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Abstract

The Ross-Macdonald model has exerted enormous influence over the study of malaria

transmission dynamics and control, but it lacked features to describe parasite dispersal,

travel, and other important aspects of heterogeneous transmission. Here, we present a

patch-based differential equation modeling framework that extends the Ross-Macdonald

model with sufficient skill and complexity to support planning, monitoring and evaluation for

Plasmodium falciparum malaria control. We designed a generic interface for building struc-

tured, spatial models of malaria transmission based on a new algorithm for mosquito blood

feeding. We developed new algorithms to simulate adult mosquito demography, dispersal,

and egg laying in response to resource availability. The core dynamical components

describing mosquito ecology and malaria transmission were decomposed, redesigned and

reassembled into a modular framework. Structural elements in the framework—human pop-

ulation strata, patches, and aquatic habitats—interact through a flexible design that facili-

tates construction of ensembles of models with scalable complexity to support robust

analytics for malaria policy and adaptive malaria control. We propose updated definitions for

the human biting rate and entomological inoculation rates. We present new formulas to

describe parasite dispersal and spatial dynamics under steady state conditions, including

the human biting rates, parasite dispersal, the “vectorial capacity matrix,” a human
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transmitting capacity distribution matrix, and threshold conditions. An R package that imple-

ments the framework, solves the differential equations, and computes spatial metrics for

models developed in this framework has been developed. Development of the model and

metrics have focused on malaria, but since the framework is modular, the same ideas and

software can be applied to other mosquito-borne pathogen systems.

Author summary

A simple mathematical model of malaria has been the basis for the quantitative study of

parasite transmission, but it lacked features to describe spatial dynamics and parasite dis-

persal. We present a new, modular framework for building highly realistic models of

malaria drawing on a century of research and innovation. Using this framework, we

develop metrics for parasite dispersal, local reproductive numbers, and malaria connectiv-

ity, we re-examine human biting rates and entomological inoculation rates. The frame-

work was built around new, biologically realistic algorithms describing mosquito blood

feeding and egg laying in response to resource availability. These algorithms serve as a rig-

orous yet structurally flexible interface for parasite transmission among human and mos-

quito host populations; and for the coupled dynamics of volant adult and aquatic

immature mosquito populations. The framework supports structured aquatic habitats;

patch models for adult mosquitoes; stratified human host populations; and flexible bound-

ary conditions for malaria importation. Using this framework, we can design suites of

models with varying levels of realism to study malaria in a place, and we can implement

robust simulation-based analytics to support national disease control programmatic activ-

ities such as monitoring and evaluation or strategic planning.

Introduction

Plasmodium falciparum transmission dynamics are complex: they involve multiple-agents,

non-linear dynamics, localized spatial interactions, spatial, temporal and behavioral heteroge-

neity, stochasticity, and exogenous forcing by weather, hydrology, and malaria control. Over

time, these processes can be modified by economic development; by changing socioeconomic

status, human incentives and social norms; and by the evolution of resistance. Every one of

these features of malaria transmission dynamics and control presents its own set of challenges

to the quantitative study of malaria for scientific research and for analytics to support policy.

An important practical problem is how to quantify and synthesize all of the factors affecting

transmission at some particular place and time to support malaria control programs in various

ways, including monitoring and evaluation of malaria control. The study of complex spatial

processes are best addressed using some sort of mathematical model. Here, to fill a need to

give robust policy advice, we have developed a modular framework with accompanying soft-

ware to build and analyze suites of models with scalable complexity for malaria spatial trans-

mission dynamics and control.

A starting point for the quantitative study of malaria transmission dynamics has been the

Ross-Macdonald model, which played a central role in developing basic theory and metrics for

malaria [1, 2]. That model is simple, general, and conceptually useful, but it is not realistic

enough to describe many important features of transmission [3]. The model’s lack of realism

has also limited its applicability: simple models support generic policy advice, but specific
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advice—tailored to context—must be based on models that can quantify and weigh the effects

of locally relevant details [4]. A basic limitation of the Ross-Macdonald model was that it

lacked features required to describe spatial transmission dynamics and control. Mathematical

models for spatial dynamics of mosquito-borne pathogens have been developed [5–18], but

there is a need for a generalized synthetic framework to develop and use spatial dynamic mod-

els, to extend the Ross-Macdonald model to define and analyze parasite dispersal, to define

and measure malaria connectivity [19], and to link spatial dynamics to spatial data. The Ross-

Macdonald model is also missing other features that are relevant for malaria dynamics and

control, which can be identified from a survey of studies that have modeled mosquito-borne

diseases (see Box 1) [2]. Modeling and analyzing real systems can become overwhelming

because of computational, parametric, or conceptual challenges that arise from combining all

the factors, dimensions, interactions, features, and processes. Individual-based models (IBMs)

have been developed around algorithms that make it possible to deal with the complexity by

simulating individual states and transitions in silico [20], but these high-dimensional computa-

tional approaches have some limitations that limit their use and applicability. IBMs require

intensive computation, are challenging to parameterize, are difficult to critically evaluate, and

their output that is often as difficult to analyze and understand as malaria itself. Using a modu-

lar framework, we present an alternative way of dealing with the complexity that is analytically

tractable, including some new algorithms to understand mosquito ecology, parasite transmis-

sion by mosquitoes, and parasite dispersal on spatial landscapes.

In most places, malaria transmission has been modified by control. The extent of effect

modification by malaria control is occasionally revealed when health systems are disrupted

(e.g., [21, 22]), when malaria control is relaxed or abandoned [23], or when resistance evolves

to drugs or insecticides (e.g., [24, 25]). Programs must weigh evidence and make decisions

through analysis of counterfactuals, rather than through direct estimation of control effect

sizes, since there would be drastic consequences to experimentally disrupting control. A pre-

dominant need in most contexts is thus a set of methods to quantify transmission in its local

context as a baseline that has been modified by control. A challenge to achieving this has been

that the responses to control efforts are context dependent and have been highly variable

across settings. Relevant factors affecting responses to control include details about blood feed-

ing, mosquito ecology, and mosquito behaviors that affect contact with interventions (e.g.,
resting indoors and IRS). To reconstruct the counterfactual baseline, transmission must be

understood in terms of innate mosquito behaviors responding to local resources, vector con-

trol, and other contextual factors that have been modified by control. All these have been char-

acterized as being notoriously context dependent and heterogeneous [26–28]. What are the

local factors that determine baseline malaria transmission, effect modification, and differences

in effect modification at some particular place and time? Basic concerns about the heteroge-

neous impacts of vector control raise a larger set of questions about how to study and quantify

transmission in a way that is relevant for planning malaria control.

This new framework is thus an attempt to bridge two well-established but somewhat con-

tradictory views of malaria. One view is that human malaria transmission dynamics and con-

trol are so moulded by local ecology and other conditions that the factors driving transmission

or responses to control at one time and place are unlikely to hold elsewhere [27]. Another view

—encouraged by the rigorous analysis of the Ross-Macdonald model and extensions of it—is

that malaria transmission intensity can be quantified using a small set of bionomic parameters

to compute basic reproductive numbers, which also provide a basis for computing threshold

conditions for endemic malaria. To build a bridge, the contextual factors affecting basic bio-

nomic parameters must be identified and integrated with new theory describing spatial
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extensions of the basic metrics, including rigorous, quantitative description of parasite dis-

persal, and some estimates of the appropriate spatial scales to measure malaria transmission

[3].

Context-dependency is an uncomfortable but unavoidable fact of malaria ecology. The het-

erogeneous nature of transmission and the causes and consequences of variable responses to

control have been a difficult and sometimes contentious problem for scientists studying

malaria, for national malaria programs and funding agencies making malaria policy, and for

Box 1: Features This generalized, modular framework presents equations integrating

multiple agents and interacting processes. Many of these innovations appeared first else-

where, but here they are integrated into a single framework:

• Immature mosquito population dynamics structured in distinct aquatic habitats linked

to adult populations through egg laying and emergence [31, 32];

• Spatially heterogeneous blood feeding and parasite mixing on vertebrate populations

(i.e., blood hosts) with dynamically changing availability, such that feeding rates and

the human fraction change adjust to changing conditions [33–36];

• Heterogeneous adult mosquito behaviors, including dispersal, survival, blood feeding,

egg laying, mating, and sugar feeding on landscapes in response to spatially heteroge-

neous resource availability (e.g., mating sites, sugar sources, blood hosts, aquatic habi-

tats) [37–39];

• Multiple vector species or types with different host preferences, daily activity patterns,

habitats, etc. [40], and potentially with inter-specific resource-based competition in

habitats;

• Human mobility based on a concept of time at risk, which combines time spent by

humans in places where they are at risk with mosquito blood feeding activity, prefer-

ences and other factors [9, 18];

• The capability to model indoor and outdoor spaces for blood feeding, exposure, and

vector control;

• A non-linear relationship between the daily entomological inoculation rate (EIR) and

the daily force of infection (FoI) due to heterogeneous exposure [41].

• Malaria importation through multiple routes [42];

• An exogenously forced, time-varying extrinsic incubation period (EIP) to model

effects of temperature on parasite development;

The model has flexible structural elements to stratify an area into patches, to model any

distribution of aquatic habitats, and to stratify a human population into sub-populations

by age, immunity, or any heterogeneous, epidemiologically relevant trait. The software

also includes time-dependent terms and structures to model exogenous forcing by

weather, modification of exposure or transmission by vector control in relation to cover-

age, including effects of spatial repellents and mosquito behaviors that result in heteroge-

neous local contact patterns with vector-based interventions.
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malaria advocates. Historical trends in malaria and the outcomes of malaria control have been

so variable that case studies can be found to support rosy projections, alarmist warnings, or

contradictory claims about the underlying causes of trends or patterns. To be useful, studies of

malaria and programmatic evaluations must acknowledge the important role of context, the

multi-factorial nature of causation in these complex systems, non-linear responses to control,

the difficulty of measuring heterogeneous systems, and the resulting uncertainty. A conse-

quence of context dependency is the difficulty in drawing conclusions that generalize across

systems.

The framework is designed to support development of robust malaria policy advice and to

find practical ways of dealing with uncertainty. While scientific research and policy analytics

grapple with the same issues and use similar methods, they often put very different weights on

uncertainty. Uncertainty affects the ability to do effective inference for scientific research ver-
sus policy analytics—questions about what is known versus what should be done. To address

these concerns and give policy advice despite uncertainty, an integrated inferential framework

is needed to weigh evidence, integrate the effects of multiple exogenous factors (often involv-

ing experts from distinct specialties), estimate their effect sizes, quantify uncertainty, and iden-

tify critical gaps. Statistical theory and inferential methods have been developed around the

principle of parsimony for scientific inference, but substantially less attention has been given

to appropriate designs for analyses that can give advice that is robust to uncertainty. Are the

conclusions of an analysis robust to reasonable alternative formulations of a model, and how

well are policy recommendations really supported by the evidence? Concerns about robustness

could lead to study designs that make different tradeoffs between realism and abstraction. For

example, compared with parsimonious models, models with a high degree of realism might be

more useful for identifying critical missing data and prioritizing studies to collect it. Robust

analytics requires having a modeling framework to build suites of models that are realistic

enough to weigh the importance of the major drivers of transmission despite major knowledge

gaps.

To address these needs, we have developed a new, modular framework designed to support

development of models for robust, simulation-based analytics and adaptive malaria control

with scalable complexity. With scalable complexity in model building, members of a model

ensemble could range from very simple to very complex, and that models along that spectrum

are related to one another through a logical sequence of structural or parametric changes. At

one extreme, this framework includes the Ross-Macdonald model, a simple system of differen-

tial equations describing the parasite life-cycle in mosquito and vertebrate host populations

linked by transmission during blood feeding [1, 29, 30]. By extending the Ross-Macdonald

model, simple models can be extended step by step to add complexity or heterogeneity that

could be important—based on a priori considerations—yet difficult to quantify or poorly

informed by existing data (Box 1). With modularity, it is possible to develop new dynamical

systems models describing some parts of the system, add or modify components, or add a set

of exogenous factors that force a system. It is also relatively straightforward to modify func-

tional responses, or to modify some basic parameters affecting the outcome. Swarms of models

can thus be developed to analyze data and to test the robustness of any conclusions. To dem-

onstrate scalable complexity, we here present a complicated family of models that has terms

and variables anticipating modification by weather or malaria control. For practical reasons,

the model family we present here was scaled back to include a limited set of elements describ-

ing transmission, but leaving in place the elements that facilitate modeling control (Box 1).

The resulting extensible framework that is capable of describing and analyzing malaria spatial

transmission dynamics and control with a high degree of realism in any particular setting. An

R package which implements the modular differential equations and spatial metrics presented
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in the article is available with documentation (https://dd-harp.github.io/exDE/). Despite being

programmed in R, the implementation of the mathematical framework into code should be

easily adapted to any high-level programming language.

In Framework, we first present the modular concepts and structural elements, including a

new blood feeding model. Next we present one exemplar model family for each dynamical

component. In Spatial Metrics, we develop a set of metrics that describe various aspects of

parasite spatial dynamics, including metrics for parasite dispersal, connectivity, and the para-

site’s reproductive success. Finally, in Quantifying Transmission in a Place, we discuss the

application of these models to the investigation of malaria transmission dynamics and control

in a particular place.

Framework

To describe malaria spatial dynamics with scalable complexity, we designed a modular frame-

work for model building around four core dynamical components, each one a (potentially

non-linear) state-space model. An interface rigidly defines interactions among those compo-

nents, based on passing terms we call dynamical quantities. All state variables are vectors of

arbitrary length, to accommodate models with different structure or spatial granularity.

To model mosquito ecology, we consider immature mosquitoes in a set of aquatic habitats,

and adult mosquitoes in a set of patches. A state space model describes aquatic immature mos-

quito populations (L) with dynamics dL=dt requiring an input term from adult mosquito

populations: the daily rate eggs are laid in each habitat (η). A coupled state space model

describes mature adult female mosquito populations (M) with dynamics dM=dt requiring an

input term from the aquatic mosquito populations: the rate adults emerge from all the habitats

in each patch (Λ). A state space model for parasite infection dynamics in mosquitoes (Y,

which extends M) with dynamics dY=dt, requires an input term from human malaria epide-

miology: the net infectiousness of humans (NI), the probability a mosquito becomes infected

after blood feeding on a human (denoted κ). A state space model describing parasite infection

dynamics in humans, immunity, and disease (X) with dynamics dX=dt, requires an input

term from adult mosquito infection dynamics: the daily EIR (E). The inputs to one component

can be passed as trace functions or as the outputs of another coupled component, which is

called the interface of each dynamical component; a generic interface is coded for each term

and if needed specialized methods can be written for particular models. Models in the frame-

work have the following form:

dL=dt ¼ FLðZ;LÞ

dM=dt ¼ FMðL;MÞ

dY=dt ¼ FYðk;M;YÞ

dX=dt ¼ FXðE;XÞ

: ð1Þ

The interactions among these dynamical components are thus defined by four input terms (η,

Λ, κ, and E), which may be computed as outputs of another component or provided as an

external forcing term (Fig 1). Because these terms can be computed from the state of the

model and are used to couple different model components together, we call these dynamical

quantities. These terms are rates which determine how components interact (e.g., flows

between components). Because construction of these dynamical quantities can be done in a

generic way, computation of these quantities in code can be done for any model which fulfills

the interface of its dynamical component.
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The dynamical quantities responsible for transfer of pathogens between hosts and vectors

are E and κ, the EIR and NI of humans, respectively. These quantities couple the dynamics

between the human X and mosquito Y dynamical components. To allow computation of E
and κ to be highly generic across various types of models of human and mosquito infection,

we developed a new model of blood feeding which produces β, the biting distribution matrix

describing how bites arising from mosquitoes at patches are taken on human population

strata.

Similarly, the adult M and aquatic L mosquito components are coupled via egg laying

from adults in aquatic habitats, and emergence of new adults from those aquatic habitats.

Because the patches where adult mosquitoes are found may contain many (or no) aquatic hab-

itats, another matrix translates the rate of egg production from adults into egg deposition in

each aquatic habitat η. Likewise, each aquatic habitat produces newly emerging adult mosqui-

toes at some rate α, which in general depends on the current aquatic population, and therefore

on lagged adult densities. Another matrix maps this into the rate at which new adults are

added to each mosquito population, Λ.

In addition to reformulating blood feeding and egg laying, the framework includes mathe-

matical descriptions of survival, search for blood hosts or habitats, and dispersal. These new

Fig 1. Models for malaria transmission dynamics are naturally modular (see Eq 1). The dynamic modules describe a stratified human population

(purple) that interacts through blood feeding (red) with adult mosquito populations in a discrete spatial domain; each patch could contain a set of

aquatic habitats. Two components, L and M, describe mosquito ecology: dynamics of immature mosquitoes (blue) in aquatic habitats are described by

a system of equations dL=dt; and dynamics of adult mosquitoes (green) are described by dM=dt. Habitat locations within patches are described by a

membership matrix, N . Eggs hatch into larval mosquitoes, that develop, pupate, and later emerge from habitats as mature adults (α) and added to the

adult populations in each patch (Λ). Adults lay eggs (ν), which are distributed spatially according to which patch habitats belong (N ). Egg deposition

rates at the habitats are (η). Two additional components, Y and X , describe parasite infection dynamics and transmission: that for mosquitoes,

described by dY=dt and in humans, described by dX=dt, are linked through parasite transmission. A new model for blood feeding describes how blood

meals are allocated among humans (β) and associated parasite transmission rates: the density of infectious humans by strata (X) is used to compute net

infectiousness (NI) of humans to mosquitoes in patches (κ); and the density of infectious blood feeding mosquitoes (Z) is used to compute the

entomological inoculation rate (EIR) on each strata (E).

https://doi.org/10.1371/journal.pcbi.1010684.g001
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models of adult mosquito behaviors have all been reformulated around the concept of hetero-

geneous resource availability and functional responses to available resources.

The modular framework was implemented as a software package, which can be accessed at

https://dd-harp.github.io/exDE/, for R [43]. The software builds dynamical models of malaria

in a modular way using method dispatch to define generic code which implements the frame-

work described here. The dynamical models are functions which return arrays of derivatives of

state variables, and can be solved using the integrators available in deSolve, or other tools in R

[43, 44]. The software also includes routines that compute steady state conditions and spatial

metrics (see Spatial Metrics, below). Because each component has an interface—the generic

functions that compute and pass of dynamical quantities between components—any new

model can be implemented which fulfills a specific interface, independent of the rest of the

framework. In this way, building and testing new models of particular components is straight-

forward, and the framework is flexible and extensible. As new models are required, they will

be added to the package, increasing its applicability and scope over time.

We have developed a glossary of terms (see S1 Text). In the equations that follow, for each

dynamical component, we describe the model structure in detail, and we present one family of

models describing transmission dynamics in a single vector species. In a supplement (S2 Text),

we formulate a model using both conventional notation and the modular notation of this

framework (Box 2). In a vignette to accompany the software (https://dd-harp.github.io/exDE/

), we have implemented a previously published model of malaria transmission on Bioko Island

[45]. In another supplement (S3 Text), we extend the discussion of vector dynamics, including

a discussion of models with multiple vector species. All the terms and parameters may be time

dependent to accommodate seasonality or modification by exogenous factors: seasonal travel,

exogenous forcing by weather, and parameter modification by vector control. Analysis of tem-

poral heterogeneity in this same framework is outside the scope of this study, it but would be

straightforward extension following approaches analogous to those shown in the supplements.

Model structure

The following describes, in detail, the structural elements and the algorithms that connect

them. Adult mosquito and human population strata are connected through blood feeding and

Box 2: Notation Equations describing spatial processes include terms describing scalar

quantities, vectors of scalars, vectors of functions, and matrices. We have avoided using

any notation to designate a vector or indicate it could be time-dependent, in part,

because it would be ubiquitous; most parameters could vary by space and time. The

most general form of a term or parameter is usually described when it is first presented,

but most terms describing a vector or matrix should be assumed to be modifiable. In

writing out the equations, we consistently use the center dot, “�”, in equations to denote

the dot product of two matrices, or a matrix and a vector. The juxtaposition of two vec-

tors denotes element-wise product, and 1/* denotes the vector of the inverses of each ele-

ment. The symbol� denotes the Hadamard product (i.e., element-wise multiplication)

of two matrices. When x is a vector, diag(x) is a matrix with the elements of x on the

main diagonal. The identity matrix is denoted I, and 1 denotes a row or column vector

with each element equal to 1. When F is a functional response, we assume it accepts vec-

tor arguments and returns a vector of the same length, i.e., |F(X)| = |X|. The glossary (S1

Text) discusses the dimensions of each term.
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transmission, and adult and aquatic mosquito populations are connected through egg laying

and emergence.

Structural elements. The framework has been designed to build model ensembles with

the goal of studying the spatial transmission dynamics of malaria in a defined geographical

area, called the spatial domain. An important part of this framework is having flexibility in

defining the model structure to describe spatial and population heterogeneity at the appropri-

ate level of detail, depending on the needs of a study and the available data. The structural ele-

ments—the patches, the aquatic habitats, and the population strata—were designed to handle

arbitrary patch definitions, arbitrary human population residency patterns and stratification,

and arbitrary numbers and locations of aquatic habitats.

To deal with spatial heterogeneity in transmission, we subdivide the spatial domain and

identify a set of p patches that includes all locations relevant for studying and quantifying mos-

quito ecology or transmission: places where people live; places where mosquitoes blood feed;

or places with aquatic habitats where mosquitoes lay eggs. We assume that there are l aquatic

habitats with actual physical locations that are nested within the patches. To deal with hetero-

geneity in the human population, the model accommodates stratification. The human popula-

tion is sub-divided into a set of n population strata by residency, immunity, behaviors

affecting risk, or any other epidemiologically relevant factors (S4 Text). Human populations

are assigned a single residency patch, where they live and spend most of their nights. Other

subdivisions of the human population could take into account age, sex, travel patterns, ITN

usage, or any trait that is heterogeneous and epidemiologically relevant. The total census popu-

lation size, the number of people who reside in each patch in the spatial domain, is given by a

vector denoted P (of length p). The number of people in each stratum is given by a vector H
(of length n). In this model, it is not necessary for every patch to have some residents.

To manage terms for interactions among structural elements, we create two mathematical

objects called membership matrices that aggregate quantities to patches (S2 Text). Since the l
aquatic habitats are scattered among the patches, we define the habitat membership matrix N ,

a p × l matrix, that aggregates quantities from the l aquatic habitats to p patches where they are

found. Similarly, we define the strata membership matrix J , a p × n matrix, that aggregates

the n human population strata to the p patches where they reside. The census population size,

for example, is P ¼ J � H. If a human population were stratified by other traits, such as fre-

quent travel or age, a membership matrix could be created to aggregate model output by trait.

The framework has also been designed to accommodate models with multiple mosquito vec-

tor species or types (see S3 Text). Most of the following discussion assumes there is just one vec-

tor species, but we point out where the framework has can generalize to multiple vector species.

Human mobility. After defining the model structure (i.e., the patches and population

strata), the next challenge is to construct the algorithms describing local human mobility and

travel. Local mobility determines where and when humans are available and exposed to blood

feeding mosquitoes within the spatial domain. We define travel in this model by time spent

outside the spatial domain; travel and mobility are thus different modalities and handled with

different constructs.

To model local human mobility patterns within the patches, we develop a model describing

the fraction of time spent by humans in each stratum among the patches [9, 18]. The informa-

tion is summarized in a time-dependent p × n matrix Θ(t), called the Time Spent (TiSp) matrix

(S4 Text). Each column in a TiSp matrix describes the fraction of time spent in each patch by

an individual from a single stratum. In formulating the TiSp matrix, we account for time spent

by time of day in the patches where mosquitoes are blood feeding. Total time spent should sub-

tract time spent traveling and and time spent in the spatial domain in places where there is no

risk (e.g., in office buildings).
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Blood feeding combines human and mosquito behaviors. Since mosquito blood feeding has

a daily rhythm [46], time at risk modifies time spent to account for differences in mosquito

daily blood feeding activity rates. We let ξ(t) denote a species-specific circadian weighting func-
tion for blood feeding rates, constrained such that

R 1

0
xðtÞdt ¼ 1, which appropriately assigns a

weight to time spent by time of day (S4 Text). Using ξ, we compute the Time At Risk (TaR)

matrix as time spent weighted by mosquito activity: C(t) = diag(ξ(t)) � Θ(t).
This distinction between TiSp and TaR matrices makes it possible to study human mos-

quito contact in detail, to quantify differential transmission by multiple vectors with the same

human mobility patterns, and to quantify other aspects of mosquito-human contact [47, 48].

A model could have two or more vector species, each with different blood feeding patterns (ξ1

and ξ2), so that one TiSp matrix would be transformed into two different TaR matrices (C1 =

ξ1Θ and C2 = ξ2Θ).

Denominators and availability. After defining host population movement, it is necessary

to compute appropriate denominators to model blood feeding, based on the models for time

spent and time at risk. Because of mobility, mosquito preferences, and human behaviors, the

denominators for blood feeding are different from the resident population size—the number

that would be used by most studies (Fig 2).

An important intermediate quantity is ambient population density, which describes the

population present in patches at a point in time. In a mobile population, the ambient popula-

tion density will tend to be different from resident population density. From the time spent

matrix, the ambient population density is a vector of length p given by:

AðtÞ ¼ YðtÞ � H: ð2Þ

Similarly, ambient population density at risk is given by: C(t) � H. One way to understand

what the TiSp matrix means is by taking ratios of ambient to resident populations. The ambi-

ent density of residents is Ar ¼ ðJ �YÞ � H, where� denotes the Hadamard (element-wise)

Fig 2. Denominators and mixing. A schematic diagram relating various concepts of population density under a model of human mobility, resulting in

a biting distribution matrix, β. Here, and and in Figs 3–6, rounded rectangles denote endogenous state variables, sharp rectangles denote endogenous

dynamical quantities, and parallelograms represent exogenous data or factors. Purple indicates the element is related to human populations, green for

mosquitoes, and red for biting and transmission. Population strata (H) describe how persons are allocated across demographic characteristics. The

matrix J distributes these strata across space (patch), according to place of residency. By combining information on how people spend their time across

space (Θ(t)) and mosquito activity (ξ(t)) a time at risk (TaR) matrixC is generated describing how person-time at risk is distributed across space.

Because blood feeding can be modified by human and mosquito factors (e.g., net use and biting preferences), search weights (wf(t)) may further weight

person-time at risk. The final result is a biting distribution matrix β, which is the fraction of each bite in each patch that would arise on an individual in

each stratum, so diag(H) � β = 1.

https://doi.org/10.1371/journal.pcbi.1010684.g002
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product. The non-resident, non-visitor, ambient population is A − Ar. The ratios of various

census and ambient population densities (e.g., the ratio of residents to ambient population P/

A, defined wherever A> 0), can be used to understand and diagnose unrealistic terms in a

TiSp or TaR matrix. The ambient population thus provides one easy statistic to understand

TiSp or TaR matrices.

To model the denominators for blood feeding, we also consider other factors—mosquito

preferences or human behaviors or traits such as ITN usage—that affect host availability to

mosquitoes and relative biting rates on the strata [33]. We assign biting weights, wf, to each

strata, where we think of wf = 1 as the value that would be assigned to an average person under

baseline conditions (e.g., without a net). These weights affect both the total biting rates and the

relative biting rates on the ambient population. We define the availability of the host popula-

tions to mosquitoes for blood feeding as:

W ¼ C � wfH: ð3Þ

Availability is thus defined in units of weighted person-days at risk, and W is a vector of length

p describing total human availability in each patch.

We also consider the presence of a population of visitors, a non-resident population spend-

ing time in the spatial domain (S4 Text). We assume that some visitors could be present, and

that some of them could be infectious. We can let Aδ denote the ambient density of visitors,

but we let Wδ denote their availability by patch. The resident fraction or fraction of human

blood meals taken on a resident in each patch, a vector of length p denoted υ, is:

u ¼
W

W þWd

: ð4Þ

The total availability of humans for blood feeding, in each patch, is thus W + Wδ.

Blood feeding. With a well-defined population denominator, we can compute the fre-

quency of blood feeding rates and the human fraction (i.e., the fraction of human blood meals

among all blood meals) in each patch in response to the availability of humans and other avail-

able vertebrate hosts (Fig 3). To do so, we use functional responses to model blood feeding

rates and habits [33–36].

Human availability, W, is often highly variable among patches and over time, which could

affect the rate mosquitoes blood feed. Mosquitoes could also feed on other vertebrate hosts. To

model blood feeding, we supply a vector of functions describing the availability of non-human

vertebrate hosts in each patch over time, denoted O(t). We assume that mosquito preferences

could scale with host densities, so we assign a shape parameter, z, that modifies how prefer-

ences scale with host densities. Total availability of all vertebrate hosts for blood feeding is B =

W + Wδ + Oz (S4 Text).

Let f(t) denote the blood feeding rate, the number of blood meals, per mosquito, per day.

To guarantee mathematical consistency in computing blood feeding rates (e.g., if B = 0, then it

should be true that f = 0), we can model time-dependent blood feeding rates, where f(t) is a

vector of length p, as:

f ðtÞ ¼ Ff ðBÞ ¼ fx
sf B

1þ sf B
: ð5Þ

Depending on a shape parameter(s), sf, blood feeding rates increase with host availability up to

a maximum (or maxima) fx, which is limited by the time it takes to search, process the blood

meal, lay eggs, and perhaps to sugar feed. The fraction of blood meals taken on humans at a

point in time, a vector of length p denoted q(t), is called the human blood feeding fraction or
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human fraction:

qðtÞ ¼
W þWd

B
: ð6Þ

The local human fraction, the fraction feeding on resident humans, is thus υq = W/B. The

functional forms guarantee that when no humans are present, it must be true that fq = 0; and

when only humans are available, it must be true that q = 1.

Mixing and parasite transmission. The model for mixing is an answer to the question:

How are blood meals in a patch allocated among humans in the strata? The time at risk matrix

and the factors affecting blood feeding rates and habits in each patch must be consistent with

the algorithm that computes the distribution of biting and parasite mixing.

To allocate mosquito bites in patches among the resident strata, we let β denote a n × p bit-

ing distribution matrix:

bðtÞ ¼ diagðwf Þ �C
T
� diag

1

WðtÞ

� �

: ð7Þ

Each column of β describes the fraction of a bite in a patch that lands on an individual in each

strata, so the matrix diag(H) � β gives the fraction of bites that land on each stratum, and its col-

umns sum to unity.

In the models for mosquito ecology and infection dynamics, we define variables (vectors of

length p) for the density of mosquitoes (M) and infectious mosquitoes (Z). From these, we

derive an expression for the daily human biting rate (HBR) and entomological inoculation rate

(EIR) for all the strata. The sporozoite rate (SR) in each patch is given by:

z ¼
Z
M
: ð8Þ

The net per-capita human blood feeding rates in each patch, or fqM/W, are hereafter called the

patch HBR (pHBR), and fqZ/W is hereafter called the patch EIR (pEIR) for infectious mosqui-

toes. By way of contrast, exposure risk for the strata—the HBR and EIR—are defined as the

Fig 3. Blood feeding and human biting rates. The daily human biting rates (HBR) for the resident population strata are defined as the expected

number of bites by vectors, per person, per day. To compute the HBR, we count up exposure over all the patches where residents spend time. We also

consider the presence of visitors and other blood hosts (yellow input), which increases the total available hosts.

https://doi.org/10.1371/journal.pcbi.1010684.g003
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number of bites / infectious bites by vectors, per person, per day. The HBR is β � fqυM, and the

EIR is the product of the HBR and the SR, or

E ¼ b � fquZ: ð9Þ

To draw a sharp contrast between the terms, the pHBR and pEIR describe the number of

bites / infectious bites, per person, in patches. They are stratified by location, so they are vec-

tors of length p. The HBR and the EIR are stratified quantities that sum exposure over all

locations for the strata, so they are vectors of length n.

Each model for parasite infection dynamics in humans defines a quantity, x, the probability

a mosquito becomes infected after biting a human in each stratum. The quantity X = xH, a vec-

tor of length n, is herein called the infective density of infectious human residents. We can also

specify the probability a mosquito becomes infected after biting a visitor, xδ. The net infec-

tiousness (NI) for the mosquito populations in all the patches, denoted κ, is:

k ¼ uðb
T
� XÞ þ ð1 � uÞxd ð10Þ

The force of infection for the mosquito population is thus fqκ.

Egg laying. To compute quantities affecting mosquito ecology and population dynamics,

we need to formulate algorithms to compute egg laying rates and egg laying distributions (Fig

4): how many eggs are laid by adult mosquitoes in a patch, and how are they distributed

among the aquatic habitats in that patch? To do so, we develop the concept of habitat availabil-

ity. We assign a search weight to each aquatic habitat, wν. Using the patch membership matrix,

N , we define aquatic habitat availability as:

QðtÞ ¼ N � wnðtÞ ð11Þ

For each patch, total habitat availability is the sum of the search weights for habitats in that

patch.

Daily, per-capita oviposition rates of gravid mosquitoes are computed using a functional

response to habitat availability, such as:

n ¼ FnðQÞ ¼ nx
snQ

1þ snQ
: ð12Þ

Fig 4. Egg Laying and egg deposition. The availability of aquatic habitats (Q) the patch sum of habitat search weights (Q ¼ N � wn), and the egg

distribution matrix (U) describes the locally normalized search weights. Available habitat determines per-capita oviposition rates (ν) by the population

of gravid mosquitoes (G) in a patch through a functional response to availability, Fν(Q). The net egg laying rate, per-patch, is Γ = χνG. The eggs are

distributed among the aquatic habitats (U) so that the egg deposition rates in habitats is Z ¼ U � G.

https://doi.org/10.1371/journal.pcbi.1010684.g004
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where νx is the highest possible egg-laying rate for a gravid female, and sν is a shape parameter.

We note that if Q = 0, then ν = Fν(0) = 0. We let G ¼ FGðMÞ denote the density of gravid mos-

quitoes, and we let χ denote the number of eggs laid, per batch. The net egg laying rate, per

patch, per day, is:

G ¼ wnG ð13Þ

To model egg distribution among habitats, we formulate an egg distribution matrix (U) that

allocates eggs to habitats in proportion to local habitat availability. To compute U , for compu-

tational reasons we first create Q* by setting any zero entries to an arbitrary positive value (if

Q = 0, then ν = 0, so associated products will later be multiplied by zero), and the egg deposi-

tion rate, η, is computed by:

U N ;wnð Þ ¼ diagðwnÞ �N
T
� diag

1

Q∗

� �

: ð14Þ

Finally, we can compute egg deposition rates in the habitats:

Z ¼ U � G ð15Þ

While Γ (a vector of length p) describes the net egg-laying rate of the adult mosquito popula-

tion in each patch, per day η (a vector of length l) describes the number of eggs laid, in each

habitat, per day.

Core dynamical components

The dynamical quantities whose computation was described above, are configurable elements

that connect the four dynamical components: aquatic mosquito ecology; adult mosquito ecol-

ogy and infection dynamics; and infection and immunity, including human demography. In

the following, we describe one model family for each component, including functions that

compute terms required for the dynamical quantities; in code these are the generic interface of

each dynamical component. These particular models were chosen because they are complex

enough to illustrate key features of the framework. These models might not be appropriate for

some studies—in particular, the model for epidemiology is too simple for policy. Since the

framework is modular, other models can be developed that suit the needs of a study. As part of

the software (https://dd-harp.github.io/exDE/), we have formulated alternative model families

for some of the components.

Aquatic mosquito ecology. The first core dynamical component describes aquatic mos-

quito population dynamics; the algorithm computes mosquito survival and development from

eggs laid through adults emerging. For aquatic population dynamics, we here adapt a previ-

ously published model [31, 32].

Let L(t) denote the total density of immature mosquitoes. We let ψ(t) denote maturation

rates, ϕ(t) the density independent mortality rate, and θ(t)L(t) describes increased per-capita

mortality due to mean crowding. The aquatic dynamics are thus:

dL
dt
¼ Z � ðcþ �þ yLÞL ð16Þ

The total emergence rate of female mosquitoes in this model, per aquatic habitat, is:

aðtÞ ¼ Fa L tð Þð Þ ¼
cðtÞLðtÞ

2
: ð17Þ

These are recruited into the adult population in the patch, so that the net emergence rate per
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patch is:

LðtÞ ¼ N � a ð18Þ

While α is a vector of length l, Λ is a vector of length p. This is passed as input to the equations

describing adult populations (below).

Given uncertainty about the factors affecting immature mosquito populations, we assume

studies might choose to formulate and analyze alternative dynamics. Other dynamical systems

models for aquatic ecology in the framework are defined by state variables, L, with dynamics

defined by a system of equations dL=dt ¼ Z � FLðLÞ, and a function such that a ¼ FLðLÞ,
such that L ¼ N � a (S3 Text).

Adult mosquito ecology. The second core dynamical component describes adult mos-

quito ecology. Given all the functions, terms and parameters above, we have formulated a set

of algorithms describing adult mosquito mortality and dispersal that are internally consistent

(Fig 5). All this is embodied in the mosquito demographic matrix, called O(t).
We assume mosquito mobility is driven by a search for resources. We have already defined

total blood host availability B, and aquatic habitat availability Q. We also consider sugar avail-

ability, S(t), which is passed to the model as a function vector of length p. We assume mosqui-

toes leave a patch while searching for resources, and that they leave a patch more frequently if

the resources are less available. Patch-specific emigration rates, σ(t), are a functional response

to resource availability:

s ¼ FsðB;Q; SÞ ¼ sx
sB

1þ sBB
þ

sQ

1þ sQQ
þ

sS
1þ sSS

� �

ð19Þ

The parameters σB, σQ, and σS determine the rate that mosquitoes leave a patch if no resources

are available, and the shape parameters sB, sQ, and sS determine how the rate of patch leaving is

reduced by the availability of resources. The shape parameter σx is a scaling parameter that can

be used to adjust models with differing patch sizes. Similarly, we formulate a mosquito

Fig 5. Adult mosquito demography is defined by survival and dispersal. Mobility rates and dispersal are determined by the available of resources:

aquatic habitats (Q), available humans (W + Wδ) and other blood hosts (Oz), and sugar (S). The emigration rate is a functional response (Fσ) that

increases if any one of the resources is missing. Resource availability and distance also play a role in computing the dispersal kernel, K, that determines

where mosquitoes land if they leave a patch. When combined with mortality, a matrixO is produced which describes the behavior of adult mosquitoes

after emergence.

https://doi.org/10.1371/journal.pcbi.1010684.g005
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dispersal matrix, KðtÞ that describes where mosquitoes land after they leave each patch (the

diagonal elements of K are constrained to be equal to zero, S3 Text).

We let g(t) denote the local per-capita mortality rate of mosquitoes in each patch. The

matrix O(t) describes adult mosquito survival and dispersal:

O ¼ diagðgÞ þ ðI � KÞ � diagðsÞ ð20Þ

where I is the identity matrix.

We let Λ(t) be the net emergence rate of mosquitoes into the patches from aquatic habitats

(see Eq 18, above). The dynamics of adult mosquitoes are described by the equation:

dM
dt
¼ L � O �M ð21Þ

Under the assumptions of this model, the density of gravid mosquitoes, G, is:

dG
dt
¼ f ðM � GÞ � nG � O � G ð22Þ

This model thus assumes that only gravid mosquitoes can lay eggs (Eq 13), but that all mosqui-

toes (including gravid mosquitoes) can blood feed.

Other models for adult mosquito ecology, denoted dM=dt, could be formulated that

describe separate functions for mosquito survival and dispersal, depending on their behavioral

states (possibly including sugar feeding, mating and maturation), or that describe a mosquito’s

reproductive states, or its chronological age or reproductive age. All models developed in this

framework must accept the adult emergence rates, Λ, and they must be formulated in enough

detail to compute the population egg-laying rate, Γ (see Eq 13).

Parasite infection dynamics in mosquitoes. The third core dynamical component

describes parasite infection dynamics in adult mosquito populations. Here, we extend a previ-

ously published delay differential equation for the density of infectious mosquitoes to include

space and a time-varying extrinsic incubation period (EIP) [49].

Let Y(t) denote the density of infected mosquitoes. Using κ from Eq 10, the dynamics of

infection in mosquitoes are described by:

dY
dt
¼ fqkðM � YÞ � O � Y ð23Þ

We include a time-dependent EIP so that parasite development can be modulated by tem-

perature or other factors exogenous to the system: let τ(t) denote the EIP for a mosquito that

becomes infected at time t (i.e., it becomes infectious at time t + τ(t) (see S3 Text). We must

also define the inverse τ−1(t), the delay for a mosquito that became infectious at time, t. Let

Uτ(t) denote a matrix describing survival and dispersal of a cohort from time t − τ−1(t) through

the EIP to become infectious at time t:

� lnUtðtÞ ¼
Z t

t� t� 1ðtÞ
OðsÞds: ð24Þ

When O and τ are constant, survival and dispersal through the EIP isUτ = e−Oτ. Otherwise, let

the τ-subscript denote the value of a variable or parameter at time t − τ−1(t).
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To model the density of infectious mosquitoes, let Z(t) denote the density of infectious mos-

quitoes. The dynamics of infectious mosquitoes are:

dZ
dt
¼ Ut � ftqtktðMt � YtÞ � O � Z ð25Þ

The number of human blood meals per patch, called the net infectious biting rate, is fqZ.

Models for infection dynamics, generically denoted dY=dt are nested within the model for

adult mosquito population dynamics dM=dt (for example, see [50]). These models accept the

net infectiousness (κ), they must define a variable describing the density of infectious, blood

feeding mosquitoes, Z, in order to compute the EIR (see Eq 9).

Epidemiology. The fourth core dynamical component describes parasite infection

dynamics in human populations. Models for malaria infection, immunity, disease, and infec-

tiousness in humans, denoted dX=dt, can become quite complicated, depending on the needs

of a study. Studies of malaria epidemiology could consider the complex time course of infec-

tions, superinfection, disease, detection, infectiousness, and immunity. The state space

describing malaria infection and immunity X can be modified to suit the needs of a study, and

the framework also has enormous flexibility to model heterogeneity in populations through

stratification. The following is one model family that is complex enough to illustrate the

generic features of the framework.

Let h = fh(E) denote the local daily force of infection (FoI) and δ(t) the FoI during travel. In

general, fh(E) could be modified to include heterogeneous biting [41], but in this model, we

assume h = bE. Both terms are defined for each sub-population. In these models, we stratify on

variables relevant for the epidemiology, including immunity, and we model the effects by

assigning different parameter values to each stratum.

To model infection dynamics, we modify a hybrid model for the multiplicity of infection

(MoI). The dynamics are based on a queuing model, in which new infections occur at the rate

h, and each parasite clears at the rate r, where we track apparent and actual clearance as linked

but distinct processes. The variables m1 and m2 track the mean MoI for present and detectable

parasites in each strata, which fully describe the epidemiological state space in a simple model

with superinfection [51]. We assume that parasites clear at the per-capita rate, r1, so that:

dm1

dt
¼ hþ d � r1m1

ð26Þ

In this model, the true prevalence is:

x1 ¼ 1 � e� m1 ð27Þ

We also formulate a model for the MoI of apparent infections. We assume parasite infections

are detectable for a shorter time so they appear to clear at a higher rate, r2, and

dm2

dt
¼ hþ d � r2m2

ð28Þ

Similarly, we let x2 denote the apparent prevalence

x2 ¼ 1 � e� m2 ð29Þ

We assume that if the infection is patent, a bite infects a mosquito with a higher probability, c2,

and c1 if it is not. A bite on a person in each stratum infects a mosquito with probability:

x ¼ c2x2 þ c1ðx1 � x2Þ ð30Þ
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To compute κ, the infective density of infectious resident hosts by strata is X = xH. The vector

X is passed to Eq 10 to compute a vector of patch-specific net infectiousness, κ.

To compute some of the spatial transmission metrics, including basic reproductive num-

bers (see below), a model must compute the human transmitting capacity (HTC) [52]. In this

model, the number of days infecting mosquitoes at the higher probability, c2 is 1/r2. The

remaining days, are spent infecting mosquitoes at the lower probability. Expressed as the

equivalent number of perfectly infectious days, the HTC is:

D ¼
c2

r2

þ c1

1

r1

�
1

r2

� �

ð31Þ

This framework can accommodate other systems of equations describing parasite infection

and immune dynamics in humans. This particular model was designed to illustrate some basic

features of the modular design. These particular equations were designed to incorporate the

effects of immunity on transmission through stratification, allowing parameters describing the

duration of infections or detection and the infectiousness to vary among strata (e.g., r1, r2, c1

and c2). New models for human epidemiology can use any epidemiological state space, X , and

any system of equations, dX=dt, including models with dynamical changes in the host popula-

tion size. While the travel FoI is recommended, it is not required. The modules should accept

the EIR, and to interact with other components, they must provide a function to compute the

infective density of infectious hosts, X.

Spatial metrics

The Ross-Macdonald model defined a set of concepts and metrics that have formed a basis for

measuring and understanding malaria transmission, including vectorial capacity and the basic

reproductive number R0, but that model and associated metrics did not include metrics for

spatial dynamics, parasite dispersal, or malaria importation [3].

Here, we define parasite dispersal by the set of locations (i.e. patches) where infecting bites

occurred in continuous chains of transmission stretching back in time. Dispersal for any para-

site transmission chain is thus defined by locations of the bites that caused each infection, and

dispersal alternating between moving humans and mosquitoes between bites. We acknowledge

that, due to an observational process, there is an important difference between where an infec-

tion occurred and where an infectious person or mosquito is found. There is also an important

difference between the formulas defining dispersal and those used to compute reproductive

numbers, which count from after a host becomes infectious. Using this definition of parasite

dispersal in the context of a model, we have developed formulas and metrics to compute and

study parasite dispersal and reproductive success.

To develop these metrics, we assume steady state conditions. This is done for convenience

to avoid discussing the complications of understanding spatial dispersal under dynamically

changing conditions, and it is a necessary first step to understanding such models. Analysis of

malaria transmission dynamics under temporally varying conditions are being developed in a

subsequent manuscript.

The formulation of this static model helps to clarify the role of some of the intermediate

terms—if all parameters in a model were constant, the transmission model could be fully

defined by a much smaller set of parameters, but it may not be clear why the parameters take

on those values. Some of the terms that appear in the static analysis correspond to parameters

or variables in some Ross-Macdonald models, while others are new: net emergence rates (Λ)

or adult mosquito density (M), scaled to the appropriate human population density denomina-

tor of host availability (W), mosquito bionomics (f, q, and O), and epidemiological parameters
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(r1, r2, c1, and c2). New terms describe the spatial biting distribution matrix (β) and parameters

describing malaria importation (δ, υ, and xδ).

In models where the context is changing dynamically—due possibly to weather, land use

changes, or vector control—exogenous forcing functions can be passed to the model that

change resource availability or that perturb the dynamics; the functional forms and intermedi-

ate terms (e.g. availability) are used to describe changes in the local parameter values and guar-

antee mathematical consistency. In these static models, the functions and terms are used to set

up the model, but after setting parameter values, they need not be called again.

Net malaria importation and travel fractions

Terms describing the travel FoI (δ) and visitor populations were defined above and integrated

into the models for blood feeding and human epidemiology (Fig 6). We define an imported

malaria case as a human infection that traces back to a location outside of the spatial domain

in the parasite’s previous generation, i.e., the mosquito and human host preceding this one in a

chain of infections [42]. Net malaria importation rates describe the number of imported

malaria cases, per day.

The fraction of all cases that were imported called the travel fraction can be defined as

either: 1) the fraction of incident infections that were imported; or 2) the fraction of prevalent

infections that were imported [45, 53]. To compute these travel fractions, we let γ = (1 − υ)xδ/κ
denote the visitor fraction, the fraction of infectious mosquitoes that were infected by visitors.

We let h denote the FoI. The travel fraction for incidence is:

hgþ d
hþ d

ð32Þ

Fig 6. To model malaria importation, we define a travel FoI for each stratum, δ(t), and two set of terms to model the role of visitors in mosquito blood

feeding and parasite transmission: the available visitor population Wδ and the NI for the visitor population, by patch xδ. To model blood feeding and

transmission, we compute a patch-specific resident fraction for blood feeding, υ, the fraction of all biting that occurs on a resident of the spatial domain.

From this, we can compute the visitor reservoir fraction, γ, the travel fraction for incidence, and other measures of malaria importation.

https://doi.org/10.1371/journal.pcbi.1010684.g006
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The travel fraction for true prevalence is:

1 � e� ðdþhgÞ=r1
1 � e� ðdþhÞ=r1

ð33Þ

We note that these are per-capita terms defined for the strata. The net malaria importation

rate, the number of imported malaria incidence per day for each patch is:

J � ðhgþ dÞH ð34Þ

so the travel fraction for incidence for the patches would be:

J � ðhgþ dÞH
J � ðhþ dÞH

ð35Þ

Formulas for the travel fraction for prevalence are formulated in the same way.

Parasite dispersal

To compute quantities related to parasite dispersal, from bite to bite, we focus on local trans-

mission, and we need some formulas that describe how mosquitoes move around in humans

and in mosquitoes.

Mosquito dispersal and steady states. In these models, we can compute steady state mos-

quito population density, assuming Λ is constant over time. At the steady state of Eq 21,

M ¼ O
� 1
� L ð36Þ

Here, the inverseO−1 can be understood as a measure of time spent alive in each patch by mos-

quitoes emerging habitats in each patch. In other Markov chain models with finite state space,

it has also been shown that the elements of the matrix inverse can be interpreted as residence

times [54, 55]. In the simpler Ross-Macdonald model, the inverse of a mortality rate, g, is a mea-

sure of time spent alive or the average mosquito lifespan [56, 57]. The time spent alive interpre-

tation of O−1 is more apparent if there is no movement: if we set σ = 0, thenO−1 = diag(1/g).
In spatial models, the matrix O accounts for both survival and movement. To illustrate—

and to demonstrate that ifO is a sensible description of mosquito demography, then the matrix

inverse must exist—we construct a tracking matrix. Let X(t) denote a matrix that tracks

cohorts of mosquitoes:

Xðt;M0Þ ¼ e� Ot � diagðM0Þ ð37Þ

It describes the density of mosquitoes left from an initial cohort in each patchM0 that is found in

each location at each point in time. There is a duality between the equilibrium population density

from Eq 21 and time spent alive by a cohort, computed by integrating Eq 37 (i.e. orbits of the

related equation dM/dt = −O �M). Just as we can compute g � 1 ¼
R1

0
e� gtdt; we can compute:

M ¼ O
� 1
� L ¼

Z 1

0

e� Otdt � L ð38Þ

so that the steady state can be found by simply adding up the time spent alive in each patch by a

cohort emerging from every other patch. Under generalized static conditions (i.e. σ> 0),O−1

can thus be interpreted as the average time spent alive in every patch by cohorts of mosquitoes

initially found in each patch.

Parasite dispersal in mosquitoes. Using mosquito tracking matrices, we can also track

parasite dispersal in mosquitoes to derive a matrix that has the same interpretation as the for-

mula for vectorial capacity [57, 58].
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To transmit, mosquitoes must blood feed on a human to become infected: the net infection

rate in each patch, per available human, is fqκM/W. After becoming infected, a mosquito must

survive while dispersing through the EIP (U = e−Oτ). After becoming infectious, a mosquito

must blood feed to transmit parasites, so we use the matrix inverse O−1 which describes where

the mosquitoes are for each infectious human blood meal as long as they remain alive; after

becoming infectious, the distribution of infectious bites is given by fqO−1. We can describe par-

asite transmission by mosquitoes by following the story of infection in mosquitoes: after

emerging (diag(Λ)), a mosquito must blood feed on a human to become infected (fqO−1/W);

then survive the EIP (e−Oτ); and then blood feed to transmit (fqO−1).

In the Ross-Macdonald model, the formula for vectorial capacity can be derived from the

formula for the daily EIR as a limit [57]. In spatial models, a vectorial capacity matrix can be

derived as the limit of a tracking matrix describing the number of infectious bites arising, per

available person (i.e., the denominator is W), per day at the steady state (S3 Text):

V ¼ lim
k!0

fqZ
W
¼ fqO� 1

� e� Ot � diag
fqM
W

� �

ð39Þ

Elements in the matrix V are the expected number of infectious bites eventually arising in

every patch from all the mosquitoes in a single patch blood feeding on a single human on a sin-

gle day, computed as if each human were perfectly infectious. The derivation assumes that no

mosquitoes are already infected, and the assumption that humans are perfectly infectious (κ =

1) is made so that the formula deals only with phenomena related to mosquitoes. In models

with multiple vector species, the notion of what it means to be “perfectly infectious” is not as

simple because of differences among vector species in their capacity to be a host for the para-

sites, or vector competence (S3 Text).

Parasite dispersal by humans. To quantify parasite dispersal by humans, we compute the

human transmitting capacity distribution (HTCD) matrix. We let human transmitting capac-

ity (HTC) describe the net number of perfectly infectious days for each stratum: since infec-

tiousness varies over the time-course of infections, we sum partially infectious days and

interpret the HTC as an equivalent number of days spent perfectly infectious [52]. For the pop-

ulation strata in this model, the HTC (D) is defined by Eq 31. Since transmission requires two

bites, we use the TaR matrix to determine both where a human becomes infected and where it

infects a mosquito. Using the transposed TaR matrix, we can describe where infectious days at

risk are spent, CT � D. Parasite dispersion by mosquitoes for the sub-populations also accounts

for where a mosquito becomes infected, or bC.

The HTCD matrix uses the biting distribution matrix, β, to count from the infectious bite

and weight biting appropriately for subsequent blood feeding by all the population strata. The

HTCD, a p × p matrix (D), is:

D ¼ diagðWÞ � bT � diagðbDHÞ � b: ð40Þ

We note that D in spatial models is analogous to bD in models with a single patch. (The equiv-

alency of D and bD is most apparent if no humans move, and if there is one stratum per patch,

and if all search weights are 1, in which case H = W and β = diag(1/H).) Like bD, D describes

days spent infectious by an individual human, but in D, describes both where a human got

infected and where the mosquitoes were subsequently infected.

The definition of D as a time-dependent matrix is substantially more complicated if local

human mobility patterns change dynamically.

Parasite dispersal through one parasite generation. Parasite dispersal is defined by the

locations where infecting bites occurred, alternatively moving in infected mosquitoes and
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humans. The equations for D and V describe the expected movement for a parasite among

patches in humans or mosquitoes, respectively, counting from bite to bite. Notably, the formu-

las are defined for a parasite in either a mosquito or a human. We can also define parasite dis-

persal through one parasite generation (i.e., from human to human, or from mosquito to

mosquito) but the formula depends on where we start counting. If we started from all the mos-

quitoes blood feeding on a single human (averaged appropriately) on a single day in every

patch, then we would get a matrix describing dispersal from every patch to every patch:

D � V: ð41Þ

If we started counting from a typical human infected in a patch on a single day, we would get a

different dispersal matrix:

V �D: ð42Þ

Importantly, these formulas follow the same process in the same order, and thus closely resem-

ble the reproductive numbers for malaria (described below), which measure reproductive suc-

cess for a single parasite. These formulas are two among many that could be developed to

count events through a parasite’s life-cycle starting at different points.

Formulas that describe the parasite’s per-capita reproductive success, such as Eqs 41 and 42,

counting events arising from a single host. In some cases, we might wish to count the total

number of events arising from a patch. To measure the contribution of a patch to overall trans-

mission, we must have a measure of connectivity, or total parasite flows. A tracking matrix

describing all of the infections arising from each patch on a day, is:

diagðWÞ �D � V ð43Þ

If we started counting infections occurring on humans in a patch, we would get an alternative

patch-based tracking matrix. The number of infections arising from a patch is thus tracked by:

diagðWÞ � V �D ð44Þ

These measures emphasize the role of places with larger available populations.

The same sort of formulas can be devised to describe transmission from human strata to

human strata, but the resulting formulas are only spatial insofar as the human strata are

anchored to a residency. If we focused instead on parasite reproductive success starting with

an infection in humans, regardless of location, we would get

R ¼ bb � V � diagðWÞ � bT � diagðDHÞ: ð45Þ

or we could also count bulk transmission from humans as diagðHÞ �R. Notably, Eq 45 is a

stratum-based measure. To make it quasi-spatial, we would need to assign events to patches by

stratum residency using the membership mapping operator J �R � J T .

Distances dispersed. To get a measure of the distribution of distances travelled by para-

sites, we match a measure of transmission intensity with the corresponding element in a patch

distance matrix describing the distance. We take the couplet (distance and intensity) and sort

by distance, then compute the cumulative distribution function (CDF). From the CDF, we

derive a probability mass function [39]. These dispersal kernels provide a simple way of visual-

izing distances dispersed by mosquitoes, humans, or parasites.

These formulas and algorithms draw attention to the differences in metrics describing para-

site transmission dynamics and dispersal. Because of spatial heterogeneity in mosquito and

human population densities, there are many sensible formulas for counting dispersal, some of
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which correspond to describing rates, ratios, proportions, and numbers. Careful thought

should be given to choosing or developing a metric that fits the analysis.

Reproductive numbers

Reproductive numbers are a measure of the parasite’s average reproductive success. When

transmission is spatially heterogeneous, reproductive success will vary for parasites, depending

on where they are. As parasites spread over several generations, the expected success of its

progeny will change. To calculate threshold criteria for persistence (in the absence of malaria

importation), we want a reproductive number to be a measure of average success taken over

the whole system, but we want to use an average that does not change across generations.

Doing so requires that we compute the spectral average, which is computed as the dominant

eigenvalue of the parasite’s next generation matrix.

For many reasons, it is useful to formulate local reproductive numbers that describe a para-

site’s average reproductive success at a particular place and time—an arithmetic average.

These local reproductive numbers could ignore differences across generations, so they would

not serve as thresholds for parasite persistence. In this section, we define local reproductive

numbers at the steady state, but the formulas could also serve as point estimates.

Reproductive numbers describe malaria transmission under a range of different conditions

that are relevant for understanding malaria transmission dynamics and control or for national

strategic planning. Baseline conditions are described by the basic reproductive number, R0,

which is defined for a population with no acquired immunity and no malaria control. The

adjusted reproductive number, RC, describes a family of numbers defined for a population

with no acquired immunity adjusted by malaria control, at a fixed level of control denoted C.

In other words, R0 is defined as a special case of RC, but in the absence of control. The total

effect size of malaria control on transmission is R0/RC. Here, we also describe the endemic

reproductive number, RE, which describes potential transmission modified by immunity. The

total effect size of immunity on transmission is RC/RE. In computing RE, as with R0 and RC, we

ignore the fact that some hosts are already infected. In this way, RE is defined differently than

the effective reproductive number, denoted Re, which is lower than RE because it does not

count infections occurring in someone who is already infected. We note that, by definition, at

an endemic steady state Re = 1. By way of contrast, RE counts the number of infections that

would occur after one generation, which is useful for planning because it helps to clarify how

success in malaria control can be assisted by immunity that will eventually wane.

Both R0 and RC are computed as if there were no acquired immunity. In this model, the

effects of acquired immunity on transmission are quantified through the stratified values of b,

r1, r2, c1 and c2. These parameters determine the HTC for all the strata (D, see Eq 31). If D were

computed using values that have been tuned to a stratum with some level of immunity, we

would be computing RE. To compute RC, we would need to replace D with values set to a non-

immune baseline (i.e., D0), and then recompute the next-generation matrix. Next generation

matrices computed with values of D that include the effects of acquired immunity are thus

describing an endemic reproductive number. Depending on how D is computed, and whether

the bionomic parameters incorporate effects of vector control, we may thus be computing R0,

RC or RE.

Local reproductive numbers. One way to define local reproductive numbers is to modify

Macdonald’s formula using the local values of parameters, as if there was no movement of

mosquitoes or humans. To write the formula using some models in this framework, we may

need to modify HTC (which is defined for the strata, of length n) to take a patch average. To

compute a patch average HTC, D̆ (a vector of length p), we take the population weighted
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average,

D̆ ¼
C

T
� wfDH

C
T
� wfH

ð46Þ

We can then describe a local reproductive number, R̆C (or possibly R̆E, depending on how the

interpret parameters are defined in D):

R̆C ¼
L

W
f 2q2

g2
e� gt D̆ ð47Þ

This local measure is similar to Macdonald’s formula [59]. While useful in some contexts, the

formula should be applied with caution.

An alternative way to compute local reproductive numbers uses V and D (perhaps modified

to remove the effects of immunity on transmission). Since the matrices count infections arising

from each patch, and we add all infections arising to the patch where the bite originates. We

let 1 be a row vector of ones of length p, and we can count infections arising starting from all

the humans infected in a patch on a single day:

R̂C ¼ 1 � V �D ð48Þ

that counts infections occurring on humans, or we can start from all the mosquitoes blood

feeding on humans on a single day, and:

~RC ¼ 1 �D � V ð49Þ

that counts infected mosquitoes. These patch reproductive numbers could provide valuable

information about whether to target the mosquitoes or humans in some patch for enhanced

interventions. We could also consider the equivalent formulas for total patch outputs:

WT � V �D or WT �D � V ð50Þ

where WT is a row vector. Alternatively, we can also weigh transmission from strata using Eq

45:

1 �R ð51Þ

or the equivalent scaled by stratum size:

HT �R; ð52Þ

where HT is a row vector, which gives us valuable information about infections arising from

every stratum on every strata, a way of identifying the relative importance of various popula-

tion strata.

Next generation matrix. In the Ross-Macdonald model, a parasite’s reproductive success

in the next generation is described by a single number. It is computed by counting forward

from the moment a mosquito or human becomes infectious. Since parasites move in infected

mosquitoes and humans, parasite reproductive success—measured as the number of infections

in the next generation—varies across generations as the parasite distributions evolve across

generations among strata and among patches. The matrices V and D describe parasite trans-

mission and dispersal in mosquitoes and humans, respectively. While the product of these for-

mulas does describe net reproductive success, the computation of threshold conditions has

been developed around the concept of a next generation matrix [60, 61], which traces the same

process in the same sequence but that start counting at a different point in the parasite’s life
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cycle (Fig 7). A threshold condition is found by taking the spectral average of the next genera-

tion matrix.

In computing next generation matrices, we focus on transmission within a defined spatial

domain. For mathematical convenience here, we thus set υ = 1, though we could easily develop

matrices leaving υ undetermined to discount exported malaria cases.

We first compute offspring transmitted from a single infectious mosquito to humans or

from a single infectious human to mosquitoes, each of which defines a stage in the parasite’s

next-generation [60]. After a mosquito has become infectious, how many humans (in each

stratum) would it infect? In these models, the answer to that question is n × p matrix, denoted

RZ, describing transmission from an infectious mosquito in each patch to humans in each

strata:

RZ ¼ bb � fqO� 1
: ð53Þ

Fig 7. A spatial life-cycle model. A diagram that illustrates how the parameters describing each stage in the parasite’s life-cycle translate into a

parasite’s reproductive success spatially, when mosquitoes and hosts move. The right half of the circle represents mosquitoes and the left half humans.

The flow of events is clockwise. Mosquitoes must blood feed to become infected (fqM), and then survive and disperse through the EIP (e−Oτ). infectious

bites are distributed as long as a mosquito survives, while it blood feeds and disperses (fqO−1). The bites are distributed among humans (β) and some of

them cause an infection (b). Parasites are transmitted for as long as humans remain infectious, measured in terms of the human transmitting capacity

(HTC, or D days). Infectious humans are distributed wherever humans spend time at risk (affecting β). These processes are summarized differently to

model parasite dispersal and parasite reproductive success. Dispersal counts from bite to bite using the VC matrix (V) and the HTC matrix (D).

Threshold computations count from when a host becomes infectious to measure a parasite’s reproductive success in infectious mosquitoes (RZ); in

infectious humans (RX); from human to humans among strata after a human becomes infectious (R); and from mosquito to mosquitoes (Z). R0 is the

lead eigenvalue of R or Z. Under endemic conditions, we can also consider how frequently parasites are actually transmitted by including the

probability a mosquito gets infected κ, and the probability a mosquito is infectious, given by the sporozoite rate z.

https://doi.org/10.1371/journal.pcbi.1010684.g007
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How many infectious mosquitoes would arise from each human infection? The answer is a p ×
n matrix, denoted RX, describing transmission from a human in each stratum to mosquitoes:

RX ¼ e� Ot � fqM � ðbT � diagðDHÞÞ: ð54Þ

The next-generation matrix by type is:

G ¼
0 RZ

RX 0

2

4

3

5 ð55Þ

To describe reproductive success in terms of the parasite biology, we count reproductive suc-

cess through one full parasite generation, either from humans back to humans, or mosquitoes

back to mosquitoes. For the parasites, reproductive success through one full generation

requires two events, one of each type, so we square the matrix given by Eq 55 to get a new

matrix in block form:

G2
¼

R 0

0 Z

#

: ð56Þ

"

We thus get two diagonal block sub-matrices describing reproductive success in the parasite’s

next generation, denoted R and Z. Reproductive success from human population strata back

to human strata is described by an n × n matrix R ¼ RZ � RX:

R ¼ bb � V � diagðWÞ � bT � diagðDHÞ: ð57Þ

Reproductive success from mosquito through the population strata back to mosquitoes,

described patch-by-patch is described by the p × p matrix Z ¼ RX � RZ:

Z ¼ e� Ot � diag
fqM
W

� �

�D � fqO� 1
ð58Þ

We have also formulated the next-generation matrix for systems with multiple vector species

(S3 Text).

The spectral average. We can also compute RC as a spectral average through simulation,

which is one useful way of illustrating what a spectral average means. To do so, we choose a

vector describing the distribution of parasites in a founding generation, X 0 or Y0, and iterate

parasite infections across i successive parasite generations:

Yiþ1 ¼ ZYi or X iþ1 ¼ RX i: ð59Þ

We define the vector:

E i ¼
X iþ1

kX ik
or E i ¼

Yiþ1

kY ik
:

where kXk or kYk is a scalar that denotes is magnitude. Over many generations, E i converges

to the lead eigenvector, a scalar value also called the spectral average or RC:

RC ¼ lim
i!1
kE ik ð60Þ

and it is interpreted as the asymptotic average reproductive success expressed as a number of

infected hosts per host, per generation. Note that it is asymptotic only for the linearized system

defined by Eqs 55 or 56.
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Quasi-thresholds for endemic Malaria. Without malaria importation, RC> 1 is a thresh-

old criterion. Analysis of models without malaria importation have consistently demonstrated

that malaria is either absent or that there is a single globally, asymptotically stable equilibrium.

When there is imported malaria, there are three sufficient criteria for some local parasite trans-

mission to occur within the area:

1. max{δ}> 0 and RC> 0;

2. max{(1 − υ)Xδ}> 0 and RC> 0;

3. RC> 1.

If condition 1 or condition 2 is satisfied, then malaria will be present in an area, and if RC>
0 then there will be some local transmission. If RC> 1, malaria transmission would be sus-

tained in the absence of importation. We thus call RC> 1 a quasi-threshold for endemic trans-

mission to occur within the spatial domain: endemic describes places where RC> 1, and

pseudo-endemic places where 0< RC< 1 with significant levels of transmission.

Quantifying transmission in a place

The framework, models developed within it, and the associated spatial metrics were designed

to have the skill required to describe and quantify heterogeneous spatial transmission dynam-

ics of malaria in a specific place at a particular time. We have not explicitly defined algorithms

for the observational processes that would map model states onto observable quantities, which

would be required to extend this mathematical modeling framework into a state space model-

ing framework to rigorously fit models to data. Instead, we have focused on the mathematics

of these processes: time spent by humans; other blood hosts; daily mosquito rhythms; mos-

quito host preferences, time at risk; and mosquito mobility. Similarly, the models for mosquito

ecology and population dynamics describe the mathematics of mosquito mobility, in terms of

explicit assumptions about the locations of aquatic habitats, heterogeneous distributions of

resources, and mosquito mobility patterns that emerge from a search for resources. By quanti-

fying spatial patterns in terms of the underlying processes—including malaria importation,

mosquito ecology and spatial population dynamics, parasite transmission dynamics, human

mobility, and malaria epidemiology—the equations point towards a general inferential

framework.

Models developed within this framework involve substantially more parameters than the

Ross-Macdonald model. This is an inevitable consequence of a decision to model transmission

at a particular place and time. If any local features are important for transmission, then a larger

set of quantities must be estimated to understand and quantify those features. This gives rise to

an important but difficult practical question: What is the relationship between the amount of
local intelligence and the specificity of the policy advice that can be offered? With minimal local

information, it is possible to offer generic policy advice, but it may not be necessary to know

everything about a place to tailor advice to context. With this framework, it is possible for

models to evolve as the amount information increases, and the models may be used to look

ahead to prioritize missing data: How can programs identify missing information that would
most rapidly improve the effectiveness of malaria control? These contextual factors and the

related questions are addressed below.

Malaria landscapes

While the Ross-Macdonald model describes parasite transmission between abstractly defined

mosquito and human populations, the framework we have described was developed to
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understand and quantify malaria importation and transmission among structured mosquito

and human populations in a well-defined geographical area. (Using a model dX=dt that

describe the infection dynamics of other pathogens and immunity in vertebrate host popula-

tions, and making other appropriate choices, the framework could be used as a basis for

modeling dengue, West Nile virus, or other mosquito-borne pathogen transmission dynamics,

as well.) Since the models are developed to approximate malaria transmission in an actual

place, after defining an observational process, the model outputs would be verifiable state-

ments about real quantities over some specific period of time.

As a practical first step, model building starts by defining a set of structural elements—

patches, human population strata, and aquatic habits—that are appropriate for the needs of a

study (e.g. Fig 8 illustrates some options for simulating malaria on Bioko Island, Equatorial

Guinea). A geographical study area is usually defined by projects, programs, or political

boundaries. In planning interventions for a defined area, an important concern is connectivity

to surrounding areas. How much malaria is imported by daily human movement or travel?

Are the mosquito populations within the area strongly connected to others nearby?

Using spatial metrics to identify differences in transmission patterns and the flow of para-

sites across a landscape can help control programs prioritize drugs, outreach, and medical

attention to populations, and vector or larval control to places. Using our differential equa-

tion framework to reconstruct the equilibrium analysis presented in [45], we have generated

spatial bulk transmission matrices (diagðHÞ �R) among areas for Bioko Island, Equatorial

Guinea. In Fig 9 different patterns of pathogen transport are readily apparent between per-

sons who live in Malabo (left), the densely populated capitol of the island and a sink for trav-

ellers, and Luba (right), a small settlement in the Southern half of the island. The pattern of

travel seen in Luba typifies most of the areas outside of Malabo, where individuals most

often travel to the capitol but not to the other outlying settlements. These patterns affect

transmission, where we see parasites originating in Malabo tend to stay in the city. Parasites

originating in Luba either tend to stay highly local, or are transported to Malabo when those

persons move. Because malarial mosquitoes tend to fare less well in urban settings, these spa-

tial metrics can help understand how high prevalence can be sustained in otherwise unsuit-

able locations.

An equally important question is about heterogeneity in mosquito population densities

within the area and heterogeneity in the risk of exposure, which should inform the definition

of patches and the choice of a patch size. Patches, in this model, are defined around adult mos-

quito activities, and each “patch” has a geographical location. The patch is the spatial unit that

defines the algorithms for time spent, blood feeding, egg laying, adult mosquito survival and

dispersal. The concept of a patch is flexible enough to model blood feeding indoors and out-

doors at the same geographical locations, which may be useful to inform programmatic ques-

tions about the effectiveness of vector control measures that target indoor biting (Fig 10).

Since the patch is the basis for computing most aspects of blood feeding, the patches define the

structure for human time spent at risk, including (if required) quantifying time spent indoors

vs. outdoors, and mosquito movement rates from indoors to outdoors, from outdoors to

indoors, or from outdoors to other outdoor patches.

An important basic concern is the spatial granularity of the patches used for simulation (see

Fig 8). Some questions remain unresolved about the appropriate spatial scales and ways to

define patches for describing and analyzing malaria transmission for policy (e.g., to compute

IRS coverage). One advantage of this framework is that it is possible to build nested models

with different spatial grains and compare them. Smaller patches more accurately capture het-

erogeneity in a landscape while increasing the number of parameters that need to be inferred

during calibration to data.
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Fig 8. An important practical concern is spatial granularity of patches for simulation-based studies. For Bioko Island, Equatorial Guinea, for

example, we could define patches at several scales: the whole island; or approximately 240 occupied areas (1km × 1km, the squares);

approximately 4, 400 occupied 100m × 100m sectors (points); or 8 distinct regions (the colors of the squares); or clusters of contiguous sectors

(the colors of the points); or approximately 70,000 individual households. An important concern is that the weight of evidence—the number of

observations per patch—declines sharply as granularity of the simulations increases. This framework makes it possible to define a set of nested (or

partially nested) studies that modify the number and size of patches, which requires modifying the human and mosquito mobility sub-models,

but that holds other aspects of the model constant.

https://doi.org/10.1371/journal.pcbi.1010684.g008
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Aquatic habitats are located in patches, but the model was designed to assign patches to

habitats assuming the habitats had an actual location. Patches in this framework need not have

any human residents or any available hosts, so that mosquito habitats in the uninhabited areas

around human households are contributing to transmission. Mosquito population dynamics

are coupled through related equations describing gravidity, egg laying and egg deposition. The

framework thus does not impose any constraints on either the method for constructing

patches, or on the number or arrangement of aquatic habitats within the spatial domain.

Given the modular nature of these models, the dynamics of immature mosquito populations

in each aquatic habitat depend only on its parameters and the egg deposition rates. The pro-

ductivity of any one aquatic habitat in an area is, however, coupled to other habitats through

egg laying by adult mosquitoes that could have emerged anywhere.

To improve the accuracy of models, human populations can be segmented into strata to

reduce heterogeneity in traits that affect malaria: the first segmentation is by residency. In this

framework, which is designed to quantify process affecting transmission, heterogeneity in any

trait affecting transmission is dealt with by sub-dividing the population into homogeneous (or

less heterogeneous) strata, such as by age, travel habits or patterns, ITN usage, vaccination,

care seeking, or any effects of immunity affecting malaria epidemiology or transmission.

Notably, all this structural flexibility is achieved through membership matrices and through

the variables describing resource availability, which links search weights, functional responses,

and other functional forms to guarantee mathematical consistency (e.g. avoiding problems

when denominators are zero) despite structural changes. Suites of models can be developed to

address concerns about data gaps and uncertainty that are appropriate for studies. Model com-

plexity can be modified by changing dynamical modules, by changing functional forms, by fix-

ing or changing parameters, by splitting and joining patches, by splitting or joining strata, or

Fig 9. (Left): bulk transmission metric describing transmission from the most densely populated area in Malabo, the capitol city, seen as the bright cell

in the Northern tip of the island, to all other populated areas. (Right): bulk transmission from the most highly populated area in the south of the island

(Luba), seen as the bright cell in the small harbor on the Western coast of the island. The base layer was created by to support malaria control operations

[62] and shared under a CC BY 4.0 license. It is [available online] at https://figshare.com/articles/online_resource/Shape_Files_for_Bioko_Island_

Equatorial_Guinea/22287580.

https://doi.org/10.1371/journal.pcbi.1010684.g009
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by adding and subtracting aquatic habitats. With the ability to split and join patches or strata,

any model can be mapped onto simpler, nested models in a series of simple join operations

until it is collapsed onto a single-patch, single-stratum Ross-Macdonald model. This is func-

tionally what is meant by scalable complexity.

It is thus as easy to modify and evaluate the effects of model structure (e.g. the number of

strata) as it is to vary parameters, to facilitate developing suites of models, including models

with nested patches or nested strata, to explore tradeoffs in building and calibrating models at

various levels of detail.

Mosquito blood feeding and ecology

Three constant parameters describing mosquito behavior are a standard part of the Ross-Mac-

donald model [56, 57]: the daily death rate of mosquitoes (g), the overall daily blood feeding

rate (f), and the human blood feeding fraction (q). Incorporating the possibility of dynamical

feedback between the future emergence of adults and current population size means we have

added the population egg-laying rate (Γ). Adding spatial complexity to the model means the

daily emigration rate (σ), mosquito dispersal (K), distribution of habitats (N ) and the distribu-

tion of eggs among patches (U) are additional parameters which define how populations may

interact in space. While our analysis has focused on steady states, the models were formulated

Fig 10. Structural elements of the framework are flexible to facilitate building models that are appropriate for various settings. These diagrams

illustrate two examples. left) A forest malaria model with seven patches (including 3 villages and 2 campsites), 6 population strata, and 5 aquatic

habitats. The village residents are stratified into loggers and other residents. Loggers from different villages spend time at home or in campsites, which

have no permanent residents. Aquatic habitats (the moons) can be in villages, in campsites, or in patches near villages. Some villages (e.g. village 3),

could lack mosquitoes but still have populations at risk. Right) It is also possible to model indoor and outdoor blood feeding with indoor and outdoor

patches that share the same place. In these models, movement indoors vs. outdoors in the same place is modeled differently from movement among

outdoor patches.

https://doi.org/10.1371/journal.pcbi.1010684.g010
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with parameters that can vary over time in response to changing availability of resources [33–

36].

In this framework, the values of all these parameters are computed with functional

responses based on resource availability, mosquito biology and innate preferences that con-

strain the parameters within sensible ranges. This formulation emphasizes how baseline mos-

quito bionomics for different species could respond to available resources and how those

responses would be modified by control. In particular, the same human behaviors can give rise

to very different blood feeding patterns for different vector species, depending on the daily

rhythms, host preferences, and aquatic ecology of different vector species (S3 Text). We thus

have a basis for understanding mosquito behaviors and ecology as a baseline that may have

been modified by vector control or weather.

Blood feeding in this model thus makes an important distinction between anthropophily, or

innate mosquito preferences for hosts of different types, and anthropophagy, summarized by

the human blood feeding rate (fq). Models can also consider a difference between the time of

day when mosquitoes are actively searching for blood (ξ) and the blood feeding rates by time

of day (f), which vary with host availability. Innate, species-specific host preferences are

embodied in functional forms and parameters, while the rates describing what has happened

also depend on context.

Similarly, mosquito population dynamics are an emergent feature of a resource landscape.

Since searching for resources is also associated with resource availability, adult mosquitoes will

tend to aggregate in patches that have habitats and other required resources. In these models,

egg-deposition rates in habitats by volant adult populations are spatially heterogeneous and

only partially determined by the emergence rates of adults from a single habitat. The concept

of a carrying capacity is, perhaps, not as useful as the concept of habitat productivity and the

functional forms that determine how the number of adults emerging is related to the number

of eggs laid [31]. A habitat’s carrying capacity only makes sense in the abstract—if adult mos-

quitoes emerging from a single habitat only laid eggs in that natal habitat. In this framework,

the aquatic population dynamic module determines how adult mosquito emergence rates

respond to egg laying by the adult population.

The parameters describing these processes are both habitat-specific and time-dependent:

density-independent mortality, density-dependent mortality, the response to crowding, matu-

ration rates, and search weights could vary for every habitat. A habitat can thus disappear sea-

sonally (which occurs when wν = 0), or weather could affect immature mosquito maturation

and mortality rates. If a study called for modeling resource-based competition or stage-struc-

tured mosquito populations, the equations describing aquatic populations (dL=dt) can be

modified as needed (Fig 1). The framework thus facilitates the construction of realistic models

of mosquito ecology, insofar as it is justified by data available and the needs of a study.

Local exposure, human biting rates and mixing

In defining the algorithms for blood feeding, we also developed a new model for the human

biting rate (HBR) and by extension, the entomological inoculation rate (EIR), two basic met-

rics used to measure malaria transmission entomologically.

The model emphasizes that for any population stratum, the risk of exposure to biting mos-

quitoes is distributed spatially. In these models, this is determined by a biting distribution

matrix (β). A similar matrix has appeared in other models for the spatial dynamics of mos-

quito-borne diseases for which human mobility is based on a concept of “visitation” or time

spent—classified as Lagrangian movement [7, 8, 10, 12–15, 17, 18, 45]. Here, β is based on a

concept of availability, the weighted, ambient population at risk. Availability is computed from
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observable quantities, and it is computed dynamically for arbitrarily defined human strata and

changing availability (the denominator). The formulas guarantee consistency in blood feeding:

the number of human blood meals taken by mosquitoes is equal to the number of blood meals

received by the humans.

In the new model, the HBR is defined as β � fqM and the EIR is β � fqZ, so that the number

of bites received by each stratum depends on how they spend their time at risk. In studies that

have reported a value for the HBR or EIR, the quantity reported is based on catch counts by a

person or device in a place. In this model, the quantity that is closest to the quantities being

estimated is pHBR or pEIR, the number human blood meals, or infectious human blood meals

in a patch, per available person, per day (fqM/W or fqZ/W). A person who is in a patch at a

particular time of day would experience the local biting rates at that time scaled by a search

weight (fqMξ(t)ωf/W or fqZξ(t)ωf/W). The quantity being estimated by human landing catches

is a measure of the intensity of exposure in a place.

Since other hosts are also available, the number of mosquitoes caught also depends on the

biases of the trapping method. In this model, each method for trapping mosquitoes can be

thought of as having its own “availability,” and it is competing for the attention of mosquitoes.

Each method for catching mosquitoes is biased in some unknown way. We thus suggest that

field methods designed to estimate the EIR are best interpreted as a location-specific measure

of risk in a place, and that epidemiologically relevant measures of risk must acknowledge expo-

sure occurring for a period of time, including all the places where a person spends time. The

pEIR, weighted by total availability, is a good approximation of the EIR only if a person spends

most of their time at risk in that place. The formulas presented here are useful to quantify how

local measures of mosquito blood feeding in a place could differ from what the humans living

in that place would experience. What is the difference between risk for a human who moves

around compared to their counterfactual self who never leaves home?

The spatial scales of transmission

Important considerations for planning, monitoring, and evaluating malaria control are the

spatial scales that characterize transmission, as defined by parasite dispersal in mosquitoes or

humans. We have defined parasite dispersal rigorously in terms of the locations where blood

meals occurred that transmitted parasites in dispersal chains. While these definitions are com-

pelling, the distribution of distances separating every pair of infectious bites in a chain of

malaria infections can only be approximated using other data. In practice, the framework we

have described makes a distinction between local transmission and imported or exported

malaria. The framework makes the most sense mathematically if most transmission is local,

but the framework also defines quantities for malaria importation and exportation, making it

possible to study connectivity using a frame that shifts among spatial domains and across spa-

tial scales.

After drawing a bounding box to define a spatial domain and a set of patches, we classify

any pair of bites in a transmission chain where at least one occurred in the patch: either both

bites occurred somewhere in the spatial domain, called local transmission; or the first bite

occurred outside the spatial domain, called imported malaria; or the second bite occurred out-

side the spatial domain, called exported malaria. These measures of imported and exported

malaria thus provide a basis for understanding and quantifying dispersal within and among

defined geographical areas. These models weigh the consequences of imported malaria, but as

a practical matter, the importance of exported malaria is difficult to quantify because the

expected number of subsequent bites depends on conditions somewhere else. Importantly, the

fraction that stays local may differ depending on whether the parasite is moving in a mosquito
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or a human. Similar definitions and arguments would apply to transmission through a full par-

asite generation encompassing three bites and two jumps. The metrics we have developed

describe transmission within a defined geographical domain, but if there is a need, the models

can be reformulated for a larger spatial domain.

The models and metrics provide a way of characterizing the spatial scales of transmission

by computing the cumulative fraction of all transmission occurring within a circle of a given

radius. Sensible points on that curve can be compared by patch: What distances contain 80%,

90%, 95%, or 98% of all transmission? These estimates are, out of necessity, based on estimated

quantities—models of mosquito mobility, human mobility, and modeled mosquito population

density—about which there is substantial uncertainty.

Despite the overall uncertainty, these spatial scales are constrained by limits on time and

travel. Some quantities are known from census data (e.g. population distributions). Most mos-

quito dispersal distances are short. Mosquitoes can move large distances, but most stay within

1 km of a natal habitat [63]. For humans, the fraction of time spent declines sharply with dis-

tance away from home. A large fraction of time is spent at home, especially at night, and a

larger fraction of the time is spent within roughly 10 km of home. The fraction of time spent

drops off sharply with log10 distance. The spatial scales also depend on transmission intensity.

In places with highly heterogeneous transmission, places with the highest transmission inten-

sity, will have the greater the fraction of transmission that occurs at short distances.

Mosquitoes, travel, and transmission

Highly spatially resolved data describing the EIR are rarely available. It is often cheaper, albeit

less accurate, to use cross-sectional blood survey data describing malaria prevalence (i.e. the

parasite rate, PR) to estimate local transmission. Spatial models and spatial metrics described

herein provide some guidelines about how patterns in the PR can be used to identify areas

with the most mosquitoes, particularly given the enormous heterogeneity in human popula-

tion density.

It is commonly assumed that local clustering of cases implies that there is local transmis-

sion. For models developed in this framework, the vectorial capacity matrix (Eq 39) describes

parasite dispersion by mosquitoes, and evidence suggests that the spatial scales describing par-

asite dispersal by mosquitoes could vary by context [63].

Importantly, imported malaria can confound the relationship between local transmission

by mosquitoes and prevalence. Travel habits and other traits describing humans often cluster

spatially, partly because human neighborhoods are organized by socio-economic status. Spatial

clustering of cases could arise if travel habits and thus malaria importation rates are spatially

clustered, giving the appearance of local transmission.

Measuring reproductive success

The most complete measure of transmission in an area is a reproductive number—the number

of malaria cases arising from each malaria case after one complete parasite generation. We

have defined reproductive matrices in several ways as matrices describing reproductive success

among patches within a spatial domain, which can be used to define local reproductive num-

bers as cases arising from a patch. These reproductive matrices form a basis for investigating

the appropriate spatial scales to measure and model transmission, for estimating contamina-

tion in randomized control trials, and for understanding the spatial effect sizes of control.

These can put other data into a context that is relevant for transmission. For example, mos-

quito counts data and measures of malaria can vary over very short distances [28, 63]. The

functional relevance of local heterogeneity in mosquito catch counts or in malaria prevalence
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can be critically examined by examining a matrix that integrates the effects of parasite move-

ment in both mosquitoes and humans. After fully considering the uncertainty, it may be possi-

ble to determine the relevant spatial scales of transmission and thus the relevant spatial units

for estimating reproductive numbers for malaria dynamics and control.

Discussion

The simplicity of the Ross-Macdonald model can be contrasted with Hackett’s description of

the elaborate and context-dependent nature of malaria that he observed in the field [27]:

. . .malaria is so moulded and altered by local conditions that it becomes a thousand different
diseases and epidemiological puzzles. Like chess, it is played with a few pieces, but is capable
of an infinite variety of situations.

The Ross-Macdonald model clearly identified enough chess pieces to develop basic con-

cepts and theory to describe and measure malaria transmission [1], such as vectorial capacity,

the basic reproductive numbers, daily human biting rates, sporozoite rates, entomological

inoculation rates, and malaria parasite rates (i.e. prevalence). These basic metrics have formed

the basis for quantitative studies of malaria transmission, but they ignored heterogeneity and

complexity. In particular, the metrics and associated concepts describing parasite dispersal in

infected mosquitoes and humans were missing.

Parasite dispersal is defined by the locations where infecting bites occurred in chains of

transmission, tracing dispersal events backwards through alternating jumps in moving,

infected humans and mosquitoes. It is practically impossible to study transmission directly,

but this framework has established a quantitative basis for studying transmission through a set

of constructs describing closely related processes that can be observed. We have established a

basis for describing dispersal rigorously, and for analyzing dispersal and simulating transmis-

sion. The metrics and concepts we have proposed here are designed to quantify transmission

(and uncertainty about transmission) through the study of patterns and the processes that gen-

erated them. The metrics provide a rigorous way of quantifying parasite dispersal and spatial

transmission intensity.

In developing models of a specific place for monitoring and evaluating malaria, it is

important to understand where and when transmission occurs as well as the local contextual

factors that shape transmission. In the Ross-Macdonald model, the basic notions of repro-

ductive success, transmission, and community effect sizes of control were based on the

abstract notion of a population, but it was never clear how to define a population for pur-

poses of quantifying malaria transmission dynamics: “What, if anything, is a malaria popula-

tion?” Focal transmission has been described [64], but without a quantitative basis for

quantifying malaria spatial heterogeneity and spatial dynamics, there was no basis for a

nuanced quantitative discussion about “What, if anything, is a focus?” Without defining

explicit boundary conditions, it was easy to ignore malaria importation: “What fraction of

malaria in a defined area was attributable to local transmission?” Without modeling struc-

tured populations, it was impossible to understand how differences in human behaviors

would affect transmission [65]. Who is responsible for most local transmission or malaria

importation? In malaria control, these discussions have focused on the issue of stratification,

but it remains unclear whether those strata should define sub-populations, spatial areas, or

both. Without a framework for understanding malaria transmission spatially in heteroge-

neous populations, it was difficult to develop a consistent methodology for quantifying trans-

mission in a specific place and time.
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We have synthesized a set of old, new, and revised models to fully develop concepts, con-

strain parameters, and update basic concepts and metrics in a spatial context. New algorithms

have filled a need to connect model parameters with data and remove bias while guaranteeing

mathematical consistency. The new framework and spatial metrics make model complexity

scalable, and it provides a way to study the role of context in mosquito ecology and malaria

transmission. How and why do bionomic parameters vary over space and time? What spatial

scales characterize mosquito populations? What are the appropriate spatial scales to measure

transmission and intervention coverage as a spatial average? What are some appropriate meth-

ods for dealing with population heterogeneity, including heterogeneity arising from differ-

ences in behavior, exposure, or immunity?

The framework emphasizes the way we organize our knowledge about malaria into bins of

expertise. Given the complexity of the problem, this means modellers can build models that

adapt over time as more information about transmission in a place accumulates. The first

models can focus on components whose dynamics are better known, and use simpler, prag-

matic approaches to parts of the model whose mechanistic foundations are more uncertain.

Our framework can make it easier to build ensembles of plausible models that cover this

uncertainty. Model building and model comparison makes it possible to weigh the importance

of various factors in context. In asking where transmission is occurring, we are concerned

about mosquito populations, human behaviors, and human blood feeding. In asking who is

responsible for malaria, we are not just concerned about differences in infectiousness, but also

populations who import malaria, and strata who play an out-sized role in moving malaria

around an area. These are the basic quantities that play a role in spatial targeting and in tailor-

ing interventions to context.

Conclusion

The goal of this study was to develop and present a framework—including mathematical the-

ory and software—to support malaria programs with planning, monitoring and evaluating

malaria control. In this manuscript, we describe how to build, solve, and analyze systems of

differential equations to model the spatial transmission dynamics of malaria. Suites of models

developed in this framework can be used to synthesize data, to quantify the major factors

affecting transmission in a particular place, to identify critical data gaps, to prioritize new data

collection, to propagate uncertainty through analyses, and to support policy. The spatial met-

rics and concepts describe an important dimension of malaria transmission that can help tailor

and target interventions. In future studies, we plan to address concerns about the temporal

dimensions of transmission, including threshold conditions when transmission is seasonal,

methods for incorporating forcing by weather and vector control, and the spatial dimensions

of malaria control. We plan to use the framework to synthesize evidence and to give robust

policy advice about malaria control on Bioko Island, and elsewhere, iteratively as part of adap-

tive malaria control.

Models developed within this framework—as systems of differential equations—have some

advantages and some disadvantages compared to other models. One advantage of this frame-

work is that the models are comparatively easy to understand, modify, and analyze. Because of

the modular design, it is possible to build suites of models that start simple and progressively

add realism by combining factors from other studies. The framework was designed to lower

the costs of building models with arbitrary amounts of realism, so that the model building pro-

cess is nimble enough to adapt to any problem. We envision this framework as the start of a

comprehensive theory for how transmission works, not as a final stage of some trajectory of

model development or elaboration. An obvious disadvantage of this framework, however, is
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the inability to model stochasticity in the modeled processes, which is especially relevant when

population sizes are small, when the disease is invading or near elimination, or when it is

important to critically evaluate the measurement of malaria [66]. Individual-based models

(IBMs), a commonly used alternative, can handle a great deal of biological complexity and

they are implicitly stochastic [67–78]. A disadvantage of IBMs is that the models are harder to

understand, that the software constrains the choices—the mechanisms and level of detail—in

ways that might not always be apparent to the end user. While the stochasticity matches a fea-

ture of the data, there is no guarantee that the IBMs have the right kind of stochasticity, and

the noise might obscure other inadequacies of a model. Our theory of transmission generates

mathematical constraints between the state variables in the system; while the composed mod-

els, constrained by theory, are interpreted here as systems of differential equations, this is not a

strict requirement of the framework and future work may explore different mathematical

interpretations, including stochastic dynamics.

Policy advice that is based on analysis should go through a rigorous evaluation of its robust-

ness—would the advice change if the analysis had been done in a slightly different but reason-

able way? When the advice is based on simulation models, an open question is what kind of

model would work best. Ideally, the models would be tested through frequent comparisons to

data, but chances to make definitive tests of models against data are rare. Notably, studies of

other systems have shown that models with very different underlying mathematics often rank

policy options similarly [79]. This is an important kind of study to apply to questions about

vector control, disease control, and malaria elimination. Studies should compare models devel-

oped within different frameworks and with different levels of detail, through model-model

comparison, to identify where the analyses would point to different policy recommendations.

A nimble framework to support policy would ideally include the ability to compare determin-

istic and stochastic models (with various sorts of noise, and demographic stochasticity) with

the same level of exogenous forcing by malaria importation, weather, and vector control. An

important goal of building frameworks is to conduct studies to identify the appropriate level of

complexity through the identification of biologically and policy relevant details [4].

In adaptive management, our goals are to support monitoring and evaluation by developing

rigorous methods that quantify malaria transmission as a changing baseline (e.g., forced by

weather and other factors) that has been modified by control. In other settings, this framework

can be used to enhance the design of randomized control trials or to help programs implement

and interpret ad hoc experiments to fill local knowledge gaps. Simulation-based analytics in

this framework can be updated using evidence collected by malaria programs to update models

and analysis and revise policy recommendations, to target and tailor interventions, and to use

evidence to adapt to changing local conditions.
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