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ABSTRACT
Interactive recommendation enables users to provide verbal and
non-verbal relevance feedback (such as natural-language critiques
and likes/dislikes) when viewing a ranked list of recommendations
(such as images of fashion products), in order to guide the rec-
ommender system towards their desired items (i.e. goals) across
multiple interaction turns. Such a multi-modal interactive recom-
mendation (MMIR) task has been successfully formulated with deep
reinforcement learning (DRL) algorithms by simulating the inter-
actions between an environment (i.e. a user) and an agent (i.e. a
recommender system). However, it is typically challenging and un-
stable to optimise the agent to improve the recommendation quality
associated with implicit learning of multi-modal representations
in an end-to-end fashion in DRL. This is known as the coupling of
policy optimisation and representation learning. To address this
coupling issue, we propose a novel goal-oriented multi-modal inter-
active recommendation model (GOMMIR) that uses both verbal and
non-verbal relevance feedback to effectively incorporate the users’
preferences over time. Specifically, our GOMMIR model employs
a multi-task learning approach to explicitly learn the multi-modal
representations using a multi-modal composition network when
optimising the recommendation agent. Moreover, we formulate the
MMIR task using goal-oriented reinforcement learning and enhance
the optimisation objective by leveraging non-verbal relevance feed-
back for hard negative sampling and providing extra goal-oriented
rewards to effectively optimise the recommendation agent. Fol-
lowing previous work, we train and evaluate our GOMMIR model
by using user simulators that can generate natural-language feed-
back about the recommendations as a surrogate for real human
users. Experiments conducted on four well-known fashion datasets
demonstrate that our proposed GOMMIR model yields significant
improvements in comparison to the existing state-of-the-art base-
line models.

CCS CONCEPTS
• Information systems → Recommender systems; • Theory
of computation → Reinforcement learning.

KEYWORDS
interactive recommendation, multi-modal, reinforcement learning,
relevance feedback
RecSys ’23, September 18–22, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Seventeenth ACM
Conference on Recommender Systems (RecSys ’23), September 18–22, 2023, Singapore,
Singapore, https://doi.org/10.1145/3604915.3608775.

ACM Reference Format:
Yaxiong Wu, Craig Macdonald, and Iadh Ounis. 2023. Goal-Oriented Multi-
Modal Interactive Recommendation with Verbal and Non-Verbal Relevance
Feedback. In Seventeenth ACM Conference on Recommender Systems (RecSys
’23), September 18–22, 2023, Singapore, Singapore. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3604915.3608775

1 INTRODUCTION
Interactive recommendation is a type of interactive information-
seeking task [13, 17, 24, 28, 56], which aims to satisfy the users’ dy-
namic information needs by interactively and continuously collect-
ing the users’ verbal (such as natural-language critiques) and non-
verbal (such as likes/dislikes) feedback in relation to the system’s
recommendations. In particular, multi-modal interactive recom-
mendation (MMIR) involves information with various modalities,
such as natural language and images. In a multi-modal interactive
recommendation scenario, users can express their preferences in
natural language, and indicate their positive/negative opinions by
clicking like/dislike buttons when viewing a ranked list of visual
recommendations (such as images of fashion products). Figure 1
shows an example of multi-modal interactive recommendation with
both verbal and non-verbal relevance feedback. In this use case, the
user indicates the particularly liked item image(s) among the top-𝐾
(e.g., 𝐾 = 3) recommended items and provides a natural-language
critique at each interaction turn to obtain items with better pre-
ferred features, while tagging the other recommendations with a
“dislike” if they are less relevant to the user’s preferences. Such a
multi-modal interactive recommendation task is inherently a “goal-
oriented” information-seeking process when a user seeks a target
item (i.e. a visual goal) and gives natural-language feedback us-
ing the user’s preferred features (i.e. textual goals) across multiple
interactions.

Interactive recommendation tasks have been typically formu-
lated using deep reinforcement learning (DRL) approaches [14,
21, 29, 30, 39, 45, 53, 57]. Indeed, such approaches have demon-
strated an ability to capture the users’ preferences and to max-
imise the expected long-term cumulative rewards (such as fewer
efforts/interactions to find the desired items [19, 43]) when deciding
what items to recommend to the users (i.e. the environment) at
each interaction turn. However, it is typically challenging to learn
an effective multi-modal interactive recommendation agent due to
the so-called “coupling” of the policy optimisation (for improving
the quality of the recommendations) and representation learning
(for understanding the visual and textual information) [16]. In par-
ticular, prior research often found that learning representations
in an end-to-end fashion in DRL is usually unstable [26, 51] due
to the coupling issue. Indeed, the policy optimisation processes of
the existing DRL-based interactive recommendation models are

https://doi.org/10.1145/3604915.3608775
https://doi.org/10.1145/3604915.3608775


Figure 1: An example of multi-modal interactive recommen-
dation with both verbal and non-verbal relevance feedback.

associated with an implicit multi-modal representation learning
of discrete actions (i.e. the visual items), relevance feedback (i.e.
the natural-language critiques), and their composition of represen-
tations (i.e. the estimated preferences). Such implicit multi-modal
representation learning cannot guarantee good multi-modal rep-
resentations, yet the DRL algorithms require good representations
to drive the policy learning in a MMIR task. In particular, a simple
concatenation operation [19, 43, 45] for multi-modal feature com-
position between text (encoded with GloVe [36] or BERT [15]) and
image (encoded with ResNet [20]) representations does not pro-
vide an effective understanding of the users’ current information
needs at each turn. In addition, more advanced feature composition
approaches for combining image and text features (such as Text
Image Residual Gating (TIRG) [41] and CLIP for Conditioned image
retrieval (CLIP4Cir) [2, 3]) have been recently proposed by various
text-image retrieval models [10, 18, 41].We propose to leverage such
approaches as an extra multi-modal composition representation
learning task using multi-task learning [27] for decoupling the rep-
resentation learning from the policy optimisation in the MMIR task.

Along with the coupling issue, an appropriate optimisation ob-
jective for learning what to recommend at the next turn is typi-
cally important for improving the effectiveness of the interactive
recommendation agents [1, 9, 48]. However, the recommendation
policy optimisation functions adopted by existing interactive rec-
ommendation agents [19, 45, 57] are mainly based on both (1) a
sampled softmax [8] with randomly sampled negatives from the
whole candidate pool [19, 45], and (2) an uninformative reward
function that considers only the critiqued items [19, 45, 57] and/or
a sparse reward function defined as a binary credit (success or fail)
for reaching the desired item [57]. Due to the “goal-oriented” nature
of the multi-modal interactive recommendation task, goal-oriented
reinforcement learning (GORL) [11, 33] can be easily adapted to
the MMIR task with a goal-oriented policy optimisation function
that allows the agents to pursue their own goals (i.e. the users’ de-
sired items or the users’ critiques for acquiring their desired items)
and to learn to achieve their goals via goal-oriented rewards. In
the multi-modal interactive recommendation task, goals are both
the users’ target item (i.e. the visual goal) and the corresponding
natural-language critiques (i.e. the textual goals) in the multi-turn
interactions. These rewards can be formulated by using a distance
measure between the achieved textual goals and the desired vi-
sual goal without any domain knowledge [33]. In this paper, we
leverage a goal-oriented policy optimisation function with hard
negative samples obtained iteratively from the disliked items across
multiple interaction turns, as well as more informative rewards
by measuring the similarities between the retrieved top-𝐾 item
images (according to the estimated preferences at each turn) and
the user’s target item image. In addition, the critiqued items and
the corresponding natural-language critiques (the textual goals) are

collectively taken as the inputs of the interactive recommendation
agent for estimating the users’ preferences over time.

In this paper, we propose a novel goal-oriented multi-modal
interactive recommendation (GOMMIR) model for addressing the
so-called “coupling” issue, to use both verbal and non-verbal rel-
evance feedback to effectively incorporate the users’ preferences
over time. In particular, we formulate the MMIR task with goal-
oriented reinforcement learning [33] based on a policy gradient
method (i.e. REINFORCE [8]) to effectively optimise the recom-
mendation policy using hard negative sampling and goal-oriented
rewards for pursuing the textual and visual goals. Different from
the existing models, our proposed GOMMIR model adopts a re-
cent unified multi-modal vision and language model (i.e. CLIP) for
image and text encoding, as well as a Text Image Residual Gating
(TIRG) [41] component for multi-modal feature composition to bet-
ter understand the users’ current information needs at each turn.
For the training of our model, we adopt a multi-task learning [27]
approach that jointly leverages both a deep reinforcement learning
objective for improving the recommendation quality and a super-
vised learning objective for explicitly learning the multi-modal
composition representations. Following previous work [19, 43, 45],
we train and evaluate our proposed GOMMIR model by using user
simulators that can generate natural-language critiques about the
recommendations as a surrogate for real human users. Experiments
conducted on four well-known fashion datasets (Shoes, Dresses,
Shirts, and Tops & Tees) demonstrate that our proposed model
yields significant improvements in comparison to the existing state-
of-the-art baseline models. The main contributions of this paper
are summarised as follows:

• We propose a goal-oriented multi-modal interactive recom-
mendation (GOMMIR) model for addressing the coupling issue of
policy optimisation and representation learning from both the users’
verbal and non-verbal relevance feedback. Our model adopts an ad-
vanced multi-modal composition model (i.e. TIRG) and a multi-task
learning approach to explicitly learn the multi-modal composition
representations during the recommendation policy optimisation
process using goal-oriented reinforcement learning.

• The GOMMIR model leverages verbal relevance feedback as
textual sub-goals and adopts non-verbal relevance feedback for
hard negative sampling and the extra visual rewards.

• An extensive empirical evaluation is performed on the multi-
modal interactive recommendation task, demonstrating significant
improvements with GOMMIR over existing state-of-the-art ap-
proaches.

2 RELATEDWORK
In this section, we first introduce multi-modal interactive recom-
mendation. Then, we describe goal-oriented reinforcement learning.
Next, we discuss the use of verbal and non-verbal relevance feed-
back in recommendation.

Multi-Modal Interactive Recommendation. Recently, multi-modal
interactive recommendation has been intensively investigated in
the literature, as it can satisfy the users’ information needs by effec-
tively eliciting the users’ preferences from the visual recommenda-
tions (e.g., images of fashion products) and the corresponding verbal



and/or non-verbal relevance feedback (e.g., natural-language feed-
back and likes/dislikes) [7, 12, 19, 31, 45–47, 53]. These kinds of inter-
active recommendations are suited for taste-oriented domains such
as fashion, where search-type interaction methods are less useful.
Typically, the multi-modal interactive recommendation task focuses
on tracking and estimating the users’ preferences over time with a
state tracker, such as a gated recurrent unit (GRU) [19, 45], a long
short-term memory (LSTM) [57], a Transformer encoder [43, 47],
or an RNN-enhanced Transformer [46], in an end-to-end fashion
with supervised learning (SL) and/or deep reinforcement learning
(DRL) approaches. The representations of visual candidate items
and natural-language feedback are initially generated with pre-
trained models (such as ResNet for image encoding and BERT or
GloVe for text encoding), and are then implicitly further tuned
along with the recommendation policy optimisation. Most existing
multi-modal interactive recommendation models adopt a simple
concatenation operation for feature composition. However, learn-
ing representations in an end-to-end fashion in DRL is usually
unstable [16, 26, 51] due to the previously mentioned coupling is-
sue of policy optimisation and representation learning. Meanwhile,
the DRL algorithms require good representations to drive the policy
learning in a multi-modal interactive recommendation task. This so-
called coupling issue has not been fully explored in the multi-modal
interactive recommendation scenario.

Goal-Oriented Reinforcement Learning. Deep reinforcement learn-
ing has been widely adopted in recommender systems in order to
improve the quality of the recommendations while maximising
the users’ long-term satisfaction and engagement. Typically, the
multi-modal interactive recommendation task has been modelled
with reinforcement learning (RL) and formulated as Markov deci-
sion processes (MDPs) [19], partially observable Markov decision
processes (POMDPs) [45], constrained Markov decision processes
(CMDPs) [57] or multi-armed bandits [53] so as to effectively incor-
porate the users’ information needs across multiple turns. However,
the policy optimisation adopted by existing interactive recommen-
dation agents [19, 45, 57] is generally ineffective due to random
negative sampling [19, 45] and sparse/non-informative rewards (as
discussed in Section 1). Compared to the standard RL algorithms
that learn a policy solely based on the states or observations, goal-
oriented reinforcement learning (GORL) additionally requires the
agent to make decisions according to different goals [33]. A goal is
defined as “a cognitive representation of a future object" [11], which
the agent is committed to achieve or maintain. The goal-oriented
reinforcement learning approaches have been shown to improve
training sample efficiency by learning from self-generated rewards
(i.e. intrinsic rewards) when the external rewards are sparse. For
example, Wang et al. [42] proposed a novel model-based model,
GoalRec, based on a Dueling Deep Q-Network (DDQN), by design-
ing a disentangled universal value function with the users’ desired
future trajectory (i.e. goal). In addition, Zhao et al. [60] proposed
a novel multi-goals abstraction-based deep hierarchical reinforce-
ment learning algorithm (MaHRL) to generate multiple goals with
the high-level agent so as to reduce the difficulty for the low-level
agent to approach the high-level goals. The high-level agent catches
long-term sparse conversion signals, while the low-level agent cap-
tures short-term click signals. However, these existing formulations

of recommendation agents with GORL are not suitable for the
MMIR task where there is neither a desired future trajectory nor
any conversion signals that can be leveraged as a goal or to learn
high-level goals. Indeed, to the best of our knowledge, goal-oriented
reinforcement learning has not yet been explicitly formulated with
the MMIR scenario, which has both visual and textual goals for
optimising the recommendation policy.

Relevance Feedback in Recommendation. Relevance feedback pro-
vides indications about whether the shown recommendations are
relevant to the user’s current preferences. Both verbal (e.g., natural-
language feedback) and non-verbal (e.g., likes/dislikes, clicks, and
skips) relevance feedback have been intensively investigated in the
recommendation field [4, 12, 21, 61]. In particular, non-verbal rele-
vance feedback is often used to model the users’ behaviours and to
indicate their preferences. For instance, Zhao et al. [61] proposed the
DEERSmodel with a Deep Q-Network (DQN) to automatically learn
the optimal recommendation strategies through the incorporation
of positive (such as purchases) and negative (such as skips) feed-
back for sequential recommendations. In addition, natural-language
feedback has been shown to be more informative about the users’
preferences in comparison to non-verbal relevance feedback (e.g.,
ratings and clicks) [17, 24]. For instance, existing conversational
recommendation models either allow the users to describe their
preferred attributes as positive feedback [19, 21, 39, 43, 52, 53, 59]
(e.g., “I prefer dresses with longer sleeves.”) or to provide disliked
attributes as negative feedback [47] (e.g., “I dislike shoes with high
heels.”). In addition, the users can also answer some attribute-level
clarification questions (e.g., “Do you like a red colour?”) with a
binary yes/no response, while rejecting the undesired item-level
recommendations [6, 29, 50]. In this paper, we consider both verbal
(e.g., natural-language critiques) and non-verbal (e.g., likes/dislikes)
relevance feedback from the user’s multi-turn interactions to incor-
porate their preferences in the MMIR task.

We particularly argue that the existing multi-modal recommen-
dation models [19, 46, 57] have not effectively addressed the cou-
pling issue of the policy optimisation and representation learning
from both the verbal and non-verbal relevance feedback. Such an
issue limits these models’ ability at incorporating the users’ prefer-
ences over time. Our proposed GOMMIR model aims to address the
coupling issue by adopting an advanced multi-modal composition
model (such as TIRG [41]) and a multi-task learning approach to
explicitly learn the multi-modal composition representations dur-
ing the recommendation policy optimisation process driven by a
goal-oriented reinforcement learning.

3 THE GOMMIR MODEL
In this section, we first formulate the problem of the MMIR task
via DRL using goal-oriented partially observable Markov decision
processes (GO-POMDP) and introduce our notations. Next, in Sec-
tion 3.2, we propose a novel goal-oriented multi-modal interac-
tive recommendation (GOMMIR) model to effectively incorporate
the users’ preferences over time with both verbal and non-verbal
relevance feedback. Finally, we define the negative sampling and
rewards that are suitable for this MMIR scenario (Section 3.3).



(a) Traditional RL with a MDP/POMDP (b) GO-POMDP for MMIR

Figure 2: Traditional RL with a MDP/POMDP [22] and GO-POMDP for MMIR.

3.1 Preliminaries
3.1.1 GO-POMDP for MMIR. Figure 2 (a) shows the traditional
RL as a Markov decision process (MDP) or a partially observable
Markov decision process (MDP) in formulating interactive/sequential
recommendations [1, 9, 22, 32]. In this scenario, the users’ interac-
tions with the recommended items (actions) are returned as feed-
back (the so-called observations from the environments, such as
views, clicks, skips, purchases, and ratings) to the recommendation
agents, which usually convert the users’ feedback into a reward sig-
nal [22]. The scalar values of the rewards vary based on the different
types of feedback (e.g., purchases have high rewards and skips have
low rewards). The aim of traditional RL with a MDP/POMDP is
to optimise the recommendation agents by maximising the cumu-
lative rewards across the multiple interaction turns. On the other
hand, Figure 2 (b) illustrates a goal-oriented partially observable
Markov decision process (GO-POMDP) for the MMIR task. Differ-
ent from the traditional RL with MDPs, the rewards are calculated
based on the distances/similarities between the actions (the rec-
ommended items) and the goal (the target item). The goal can be
either fully represented with an image as a visual goal or partially
represented with a natural-language sentence as a textual goal. In
particular, users can provide natural-language feedback (critiques),
which typically only partially express their preferences [45], by
eliciting the missing attributes of the target item (goal) compared to
the recommendation items (actions). To this end, the users’ natural-
language feedback (critiques) can be seen both as an integral part
of the environment observations, as well as textual goals towards
the users’ desired item. The aim of GO-POMDP is to guide the
recommendation agents towards the goals (both the textual goals
with the critiques and the visual goal with the target item) by
taking the critiques (textual goals) as a part of the inputs to the
recommendation agents and achieving the maximum cumulative
distance-based/similarity-based rewards. Here, we mainly focus on
goals in terms of visual features with images and textual inputs
due to the limitations of the available datasets. Indeed, we believe
that our formulation with GO-POMDP can also be generalised with
goals in terms of other non-visual features, such as brands, prices,
and functionalities. We leave this as an interesting future work.

3.1.2 Notations. Specifically, we formulate the multi-modal inter-
active recommendation (MMIR) task as a goal-oriented partially
observable Markov decision process (GO-POMDP) with a tuple
of seven elements (S,A,O,T ,G, 𝑟 , 𝛾) to describe the multi-modal
interactive recommendation process, where: S is a continuous state
space to describe the user states; A is a discrete action space that
contains candidate items for recommendation; O is a set of ob-
servations, which are the users’ verbal (e.g., the natural-language
critiques) and non-verbal (e.g., likes/dislikes) relevance feedback; T

is a set of conditional transition probabilities between states; G is a
set of visual goals (i.e. the users’ target items); 𝑅 ∈ R is the reward
function, where 𝑟 (𝑠, 𝑎, 𝑔) is the immediate reward obtained from a
user with a desired goal 𝑔 ∈ G by performing action 𝑎 ∈ A at user
state 𝑠 ∈ S; 𝛾 ∈ [0, 1] is the discount factor for future rewards.

Figure 3 shows the goal-oriented interactive recommendation
process with both verbal and non-verbal relevance feedback for
top-𝐾 recommendations. During the interaction process (with an
initial state 𝑠0), the recommender system suggests a ranking of top-
𝐾 items (𝑎𝑡,≤𝐾 = (𝑎𝑡,1, ..., 𝑎𝑡,𝐾 ) ∈ A) at each turn 𝑡 . Meanwhile,
the user provides non-verbal relevance feedback (e.g., likes/dislikes)
and gives natural-language feedback (𝑜𝑡 ∈ O) in terms of the
liked item(s) among the current top-𝐾 recommendations 𝑎𝑡,≤𝐾
by describing the desired features that the current recommended
item(s) lack. In this goal-oriented seeking process, we assume that
the user gives natural-language feedback on the recommended
item that is the most similar item to their perceived target item.
Then, the recommender system collects both the top-𝐾 recom-
mendations 𝑎𝑡,≤𝐾 and the corresponding relevance feedback 𝑜𝑡 to
track/estimate the user’s preferences according to the transition
distribution, 𝑠𝑡+1 ∼ T (𝑠𝑡+1 |𝑠𝑡 , 𝑜𝑡 , 𝑎𝑡,≤𝐾 ). The recommender system
takes actions according to its policy 𝜋 (𝑎𝑡+1,≤𝐾 |𝑠𝑡+1), which returns
the probability of taking action 𝑎𝑡+1,≤𝐾 at turn 𝑡 + 1. Hence, the
interactive recommendation process decomposes the long-term,
hard-reaching goals (i.e. the users’ desired items 𝑔) into easily ob-
tained sub-goals expressed by the users’ natural-language critiques
𝑜𝑡 (i.e. the textual goals).

3.2 The Model Architecture
Figure 4 shows our proposed GOMMIRmodel for multi-modal inter-
active recommendations. In particular, we leverage a pre-processing
stage for identifying the critiqued items with the non-verbal rele-
vance feedback (i.e. likes/dislikes), a multi-modal encoding stage for
extracting textual and visual representations, a composition stage
for multi-modal feature composition, a state tracking stage for
tracking/estimating the users’ preferences over time, and a ranking
stage for recommending visual items.

Pre-processing Stage. The goal of the pre-processing step is to
identify the critiqued item(s) from the non-verbal relevance feed-
back (i.e. likes and dislikes), to infer the index numbers of the
liked item(s) (i.e. 𝑎𝑡,𝑢 ,where 𝑢 ∈ [1, 𝐾]) and the disliked items (i.e.
𝑎𝑡,𝑑 ,where 𝑑 ∈ [1, 𝐾]) among the recommendation list 𝑎𝑡≤𝐾 . The
identified liked item(s) are then passed to the subsequent text and
image encoders for extracting features, while the disliked items
are stored in the set of negative feedback history. The negative
feedback history with the disliked items is used as hard negative
samples for model optimisation, as described in Section 3.3.



Figure 3: The goal-oriented interactive recommendation pro-
cess with verbal & non-verbal relevance feedback for top-𝐾
recommendations.

Multi-Modal Encoding Stage. To represent the textual content
related to the users’ preferences, both the users’ natural-language
feedback and the recommender system’s visual recommendations
are encoded into embedded vector representations, using a text
encoder and an image encoder, respectively. In particular, we lever-
age a pre-trained vision and language model, called CLIP [37], for
both image encoding and text encoding. Different from ResNet and
GloVe/BERT for image and text encoding [19, 43, 45, 47] used by
previous work in this task [19, 43, 47], CLIP can provide unified rep-
resentation vectors for each modality with the same dimensionality.
For instance, an image of red shoes has a similar representation
vector to the text “red shoes”. Given a user’s natural-language feed-
back 𝑜𝑡 at the 𝑡-th dialog turn, the encoded textual representation
is denoted by 𝑜 ′𝑡 = 𝑁𝑜𝑟𝑚(𝐿𝑖𝑛𝑒𝑎𝑟 (𝐶𝐿𝐼𝑃𝑡𝑥𝑡 (𝑜𝑡 ))). Similarly, given a
liked image 𝑎𝑡,𝑢 at the 𝑡-th turn, the encoded image representation
is denoted by 𝑎′𝑡,𝑢 = 𝑁𝑜𝑟𝑚(𝐿𝑖𝑛𝑒𝑎𝑟 (𝐶𝐿𝐼𝑃𝑖𝑚𝑔 (𝑎𝑡,𝑢 ))). For simplicity
of notation, we use 𝑎𝑡 and 𝑜𝑡 directly to denote their representations
(i.e. 𝑎′𝑡 and 𝑜

′
𝑡 ), respectively.

To understand the user’s current information needs from the
recommendations and the corresponding relevance feedback at
each turn, we need to generate a new composed candidate image
representation instead of simply concatenating the text and image
representations. We adopt a representative composition network𝜓
(in particular, Text Image Residual Gating (TIRG) [41]) to combine
image and text representaions with a gated feature 𝑓𝑔𝑎𝑡𝑒 (𝑎𝑡,𝑢 , 𝑜𝑡 )
to establish the input image representation 𝑎𝑡,𝑢 as a “reference”
to the output composition representation and a residual feature
𝑓𝑟𝑒𝑠 (𝑎𝑡,𝑢 , 𝑜𝑡 ) to describe the “modification” on the “reference” in
the feature space [41]. The multi-modal composition feature 𝑐𝑡 =
𝜓 (𝑎𝑡,𝑢 , 𝑜𝑡 ) is computed by:

𝑐𝑡 = 𝜓 (𝑎𝑡,𝑢 , 𝑜𝑡 ) = 𝜔𝑔 𝑓𝑔𝑎𝑡𝑒 (𝑎𝑡,𝑢 , 𝑜𝑡 ) + 𝜔𝑟 𝑓𝑟𝑒𝑠 (𝑎𝑡,𝑢 , 𝑜𝑡 ) (1)

𝑓𝑔𝑎𝑡𝑒 (𝑎𝑡,𝑢 , 𝑜𝑡 ) = 𝜎 (𝑊𝑔2 ∗ 𝑅𝑒𝐿𝑈 (𝑊𝑔1 ∗ [𝑎𝑡,𝑢 , 𝑜𝑡 ])) ⊙ 𝑎𝑡,𝑢 (2)

𝑓𝑟𝑒𝑠 (𝑎𝑡,𝑢 , 𝑜𝑡 ) =𝑊𝑟2 ∗ 𝑅𝑒𝐿𝑈 (𝑊𝑟1 ∗ [𝑎𝑡,𝑢 , 𝑜𝑡 ]) (3)
where 𝜔𝑔 and 𝜔𝑟 are learnable weights. 𝜎 (·) and 𝑅𝑒𝐿𝑈 (·) are the
Sigmoid and the Rectified Linear Unit (ReLU) functions.𝑊𝑔1,𝑊𝑔2,
𝑊𝑟1, and𝑊𝑟2 are convolution filters. ⊙ denotes element-wise prod-
uct, and * denotes a 2d convolution with batch normalisation.

State Tracking Stage. To incorporate the users’ preferences from
the combined text and image representations 𝑐𝑡 = 𝜓 (𝑎𝑡,𝑢 , 𝑜𝑡 ), we
leverage a Transformer encoder 𝑇𝑟𝑎𝑛𝐸𝑛𝑐 (·), as in [43, 46, 47], as a
state tracker to track/estimate the interaction states. In particular,
the Transformer encoder allows our GOMMIRmodel to sequentially
aggregate the recommendation and feedback information from the
multi-modal composition feature 𝑐𝑡 to attend to the entire feedback
history during each interaction turn. The estimated state of the

Figure 4: The proposed GOMMIR model for multi-modal
interactive recommendations.
user’s preferences can be obtained as follows:

𝑠𝑡+1 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑇𝑎𝑛ℎ(𝑀𝑒𝑎𝑛(𝑇𝑟𝑎𝑛𝐸𝑛𝑐 ( [𝑐≤𝑡 , 𝑜≤𝑡 ])))) (4)

where 𝑐≤𝑡 = (𝑐0, ..., 𝑐𝑡 ) and 𝑜≤𝑡 = (𝑜0, ..., 𝑜𝑡 ) are the composition
representations and critique histories, respectively.

Ranking Stage. Based on the estimated final state of the user’s
preferences, we adopt a greedy policy [19, 45] to recommend a
candidate item list for the next action. In particular, we select
the top-𝐾 closest images to the estimated state 𝑠𝑡+1 under the Eu-
clidean distance in the image feature space: 𝑎𝑡+1,≤𝐾 ∼ 𝐾𝑁𝑁𝑠 (𝑠𝑡+1),
where 𝐾𝑁𝑁𝑠 (·) is a softmax distribution over the top-𝐾 nearest
neighbours of 𝑠𝑡+1 and 𝑎𝑡+1,≤𝐾 = (𝑎𝑡+1,1, ..., 𝑎𝑡+1,𝐾 ). Furthermore,
based on the interaction history ℎ𝑡 = (𝑜≤𝑡 , 𝑎≤𝑡,≤𝐾 ), a post-filter is
adopted to remove any previously recommended candidate items
from the ranking. Indeed, since these items have already been
shown to the user, they are assumed to be non-relevant, and do not
need to be re-shown again [45].

To summarise, in the GOMMIR model, we maintain the Trans-
former Encoder for state tracking and the 𝐾𝑁𝑁𝑠 (·) for sampling
as in the state-of-the-art approaches [43, 46, 47]. Meanwhile, we
leverage the CLIP-based multi-modal encoders and a composition
network (i.e. TIRG [41]) to explicitly learn the multi-modal com-
position features at each turn and to better incorporate the users’
dynamic preferences, rather than using a simple concatenation
operation [19, 43, 45] (as described in Sections 1 & 2).

3.3 Learning Algorithm
We adopt a multi-task learning [27] approach for GO-POMDP to
optimise the recommendation policy with a policy gradient method
(e.g., REINFORCE [8]) learning loss and to explicitly learn good
representations of the multi-modal composition features with a
supervised learning loss. Although value-based methods (such as
DQN [35]) have demonstrated many advantages in solving DRL
problems, they are known to be prone to instability with value
function approximations [8, 40, 48]. Alternatively, policy-based
methods (such as REINFORCE) are more stable given a sufficiently
small learning rate [8] compared to value-based methods (such as
DQN [35]). Therefore, we rely on a policy gradient method (in par-
ticular REINFORCE) and enrich this on-policy method with goals
for the MMIR task.

3.3.1 Goal-Oriented Policy Optimisation. The objective of goal-
oriented policy optimisation is to reach the goal𝑔 via a goal-oriented
policy 𝜋\ (\ ∈ R denotes policy parameters) that maximises the
expectation of the cumulative return over the goal distribution:

max
\

𝐽 (𝜋\ ) = max
\
E

𝜏∼𝜋\
[𝑅(𝜏)] (5)



where 𝑅(𝜏) = ∑𝑇
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡,≤𝐾 , 𝑔) is the discounted cumulative
reward, and𝑇 is themaximum turn in the interaction trajectory. The
expectation is taken over trajectories 𝜏 = ((𝑜0, 𝑎0,≤𝐾 ), ..., (𝑜𝑇 , 𝑎𝑇,≤𝐾 )).

We define the loss for optimising the recommendation policy
based on the gradient of 𝐽 (𝜋\ ) with REINFORCE. Specifically, the
gradient of Equation (5) can be computed as follows:

∇\ 𝐽 (𝜋\ ) = E
𝜏∼𝜋\

[
𝑇∑︁
𝑡=0

∇\ log𝜋\ (𝑎𝑡,≤𝐾 |𝑠𝑡 )𝑅(𝜏)] (6)

We define log𝜋\ (𝑎𝑡,≤𝐾 |𝑠𝑡 ) as a softmax cross-entropy objective to
identify the positive sample amongst a set of negative samples:

log𝜋\ (𝑎𝑡,≤𝐾 |𝑠𝑡 ) = log( 𝑒^ (𝑠𝑡 ,𝑔)

𝑒^ (𝑠𝑡 ,𝑔) +∑𝐽
𝑗=1 𝑒

^ (𝑠𝑡 ,𝑎−𝑗 )
) (7)

where ^ (·) is a similarity kernel that can be the dot product or the
negative 𝑙2 distance in our experiments.𝑔 is a target image represen-
tation, and 𝑎−

𝑗
( 𝑗 ∈ [1, 𝐽 ]) are negative sample representations. The

negative samples are usually randomly sampled images from the
candidate pool in the previous research [19, 43, 45]. To leverage the
benefits from the non-verbal relevance feedback, as hard negative
samples, we iteratively consider randomly sampled images from
the previously disliked recommendations (𝑎0,𝑑 , ..., 𝑎𝑡−1,𝑑 ) and the
disliked items in the following turn 𝑎𝑡,𝑑 , i.e. 𝑎−𝑑,𝑗 ( 𝑗 ∈ [1, 𝐽 ]). There-
fore, we optimise the policy after we collect the users’ relevance
feedback 𝑜𝑡 and 𝑎𝑡,𝑑 .

We define the goal-oriented reward 𝑟 (𝑠𝑡 , 𝑎𝑡,≤𝐾 , 𝑔) as the sum of
the similarities between all the top-𝐾 candidates and the goal:

𝑟 (𝑠𝑡 , 𝑎𝑡,≤𝐾 , 𝑔) =
𝐾∑︁
𝑖=1

^ (𝑎𝑡,𝑖 , 𝑔) = ^ (𝑎𝑡,𝑢 , 𝑔) +
𝐾−1∑︁
𝑑=1

^ (𝑎𝑡,𝑑 , 𝑔) (8)

Here, we expect our GOMMIR model to learn from rewards
𝑟𝑡,𝑢 = ^ (𝑎𝑡,𝑢 , 𝑔) on the critiqued/liked items, as well as from the
extra rewards 𝑟𝑡,𝑑 =

∑𝐾−1
𝑑=1 ^ (𝑎𝑡,𝑑 , 𝑔) on the disliked items. Both the

hard negative sampling and the extra visual rewards 𝑟𝑡,𝑑 on the
disliked items provide further information relating to the target
item, thereby enhancing the goal-oriented optimisation objective
to effectively optimise the recommendation agent.

3.3.2 Composition Representation Learning. To learn the multi-
modal composition representation explicitly, we leverage a triplet
loss objective for composition representation learning along with
the policy optimisation process. Given a multi-modal composition
feature 𝑐𝑡 = 𝜓𝜙 (𝑎𝑡,𝑢 , 𝑜𝑡 ), a target item (i.e. the goal)𝑔 and a negative
sample 𝑎− , the composition loss 𝐿(𝜓𝜙 ) can be defined as follows:

max
𝜙

𝐿(𝜓𝜙 ) =
𝑇∑︁
𝑡=0

max
𝜙

(0, 𝑙2 (𝑐𝑡 , 𝑔) − 𝑙2 (𝑐𝑡 , 𝑎−) + 𝜖1) (9)

where 𝜙 ∈ R denotes the parameters of the composition network
𝜓 . 𝑙2 (·) denotes the 𝑙2 distance. The negative sample 𝑎− is sampled
from (𝑎−1 , ..., 𝑎

−
𝐽
) as in Equation (7). 𝜖1 is a constant for the margin

to keep negative samples far apart.
Therefore, we jointly train our model with both the goal-oriented

policy optimisation objective 𝐽 (𝜋\ ) and the composition represen-
tation learning objective 𝐿(𝜓𝜙 ) to mitigate the so-called coupling

Figure 5: An example of a top-𝐾 (e.g., 𝐾 = 3) recommendation
in the goal-oriented MMIR scenario.

issue (as described in Sections 1 & 2), as follows:

max L𝐺𝑂𝑀𝑀𝐼𝑅 = max
\

𝐽 (𝜋\ ) +max
𝜙

𝐿(𝜓𝜙 ) (10)

3.3.3 Pre-training. To improve the sample efficiency with the pol-
icy gradient method, we initialise the GOMMIR model with a super-
vised pre-training process instead of using a random initialisation.
We leverage a triplet loss supervised objective 𝐿(𝜋\ ) to pre-train
the recommendation policy 𝜋\ , similar to [19]:

max
\

𝐿(𝜋\ ) =
𝑇∑︁
𝑡=0

max
\

(0, 𝑙2 (𝑠𝑡 , 𝑔) − 𝑙2 (𝑠𝑡 , 𝑎−) + 𝜖2) (11)

where 𝑎− is a randomly sampled image, and 𝜖2 is a constant for
the margin. To learn the composition representation explicitly, we
also jointly pre-train the GOMMIR model with both triplet loss
objectives (i.e. 𝜋\ and 𝐿(𝜓𝜙 )) as follows:

max L𝑃𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 = max
\

𝐿(𝜋\ ) +max
𝜙

𝐿(𝜓𝜙 ) (12)

Based on the pre-trained model obtained with L𝑃𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 , the
joint loss objective L𝐺𝑂𝑀𝑀𝐼𝑅 can further improve the composition
representations with 𝐿(𝜓𝜙 ), as well as maximise the expected future
rewards with 𝐽 (𝜋\ ), thereby addressing the coupling issue.

4 EXPERIMENTAL SETUP
In this section, we evaluate the effectiveness of our proposed GOM-
MIR model in comparison to the existing approaches from the
literature. Figure 5 shows an example of a top-𝐾 (e.g., 𝐾 = 3) rec-
ommendation in the MMIR scenario. A user browses the exposed
items (i.e. the top-𝐾 recommendations) and gives likes/dislikes and
natural-language critiques on the recommendations at each turn.
The figure illustrates how a user can find the desired item (i.e. the
goal) through multi-turn interactions. Following the methodology
in [45, 46, 57], we measure the effectiveness of the interactive rec-
ommendation models at interaction turn 𝑀 . Meanwhile, the user
may examine more items in the ranking list at each turn, down to
rank 𝑁 (𝑁 > 𝐾 ). In particular, we address three research questions:
• RQ1: Does our proposed GOMMIR model with joint policy and
composition representation learning for GO-POMDP outperform
the existing state-of-the-art baseline models in the multi-modal
interactive recommendation task?
• RQ2: How do the components designed for composition repre-
sentation learning and goal-oriented policy optimisation in the
GOMMIR model affect the performance?



Table 1: Datasets’ statistics.

Shoes Dresses Shirts Tops & Tees
Train Test Train Test Train Test Train Test

Triplets 10,751 - 11,970 4,034 11,976 4,076 12,054 3,924
Images 10,000 4,658 7,182 2,454 8,555 2,966 8,387 2,808

• RQ3: What are the impacts of the introduced hyper-parameters
on the performance, such as the reward discount factor 𝛾 and the
number of recommended items 𝐾?

4.1 Datasets & Setup
Our proposed approaches are evaluated on four well-known fashion
datasets, namely the Shoes [5, 19] and Fashion IQ Dresses, Shirts, Tops
& Tees [43] datasets, to verify the generalisation of the recommenda-
tion performance of our proposed GOMMIR model, following [45].
The statistics of the four datasets are summarised in Table 1. All
datasets provide triples (i.e. ⟨𝑎𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑎𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , 𝑜𝑐𝑎𝑝𝑡𝑖𝑜𝑛⟩) for train-
ing/testing the user simulators (discussed further in Section 4.2). In
particular, 𝑜𝑐𝑎𝑝𝑡𝑖𝑜𝑛 denotes a relative caption that encapsulates the
differences between the target (𝑎𝑡𝑎𝑟𝑔𝑒𝑡 ) and candidate (𝑎𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 )
images. The relative captions of the image pairs have been col-
lected from real users via crowd-sourcing. In addition, all datasets
also provide images of the fashion products that can be used for
training/testing the recommendation models.

We pre-train our GOMMIR model with a multi-task supervised
learning setting (as per Equation (12)) for initialisation, and then
further optimise GOMMIR with a joint supervised and reinforce-
ment learning setting with Equation (10)1. Following [19], we use
Adam [25] with learning rates [1 = 10−3 and [2 = 10−5 with Equa-
tion (12) and Equation (10), respectively, for optimising the GOM-
MIR model’s parameters. The similarity kernel ^ (·) in Equation (7)
is set to be the dot product by default. Unless mentioned other-
wise, the discount factor 𝛾 is set to 0.2 due to the generally good
performance. The embedding dimensionality of the feature space
is set to 512 with the pre-trained CLIP model using the “RN101”
checkpoint2. The batch size is set to 128 and the number of negative
samples (i.e. 𝐽 ) is set to 5, following [45]. The maximum number
of epochs for training is 20, as in [46]. We consider the top-𝐾 (i.e.
𝐾 = 3) items as a recommendation at each interaction turn for both
training and testing. Due to the lack of the users’ profiles in the
datasets, the recommendation models make an initial random rec-
ommendation for each user with a fixed random seed (i.e. 42). We
expect the recommendations to become more similar to the target
item with more interactions. The maximum number of interaction
turns is set to 10 as in [45, 46].

4.2 Online Evaluation

An interactive recommender system is a type of closed-loop
system [38] in which the inputs (i.e. the users’ relevance feedback)
of the recommender system are fully or partially determined by
the outputs (i.e. the recommendations). When we evaluate the in-
teractive recommendation models, it is challenging to know the

1 The code and datasets for this paper are publicly available in
https://github.com/yashonwu/gommir 2 https://github.com/openai/CLIP

users’ real-time feedback on the recommendations at each inter-
action turn. To alleviate this issue, we adopt relative captioning
models3 (i.e. the Show, Attend, & Tell [49] model on Shoes and
the VL-Transformer [43, 46] model on Fashion IQ Dresses, Shirts,
and Tops & Tees) as a surrogate for real human users (a.k.a. user
simulators), as in [19, 45, 57]. Indeed, there is a growing interest
in user simulation for optimisation and evaluation purposes, such
as in conversational recommendation [17, 23, 58] and news recom-
mendation [34]. We assume the user desires a visual item and gives
verbal and non-verbal relevance feedback on the recommendations.
To properly simulate the user’s behaviour, we assume that the user
simulator can observe a ranked list of visual recommendations
at each interaction turn. Then, the user simulator gives a “like”
on the item that is the most similar to the target image, while it
gives “dislikes” on other items, and provides a natural-language
critique (i.e. a relative caption) to describe the attributes missing
from the liked item. The non-verbal relevance feedback (i.e. “likes”
and “dislikes”) reflects the users’ relative preferences among the
recommendations at each turn, while the verbal relevance feedback
(i.e. natural-language critiques) illustrates the users’ evolving dy-
namic preferences initiated by themselves. Note that we directly
use the user simulator checkpoint4 [5, 19] for Shoes provided by
Guo et al. [19], following the setting in [19, 45], while we use the
user simulator checkpoints for Fahion IQ Dresses, Shirts, and Tops &
Tees provided by Wu et al. [46] following the setting in [43, 46]. It
is worth noting that in the real world, the situation of interactive
recommendation can be much more complicated in terms of both
verbal and non-verbal relevance feedback. For instance, the user
may give “likes” on more than one item in the recommendation
list and may also give free-form natural-language feedback even
on “disliked” items. We leave the handling of such more complex
situations in the interactive recommendation task as interesting
future work. Note also that our simplification is necessitated by the
existing datasets and the availability of accurate user simulators.

4.3 Evaluation Metrics
We measure the effectiveness of different interactive recommenda-
tion models under the two evaluation metrics:
• Normalised Discounted Cumulative Gain (NDCG). NDCG
measures the quality of the ranking lists by emphasising the impor-
tance of higher ranks in relation to the lower ones. In our experi-
ments, we consider NDCG@𝑁 , which is truncated at rank 𝑁 = 3
and 𝑁 = 10 as in [45, 46].
• Success Rate (SR). SR considers the percentage of users for
which the target image was successfully retrieved with top-𝐾 rec-
ommendations within 𝑀 interactions. We report the interaction
turn𝑀 ∈ [1, 10] as in [54, 57].

If a user obtains the target item in less than 10 interaction turns,
we consider the ranking metrics (i.e. NDCG@3 and NDCG@10)
for that user to be equal to one for all turns thereafter. We con-
duct significance testing in terms of a paired t-test with a Holm-
Bonferroni multiple comparison correction for all evaluation met-
rics (i.e. NDCG@3, NDCG@10 and SR) at the 10th interaction turns.

3 These user simulators were used by the original authors - we replicate their user
simulator setups. 4 https://github.com/XiaoxiaoGuo/fashion-retrieval

https://github.com/yashonwu/gommir
https://github.com/openai/CLIP
https://github.com/XiaoxiaoGuo/fashion-retrieval


4.4 Baselines
We compare our GOMMIR model with three groups of representa-
tive baseline models for the MMIR task.

Interactive Recommendation Models with a Single Modality. We
first consider two representative interactive recommendation (IR)
models, each with a single modality, using a Transformer-based
state tracker for sequential modelling as in Section 3.2.
• IR𝑖𝑚𝑔 : IR𝑖𝑚𝑔 estimates the users’ preferences through the se-
quences of their liked images only.
• IR𝑡𝑥𝑡 : IR𝑡𝑥𝑡 estimates the users’ preferences through the se-
quences of their natural-language critiques only.

Text-Image Retrieval Models. We next consider two representa-
tive text-image retrieval models that explicitly learn the compo-
sition representations from both the text and image modalities.
These models are extended to the MMIR task by incorporating the
current recommendations and the corresponding natural-language
feedback at each turn. However, due to their lack of a state tracker,
they ignore the users’ interaction histories.
• TIRG5 [41]: TIRG was the first model proposed for the composi-
tion of text and image features in the context of text-image retrieval
through a gating and a residual connection. We also use TIRG as a
composition network in our GOMMIR model in Section 3.2.
• CLIP4Cir6 [2, 3]: CLIP4Cir adopts a Combiner network [3] with
the CLIP image and text encoders to understand the images con-
tent, integrate the textual descriptions and provide a combined
feature for text-image retrieval. CLIP4Cir obtains a state-of-the-art
performance in the context of text-image retrieval on Fashion IQ.

Multi-Modal Interactive Recommendation Models. We now con-
sider multi-modal interactive recommendation baseline models
with both image and text modalities. These baseline models learn
the multi-modal composition representations implicitly. In partic-
ular, both EGE [45] and DEERS [61] are the two baseline models
that use DRL algorithms.
• DM7 [19]: In the Dialog Manager (DM) model, the image and text
representations are concatenated and embedded through a linear
transformation layer to obtain a composed feature. The state tracker
is based on a GRU for tracking and estimating the users’ preferences
with the composed representation and the history representation
of previous interaction turns.
•MMT8 [43]: The Multi-Modal Transformer (MMT) model directly
attends to the entire interaction history of both the users’ previous
textual feedback and the system’s visual recommendations.
•MMRAN [46]: The Multi-Modal Recurrent Attention Network
(MMRAN) model leverages a gated recurrent network (GRN) with a
feedback gate for combining the image and text representations and
further uses a multi-head attention network (MAN) for tracking
the users’ dynamic preferences over time.
• EGE [45]: The Estimator-Generator-Evaluator (EGE) model is
another GRU-based model, which uses a multi-task learning ap-
proach for POMDP to optimise the model, combining a supervised
learning classification loss and a Q-learning prediction loss.

5 https://github.com/google/tirg 6 https://github.com/ABaldrati/CLIP4Cir
7 https://github.com/XiaoxiaoGuo/fashion-retrieval
8 https://github.com/XiaoxiaoGuo/fashion-iq

• DEERS [61]: The DEERS model leverages a Deep Q-Network
(DQN) to automatically learn the optimal recommendation strate-
gies by incorporating positive and negative feedback. It adopts two
GRU-based state trackers to track the users’ positive and negative
states, respectively. We extend this model for the multi-modal in-
teractive recommendation task by incorporating both images and
natural-language feedback as inputs.

In addition to the above baseline models for the MMIR task, the
GOMMIR variants used for the ablation studies (in Section 5.2)
can also act as strong baselines. For fair comparisons, all of the
tested baseline models use CLIP (using the “RN101” checkpoint)
for providing the texts and image representations (as described
in Section 3.2). Although there are a few more other models with
different formulations for the interactive recommendation task,
these models are not comparable with our scenario due to them
being unable to incorporate both the textual and visual modalities
during the recommendation process [29, 39], requiring additional
attributes of items for learning [54, 55, 57] or requiring multi-modal
knowledge graph for reasoning [44].

5 EXPERIMENTAL RESULTS
In this section, we analyse the experimental results with respect to
the three research questions stated in Section 4 to gauge the effec-
tiveness of our proposed GOMMIR model. Specifically, we address
the overall effectiveness of our proposed GOMMIR model for the
MMIR task (RQ1, Section 5.1), the impact of the goal-oriented policy
optimisation and composition representation learning (RQ2, Sec-
tion 5.2), and the effects of the hyper-parameters (RQ3, Section 5.3).
To consolidate our findings, we provide a use case from the logged
experimental results in Section 5.4.

5.1 Performance Comparison (RQ1)
Figure 6 shows the effectiveness of our proposed GOMMIR model
in comparison to the baseline models for top-3 recommendation in
terms of SR while varying the number of interaction turns on the
Shoes, Fashion IQ Dresses, Shirts and Tops & Tees datasets. Compar-
ing the results in Figure 6, we observe that our proposed GOMMIR
model generally achieves a better overall performance in terms of
SR at various interaction turns. As the number of interaction turns
increases, the magnitude of the differences between the effective-
ness of GOMMIR with the baseline models on SR also increases.
Similar trends are also observed with other metrics (i.e. NDCG@3
and NDCG@10) – we omit their reporting due to space constraints.
The better overall performance of our proposed GOMMIR model
indicates that learning the composition representations explicitly
with goal-oriented policy optimisation can better incorporate the
users’ preferences from the recommended visual items and the cor-
responding verbal and non-verbal relevance feedback. To quantify
the improvements of our proposed GOMMIR model compared to
the other nine baseline models, Table 2 reports their performances
at the 10th interaction turn. The best results of the baseline models
and the best overall results are underlined and highlighted in bold,
respectively. Analysing the results in the table, we observe that our
proposed GOMMIR model achieves better performances at the 10th
turn than the best baseline model on all metrics on Shoes, Dresses,
Shirts, and Tops & Tees by a margin of 19-21%, 10-12%, 3-4%, and

https://github.com/google/tirg
https://github.com/ABaldrati/CLIP4Cir
https://github.com/XiaoxiaoGuo/fashion-retrieval
https://github.com/XiaoxiaoGuo/fashion-iq


(a) Shoes (b) Dresses (c) Shirts (d) Tops & Tees

Figure 6: Comparison of the recommendation effectiveness at various interaction turns with top-3 recommendation.

Table 2: The effectiveness of the tested models at the 10th turn. The best results of baseline models and the best overall results
are underlined and highlighted in bold, respectively. % Improv. indicates the improvements by our GOMMIR model over the
best baseline model. * denotes a significant difference in terms of paired t-test with a Holm-Bonferroni multiple comparison
correction (𝑝 < 0.05), compared to GOMMIR.

Shoes Dresses Shirts Tops & Tees
Models NDCG@3 NDCG@10 SR NDCG@3 NDCG@10 SR NDCG@3 NDCG@10 SR NDCG@3 NDCG@10 SR

IR𝑖𝑚𝑔 0.0339* 0.0366* 0.0350* 0.07272* 0.0780* 0.0746* 0.0490* 0.0526* 0.0506* 0.0549* 0.0590* 0.0566*
IR𝑡𝑥𝑡 0.5365* 0.5556* 0.5451* 0.4784* 0.4984* 0.4878* 0.4240* 0.4448* 0.4336* 0.4973* 0.5189* 0.5053*

TIRG 0.4067* 0.4226* 0.4124* 0.3803* 0.3934* 0.3863* 0.3248* 0.3400* 0.3304* 0.4049* 0.4237* 0.4106*
CLIP4Cir 0.4438* 0.4566* 0.4506* 0.4527* 0.4735* 0.4597* 0.3608* 0.3754* 0.3675* 0.4437* 0.4610* 0.4501*

DM 0.5374* 0.5571* 0.5453* 0.5022* 0.5225* 0.5110* 0.4598* 0.4811* 0.4697* 0.5226* 0.5419* 0.5313*
MMT 0.5336* 0.5521* 0.5406* 0.5981* 0.6194* 0.6072* 0.4945* 0.5124* 0.5061* 0.5501* 0.5697* 0.5563*
MMRAN 0.5680* 0.5879* 0.5771* 0.5887* 0.6099* 0.5986* 0.4484* 0.4692* 0.4568* 0.5508* 0.5710* 0.5598*
EGE 0.6657* 0.6880* 0.6750* 0.7353* 0.7559* 0.7449* 0.5826* 0.6044* 0.5931* 0.6868* 0.7059* 0.6930*
DEERS 0.6749* 0.6940* 0.6831* 0.7083* 0.7250* 0.7143* 0.6027 0.6215 0.6106 0.6989* 0.7144* 0.7090*

GOMMIR 0.8173 0.8297 0.8248 0.8255 0.8385 0.8346 0.6275 0.6440 0.6369 0.7582 0.7706 0.7653
% Improv. 21.10 19.55 20.74 12.27 10.93 12.04 4.11 3.62 4.31 8.48 7.87 7.94

7-8%, respectively. Indeed, our proposed GOMMIR model is signifi-
cantly better than the baseline models (except for DEERS on Shirts)
for each metric at the 10th turn in top-3 recommendation.

Therefore, in answer to RQ1, the results show that the GOMMIR
model can outperform the existing state-of-the-art baseline models.
In particular, it is significantly more effective than the state-of-the-
art baseline models at the 10th turn. Therefore, we conclude that
our proposed GOMMIR model, which addresses the coupling issue,
can better incorporate the users’ preferences for an improved top-3
recommendation. In the next section, we analyse the impact of the
coupling issue and demonstrate how they are addressed with our
proposed GOMMIR model.

5.2 Impact of Components (RQ2)
To address RQ2, we investigate the impact of the components
designed for both composition representation learning and goal-
oriented policy optimisation to tackle the coupling issue. Table 3
reports the performances of our GOMMIR model with different
ablations in terms of SR considering the original setting in the top
part of the table, the composition representation learning in the
second part of the table, and the goal-oriented optimisation in the
last part of the table. The same trends can be also observed on
NDCG@3 and NDCG@10 – we omit their reporting due to space
constraints.

Composition Representation Learning. We investigate the impact
of the explicit composition learning on the performance of our
proposed GOMMIR model in terms of four aspects: the whole com-
position network 𝜓 , the gated feature 𝑓𝑔𝑎𝑡𝑒 , the residual feature
𝑓𝑟𝑒𝑠 , and the triplet loss for the composition representation learning
𝐿(𝜓𝜙 ). Table 3 (second part of the table) reports the performances of
our GOMMIR model with different ablations considering the afore-
mentioned four aspects at the 10th interaction turn. The reported
results in Table 3 show that the full GOMMIRmodel (i.e. considering
the above four aspects in the second part of Table 3) can outper-
form “GOMMIR w/o𝜓 ”, “GOMMIR w/o 𝑓𝑔𝑎𝑡𝑒 ”, “GOMMIR w/o 𝑓𝑟𝑒𝑠 ”,
and “GOMMIR w/o 𝐿(𝜓𝜙 )”. These results suggest that our proposed
GOMMIRmodel can benefit from both the composition network (i.e.
TIRG) with both gated and residual features and the composition
learning loss 𝐿(𝜓𝜙 ). In particular, the composition learning loss
𝐿(𝜓𝜙 ) contributes the most to the GOMMIR model’s performance
on all four datasets, while the gated feature 𝑓𝑔𝑎𝑡𝑒 contributes the
least on Dresses and Tops & Tees, and the residual feature 𝑓𝑟𝑒𝑠 con-
tributes the least on Shoes and Shirts. Therefore, it is necessary to
explicitly learn the multi-modal composition representations with
an advanced composition network (such as TIRG).

Goal-Oriented Policy Optimisation. We now investigate the im-
pact of goal-oriented policy optimisation on the performance of
our proposed GOMMIR model in terms of four aspects: the hard



Table 3: Ablation study at turn 10 in terms of SR. w/o de-
notes that component is removed from GOMMIR. * denotes
a significant difference in terms of a paired t-test with a
Holm-Bonferroni multiple comparison correction (𝑝 < 0.05),
compared to GOMMIR.

Models Shoes Dresses Shirts Tops & Tees

GOMMIR 0.8248 0.8346 0.6369 0.7653

Composition Representation Learning

1. w/o𝜓 0.7428* 0.7384* 0.5850* 0.7001*
2. w/o 𝑓𝑔𝑎𝑡𝑒 0.7168* 0.7816* 0.5792* 0.6948*
3. w/o 𝑓𝑟𝑒𝑠 0.7863* 0.7384* 0.5890* 0.6595*
4. w/o 𝐿(𝜓𝜙 ) 0.6932* 0.7115* 0.4589* 0.6528*

Goal-Oriented Policy Optimisation

5. w/o 𝑎−
𝑑,𝑗

in Eq. (7) 0.7231* 0.7649* 0.6177 0.7279*
6. w/o 𝑎𝑡,𝑑 in 𝑎−

𝑑,𝑗
0.8010* 0.8329 0.6274 0.7546

7. w/o 𝑟 (𝑠𝑡 , 𝑎𝑡,≤𝐾 , 𝑔) 0.7799* 0.7991* 0.6001* 0.7350*
8. w/o 𝑟𝑡,𝑑 in Eq. (8) 0.8128* 0.8305 0.6369 0.7614

negative sampling 𝑎−
𝑑,𝑗

in Equation (7), the following relevance
feedback 𝑎𝑡,𝑑 in hard negative sampling 𝑎−

𝑑,𝑗
, the goal-oriented

rewards 𝑟 (𝑠𝑡 , 𝑎𝑡,≤𝐾 , 𝑔) in Equation (6), and the extra rewards of
the disliked items 𝑟𝑡,𝑑 in Equation (8). Table 3 (last part) reports
the performances of the GOMMIR variants considering the afore-
mentioned four aspects. In particular, within the table, “GOMMIR
w/o 𝑎−

𝑑,𝑗
in Equation (7)” selects negative samples randomly from

the candidate pool rather than sampling from the negative feed-
back history (i.e. the disliked items (𝑎0,𝑑 , ..., 𝑎𝑡,𝑑 )). “GOMMIR w/o
𝑟𝑡,𝑑 in 𝑎−

𝑑,𝑗
” samples hard negatives from the previously disliked

recommendations (𝑎0,𝑑 , ..., 𝑎𝑡−1,𝑑 ). “GOMMIR w/o 𝑟 (𝑠𝑡 , 𝑎𝑡,≤𝐾 , 𝑔)
in Equation (6)” optimises the recommendation policy using su-
pervised learning without the goal-oriented rewards. “GOMMIR
w/o 𝑟𝑡,𝑑 in Equation (8)” only considers the visual reward for the
critiqued/liked item rather than all the rewards for both the liked
and disliked recommendation items. The results reported in Table 3
show that the full GOMMIR model (i.e. considering the above four
aspects) can outperform the above four variants on all four datasets,
except for “GOMMIR w/o 𝑟𝑡,𝑑 in Equation (8)” on Shirts. These
results suggest that it is necessary to consider non-verbal relevance
feedback in the hard negative sampling and the reward function
during the goal-oriented policy optimisation process. In addition,
we can also observe that GOMMIR can gain more improvements
with the explicit composition loss 𝐿(𝜓𝜙 ) compared to using the
goal-oriented rewards 𝑟 (𝑠𝑡 , 𝑎𝑡,≤𝐾 , 𝑔).

In response to RQ2, we find that our proposed GOMMIR model
can benefit from explicitly learning the composition representation
with an advanced composition network (i.e. TIRG) and optimis-
ing the recommendation policy with hard negative sampling and
rewards based on the non-verbal relevance feedback.

5.3 Impact of Hyper-Parameters (RQ3)
To address RQ3, Figure 7 depicts the impact in terms of SR of the
reward discount factor 𝛾 and the number of recommended items 𝐾
when training the GOMMIR model on all four datasets, respectively.

(a) 𝛾 for SR (b) 𝐾 for SR

Figure 7: Comparison of the recommendation effectiveness
at 10th turn with different 𝛾 and 𝐾 values.

The same results/trends can be also observed for NDCG@3 and
NDCG@10, we omit their reporting due to space constraints.

Effect of the reward discount factor (𝛾). Figure 7 (a) shows SR
at the 10th turn in top-3 recommendation with various reward
discount factors 𝛾 on the four datasets. In particular, the model can
only consider the immediate goal-oriented reward with 𝛾 = 0 or
weight all future rewards equally with 𝛾 = 1. We can observe that
the performance of GOMMIR decreases when the reward discount
factor 𝛾 is larger than 0.2. The better performance with a lower
reward discount factor shows that the immediate reward is much
more important compared to the future rewards.

Effect of the number of recommended items (𝐾). Figure 7 (b) shows
SR with different numbers of top-𝐾 recommendations at each turn
(i.e. 𝐾 = 2, 3, 4, 5). The 𝐾 values indicate how deep the users can
explore among a ranking list of all items at each interaction turn.
Note that larger metrics indicate a better performance across top-
𝐾 recommendations even though the number of exposed items at
each turn is different. We observe that the performance of GOMMIR
increases when the number of recommended items𝐾 increases from
2 to 5, as more items are exposed to the users and users providemore
feedback. Overall, in response to RQ3, we find that a lower reward
discount factor 𝛾 and more exposed top-𝐾 items can improve the
effectiveness of our GOMMIR model.

5.4 Use Case
In this section, we present a use case of the multi-modal interactive
recommendation on the Shoes dataset in Figure 8. In particular, the
figures show the interaction process for the top-3 recommenda-
tions between the simulated users for the DEERS (i.e. the strongest
baseline model) and GOMMIR models. For a fair comparison, the
initial images are the same across the tested models given the target
image from the testing set. When the target item is listed in the
recommendation list, the user simulator will give a comment to
end the interaction, such as “They are my desired shoes” in Fig-
ure 8 (b). Comparing the recommendations made by DEERS and
GOMMIR on the Shoes dataset, we can observe that our proposed
GOMMIR model can find the target items with fewer interaction
turns compared to DEERS – this is expected, due to the increased
effectiveness of GOMMIR shown in Section 5.1. In addition, our
GOMMIR model is more effective at incorporating more relevant
features of the critique in the following interaction turn. For in-
stance, at the initial interaction turn in Figures 8 (a) and (b), the user



(a) DEERS (b) GOMMIR

Figure 8: Example use cases for the interactive recommendation with DEERS and GOMMIR on Shoes.

claimed that “I prefer blue open toe high heel pumps” in comparison
to the 2nd image (i.e. black clogs). Our GOMMIR model suggests
open-toe recommendations, while DEERS ignores the “open-toe”
feature from the critique and instead recommends closed-toe blue
clogs in the second place and closed-toe blue sneakers in the third
place. We observed similar trends and results in use cases with the
other baseline models on the Shoes, Dresses, Shirts, and Tops & Tees
datasets. We omit their reporting in this paper because of space
constraints.

6 CONCLUSIONS
In this paper, we proposed a novel goal-oriented multi-modal inter-
active recommendation (GOMMIR) model to effectively incorporate
the users’ preferences from both verbal and non-verbal relevance
feedback over time, by addressing the coupling issue of policy op-
timisation and multi-modal composition representation learning.
Specifically, we jointly leveraged both goal-oriented deep reinforce-
ment learning and supervised learning objectives to explicitly learn
the multi-modal representations with a multi-modal composition
network (i.e. TIRG) during the recommendation policy optimisa-
tion process. We adopted a pre-trained CLIP model for image and
text encoding, and a Transformer-based state tracker for estimating
the users’ preferences from the users’ natural-language critiques
and the previously combined representations from the composition
network. Following previous work [19, 43, 45], we trained and eval-
uated our GOMMIR model by using a user simulator as a surrogate
for real human users. Our experiments on the Shoes, Dresses, Shirts
and Tops & Tees datasets demonstrated that our proposed GOMMIR
model achieves better performances of 19-21%, 10-12%, 3-4%, and
7-8% compared to the best baseline models, respectively. Moreover,
our reported results showed that our proposed GOMMIR model
can benefit from explicit composition representation learning and
goal-oriented policy optimisation with both verbal and non-verbal
relevance feedback.
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