higgs basis EFT expressions in ref. [6].

B Equivalence of decoupling-limit SL and Higgs basis EFTs

The SL basis and Higgs basis EFTs are generally two different EFTs, equipped with their
own power counting, and regimes of validity. However, in the decoupling limit, we can
expand in inverse powers of large Y2̇2̇ ≡ m2

2 to reproduce the same effects.
At the Lagrangian level this manifests as a field redefinition equivalence between the

two EFTs. Whereas the two bases are related by a simple non-derivative field redefinition in
the UV, in the EFT this requires a more complicated field redefinition with derivatives [30].
Here, we show the equivalence explicitly within the scalar parts of the two EFTs, working
in the custodial limit and up to dimension 8 order, i.e., O(1/m4

2).
Expanding the SL Basis EFT eq. (3.21) in the custodial limit, we find

L =−H†D2H −m2
1|H|

2 − 1
2λ1|H|4 +

(
k2

m2
2

+ k4m2
1

m4
2

) ∣∣∣D2H
∣∣∣2 − k2Z2

m4
2
|H|2

∣∣∣D2H
∣∣∣2

− k2Z1
2m4

2

(
H†D2H + h.c.

)2
− k2(1 + k2)

m4
2

(
D2H†

) (
D4H

)
. (B.1)
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We have used eq. (A.2) to convert the Wilson coefficients to Higgs basis parameters. Under
the substitution

H → H +
{
−k

2λ1
2m2

2
+ k2m2

1
4m4

2

[
4Z1 + 2Z2 − (4− k2)λ1

]}
|H|2H

+ k2λ1
8m4

2

[
8Z1 + 4Z2 − (4− 9k2)λ1

]
|H|4H

+
[
k2

2m2
2

+ k2(1 + k2)m2
1

2m4
2

]
(D2H)− k2

4m4
2

[
2Z2 − (2− k2)λ1

]
|H|2(D2H)

+ k2(4Z1 + k2λ1)
4m4

2
|DµH|2H −

k2

4m4
2

[
2Z1 − (2− k2)λ1

] (
D2|H|2

)
H

+ k2λ1(4− k2)
4m4

2

(
Dµ|H|2

)
(DµH)− k2(4 + k2)

8m4
2

(D4H) , (B.2)

and with the use of the identity

2|DµH|2 = D2|H|2 −
(
H†D2H + h.c.

)
, (B.3)

and the integration-by-parts relations

−2 |H|2
(
Dµ|H|2

) (
Dµ|H|2

)
= |H|4

(
D2|H|2

)
, (B.4a)

2 |H|2H†D2
(
|H|2H

)
= |H|4

(
H†D2H + h.c.

)
+ |H|4

(
D2|H|2

)
, (B.4b)(

Dµ|H|2
) [

(DµH)†
(
D2H

)
+ h.c.

]
= −2|H|2

∣∣∣D2H
∣∣∣2

− |H|2
[
(DµH)†

(
DµD2H

)
+ h.c.

]
, (B.4c)(

D2|H|2
) (
H†D2H + h.c.

)
= 2|H|2

∣∣∣D2H
∣∣∣2

+ 2|H|2
[
(DµH)†

(
DµD2H

)
+ h.c.

]
+ |H|2

(
H†D4H + h.c.

)
, (B.4d)

together with the subsequent rescaling

H → H

[
1− k2m2

1
2m2

2
− k2m4

1(4 + k2)
8m4

2

]
, (B.5)

the expanded SL Basis EFT in eq. (B.1) can be reduced to

L = −H†D2H − k2λ2
1

2m4
2
|H|4

(
D2|H|2

)
−
(
m2

1 − k2m
4
1

m2
2
− k2m

6
1

m4
2

)
|H|2

− 1
2

[
λ1 − 4k2λ1

m2
1

m2
2

+ 2k2m
4
1

m4
2

(2λ4 + λ3 − 3λ1)
]
|H|4

+
[
k2 λ

2
1

m2
2
− k2λ1

m2
1

m4
2

(4λ4 + 2λ3 − 3λ1)
]
|H|6 − k2 λ

2
1

m4
2

(2λ4 + λ3 − λ1) |H|8 . (B.6)
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We have used eq. (A.2) again to write Z1 = Z3 = λ4 − k2λ1 and Z2 = λ3 − k2λ1 in the
custodial limit.

We can compare eq. (B.6) to known results in the Higgs basis EFT. Assuming custodial
symmetry, the scalar sector of the general results in [6] reduce to

L =
(

1 + m4
12

m4
2

)
|DµH|2 + 2m2

12λ6
m4

2

[1
2
(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|2|DµH|2

]

+ λ2
6

m4
2

[
2 |H|2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|4|DµH|2

]
−
(
m2

1 −
m4

12
m2

2

)
|H|2 − 1

2

[
λ1 −

4m2
12λ6
m2

2
+ 2(λ3 + 2λ4)m4

12
m4

2

]
|H|4

+
[
λ2

6
m2

2
− 2(λ3 + 2λ4)m2

12λ6
m4

2

]
|H|6 − (λ3 + 2λ4)λ2

6
m4

2
|H|8 . (B.7)

This can be canonically normalized to O
(
1/m4

2
)
to give

L = |DµH|2 + 2m2
12λ6
m4

2

[1
2
(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|2|DµH|2

]
+ λ2

6
m4

2

[
2 |H|2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|4|DµH|2

]
−
(
m2

1 −
m4

12
m2

2
− m4

12m
2
1

m4
2

)
|H|2 − 1

2

[
λ1 −

4m2
12λ6
m2

2
+ 2(λ3 + 2λ4 − λ1)m4

12
m4

2

]
|H|4

+
[
λ2

6
m2

2
− 2(λ3 + 2λ4)m2

12λ6
m4

2

]
|H|6 − (λ3 + 2λ4)λ2

6
m4

2
|H|8 . (B.8)

Using IBPs and the field redefinition

H → H − m2
12λ6
m4

2
|H|2H − λ2

6
2m4

2
|H|4H , (B.9)

we obtain

L = |DµH|2 −
λ2

6
2m4

2
|H|4

(
D2|H|2

)
−
(
m2

1 −
m4

12
m2

2
− m4

12m
2
1

m4
2

)
|H|2

− 1
2

[
λ1 −

4m2
12λ6
m2

2
+ 2(λ3 + 2λ4 − 3λ1)m4

12
m4

2

]
|H|4

+
[
λ2

6
m2

2
− (2λ3 + 4λ4 − 3λ1)m2

12λ6
m4

2

]
|H|6 − (λ3 + 2λ4 − λ1)λ2

6
m4

2
|H|8 , (B.10)

where we have used m2
1λ6 = m2

12λ1 (a consequence of the vev condition in the Higgs basis).
As both kλ1 = −λ6 and km2

1 = −m2
12 (in the custodial limit), we see eq. (B.10) and

eq. (B.6) are equivalent.
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