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Abstract

The second messenger, cyclic adenosine monophosphate (cAMP), is a master regulator of signal transduction that maintains cell home-
ostasis. A fine balance between cAMP synthesis by adenylyl cyclase and degradation by phosphodiesterases (PDEs) underpins receptor-
specific responses. As multiple receptors rely on cAMP for signaling, PDEs shape three-dimensional, localized gradients of the cyclic
nucleotide to drive appropriate signaling cascades. Of the 11 PDE families, PDE4, which comprises long, short, and supershort isoforms
and a dead-short isoform, is of great interest due to its implication in disease. Aberrant PDE4 expression and post-translational modifi-
cations are hallmarks of several clinical indications for which curative treatment is not yet available. While some PDE4-specific small
molecule inhibitors directed against the active site are approved for clinical use, they are limited by severe side effects owing to the high
degree of conservation of the catalytic domain between over 20 unique isoforms. Some attempts to use the different modular structure
that exists between long and shorter isoforms are now bearing success. However, these inhibitors are exclusively aimed at PDE4 long
isoforms, which have been the focus of the majority of research in this area. Here, we have summarised literature on the lesser-studied
short PDE4 isoforms and provide a record of the discovery, regulation, and disease relevance of this class of enzymes that represent an
untapped target for specific inhibition in the future.
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1. Introduction

The first identified second messenger, 3′, 5′-cyclic
adenosine monophosphate (cAMP), was isolated by Earl
Sutherland in 1971 and has proved to be a vital transducer
of intracellular signaling in response to internal and ex-
ternal cues [1]. Following its synthesis by adenylyl cy-
clase, cAMP diffuses rapidly throughout the cell to ac-
tivate a myriad of signaling pathways by binding down-
stream effectors, including protein kinase A (PKA), the
guanine exchange factor exchange protein directly acti-
vated by cAMP (EPAC), cyclic nucleotide-gated ion chan-
nels, and Popeye-domain containing proteins [2–5]. Phos-
phodiesterases (PDEs) hydrolyze cyclic nucleotides to en-
sure compartment- and signal-specific activation of down-
stream effectors. Compartmentalized cAMP signaling is
underpinned by the formation of signalosomes: multi-
protein complexes of cAMP effectors, anchoring proteins
(e.g., A-kinase-anchoring-protein), and specific subsets of
PDEs [6]. In the basal state, PDEs within signalosomes pre-
vent activation of cAMP effectors; when cAMP levels in-
crease in response to an agonist, localized PDE activity is
swamped, and cAMP can initiate downstream signaling by
binding the effector [7].

Phosphodiesterase activity is indispensable for main-
taining discrete cellular responses to the multitude of sig-
nals a cell receives, and dysregulated PDE expression is as-
sociated with numerous pathologies of the cardiovascular,

nervous, and immune systems. Importantly, altered PDE
activity is also a contributing factor to the development and
progression of malignant disease. Of the 11 families of
PDEs, the PDE4 family is the largest: it comprises over
20 isoforms, encoded by genes A, B, C, and D, which are
classified as long, short, supershort, or dead-short, depend-
ing on the presence and length of the upstream conserved
region (UCR) 1 and 2 domains, unique to the PDE4 hydro-
lases (Fig. 1) [8].

In long isoforms, the carboxy-terminus of UCR1 inter-
acts with the amino-terminus of UCR2 to form a regulatory
unit which, in the resting PDE4 state, occludes the catalytic
domain of a second PDE4 (partner in a dimer) to downreg-
ulate its activity. Thus, UCRs not only regulate cAMP hy-
drolysis but they contribute to the quaternary, dimeric struc-
ture of all long PDE4 isoforms. Phosphorylation of a clas-
sical PKA consensus motif (RRxS) in UCR1 by PKA en-
hances PDE4 activity through the disruption of the UCR1-
UCR2 inhibitory conformation [9–12] (Fig. 2). Conversely,
phosphorylation of the extracellular signal-regulated kinase
(ERK2) consensus motif (PxS/TP) within the catalytic do-
main results in long PDE4B, PDE4C, and PDE4D inhibi-
tion [11,13] (Fig. 2). In contrast to long isoforms, which
have both UCRs, short isoforms only have UCR2, super-
short isoforms lack UCR1 and have a truncated UCR2, and
dead-short isoforms have no UCRs and a truncated catalytic
domain [14,15]. In complementary fashion to long-form
activation, the activation of CREB by PKA can result in the
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Fig. 1. PDE4 isoform structure and classification. Depending on the length of their N-terminal region, members of the PDE4 family
are long, short, supershort, or dead-short. All PDE4 isoforms are listed on the right of their respective class and structure. PDE4,
phosphodiesterase 4; TD, targeting domain; UCR, upstream conserved region; LR, linker region; Cat. Domain, catalytic domain; CTD,
C′ terminal domain; PKA, protein kinase A; ERK, extracellular signal-regulated kinase. Created with BioRender.com.

enhanced transcription/translation of short and supershort
isoforms (SASSI), ensuring only transient increases in cel-
lular cAMP concentrations (Fig. 2). The function, expres-
sion, and role of long PDE isoforms in disease have been ex-
tensively reviewed elsewhere [6,16], though no such under-
taking has been completed for human PDE4 SASSI. This
review aims to bring together current research on the roles
of PDE4 SASSI in cellular homeostasis and disease.

2. Discovery
The Drosophila melanogaster (D. melanogaster)

dunce (dnc) gene, which encodes a PDE hydrolase, was the
first one identified as necessary for normal fly behavioral
development: dnc mutants are characterized by short-term
memory and learning deficiencies [17]. Screening of rat
libraries with a probe representing dnc enabled the identifi-
cation and cloning of the rat dnc homolog, ratdnc-1. Of the
four cDNA clones isolated in the study, PDE4A1 (formerly
RD1) was the first identified supershort isoform [18]. In
an investigation of the structure and function of the rat dnc
homolog, a rat testis cDNA library was screened using a
cDNA clone of theD. melanogaster dunce PDE. This study
yielded four groups of clones (ratPDE1-4) encoded by four
different genes [19]. Shortly after, in a study of hormonal
regulation of PDEs, ratPDE3.1 and ratPDE3.2 (homologs
of human PDE4D1 and PDE4D2 below) were character-
ized [20]. In search of human dnc homologs, Bolger and
colleagues isolated the cDNA of the four human genes from
the PDE4 family: PDE4A, PDE4B, PDE4C, and PDE4D
(formerly DPDE1 through 4) [8]. Subsequently, the first
human short isoform to be uncovered was PDE4B2 (for-

merly hb-PDE1a): its cDNA was isolated by screening
a human frontal cortex cDNA library using a monocyte
cDNA fragment encoding a PDE4. DNA sequencing indi-
cated that PDE4B2 has a truncated open reading frame and
is homologous only to the 3′-end of the monocyte PDE4
[21]. Soon after, studies on rat Sertoli, thyroid, and brain
cells provided evidence for the existence of PDE4D SASSI,
PDE4D1, and PDE4D2, resulting from alternative splic-
ing [22,23]. Their human homologs were identified in hu-
man peripheral mononuclear cells [9]. The cDNA encoding
the dead-short isoform, PDE4A7 (formerly HSPDE4A8),
was isolated from Jurkat T cells; unlike the long isoform,
PDE4A4, it contained an insert in the catalytic domain,
making it catalytically inactive [24]. Based on earlier work
from Davis et al., 1989 [18], PDE4A1 was shown to be ex-
pressed in the human cerebellum [25]. In a study explor-
ing further isoforms encoded by the PDE4D gene, murine
PDE4D6 was cloned and characterized: it was shown
to lack half of the UCR2 region, making it a supershort
PDE4 [26]. Intriguingly, the alignment of mouse-expressed
sequence-tagged transcripts to the human genome uncov-
ered the supershort PDE4B5 isoform, which was shown to
have 16 N-terminal residues identical to those of PDE4D6
[27]. Further experimental work on murine PDE4D led to
the cloning of the supershort PDE4D10 isoform [28]. In
summary, the human PDE4 SASSI discovered to date in-
clude PDE4A1, PDE4A7, PDE4B2, PDE4B5, PDE4D1,
PDE4D2, PDE4D6, and PDE4D10.
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Fig. 2. Long and short PDE4 regulation. G-protein-coupled receptor (GPCR) activation induces adenylyl cyclase (AC) activation
and the production of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). Increased cAMP levels lead to
phosphorylation and activation of Protein kinase A (PKA). Conformational changes induced by the phosphorylation of PKA lead to the
dissociation of the PKA catalytic (C) subunit from the regulatory (R) subunit dimer. The catalytic subunit can phosphorylate long PDE4
isoforms to enhance their activity and phosphorylate the cAMP-response element binding (CREB) protein to enhance short, supershort,
and dead-short PDE4 isoform transcription, which in turn drives upregulated protein expression. Created with BioRender.com.

3. Transcriptional SASSI Regulation by
Hormones and cAMP

The multitude of non-redundant isoforms within the
PDE4 family results from alternative mRNA splicing and
the use of different promoters within each of the four genes
[29]. The structural differences between long and short
isoforms underpin their differential regulation and, subse-
quently, the ability of cells to adapt to both short and long-
term environmental stimuli [30]. Early work on SASSI re-
vealed that they are subject to hormonal regulation: Ser-
toli cells treated with follicle-stimulating hormone had in-
creased mRNA levels of rat PDE4D1 and PDE4D2 com-
pared to unstimulated cells [20]. Characterization of the
intronic promoter of PDE4D1/PDE4D2 confirmed its in-

ducibility by hormonal stimulation, revealing further evi-
dence for the versatility of the PDE4D gene [31]. In rat
thyroid cells, PDE4D1mRNAwas shown to be upregulated
in response to long-term treatment with thyroid-stimulating
hormone [23]. PDE4D1 mRNA was also observed to
change levels in Sertoli cells depending on their develop-
mental state, with older, quiescent cells expressing more
PDE4D1mRNA than both younger cells and terminally dif-
ferentiated ones [32]. Interestingly, differences in SASSI
expression have also been recorded in pregnancy: PDE4B2
mRNA levels were reported to be higher in the myome-
tria of pregnant women compared to non-pregnant women
[33]. Treatment of cultured human myometrial cells with
cAMP-elevating compounds induced specific upregulation
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of both PDE4B2 and PDE4D1, indicating that their expres-
sion is influenced by hormones known to fluctuate during
pregnancy [34]. Notably, preterm birth following infection
has been linked to contractions induced by cytokine activity
with a concomitant increase in PDE4 SASSI, highlighting
the role of these isoforms in inflammation, as discussed in
the Inflammation section below [35].

4. Differential Regulation of Short and
Supershort Isoforms by ERK2

Unlike long PDE4 isoforms, which are inhibited by
ERK2 phosphorylation, SASSI PDE4B2 and PDE4D1 are
activated [11,36]. Interestingly, the supershort PDE4D2
has shown weak inhibition consequent to ERK2 phospho-
rylation: this has been attributed to its truncated UCR2,
indicating that it is UCR2 that dictates the different out-
comes of the conserved serine phosphorylation in the cat-
alytic domain of SASSI [11]. At the time of writing, there
are no published observations on the effect of ERK2 phos-
phorylation on PDE4B5 and PDE4D10 activity. It is, there-
fore, tempting to speculate that the effect would be similar
to that on PDE4D2, as the aforementioned are supershort
PDE4s [26–28]. Owing to its truncated catalytic domain
and unique structure, the dead-short PDE4A7 does not seem
to be regulated by ERK2 [11,15].

5. SASSI Influence Disease Progression
5.1 Inflammation

The fine-tuning of the inflammatory response would
be impossible without the regulation of cAMP synthesis,
localization, and degradation. Ever since the discovery of
PDE roles in the cAMP pathway and, consequently, in the
innate and adaptive immune responses, the topic continues
to be an active research subject. Alongside the growing un-
derstanding of PDE biochemistry, studies on the signaling
pathways targeted by asthma therapies have demonstrated
the potential of PDE inhibitors as anti-inflammatory agents
[37]. The interplay between the cAMP and inflammatory
pathways has been extensively reviewed elsewhere [38].
Briefly, as a function of PDE inhibition, increased intracel-
lular levels of cAMP lead to reduced cytokine release and
decreased immune cell recruitment and activation, and vice
versa. For the purpose of this review, the focus will be on
the current knowledge of PDE4 SASSI as drivers of dam-
aging, auto-inflammatory signaling in disease and injury.

Some of the first evidence that PDE4 SASSI are dif-
ferentially regulated at different stages of immune cell acti-
vation has been obtained through the treatment of human
monocytes with cAMP-elevating compounds. Increased
PDE4B2 mRNA expression in Mono Mac 6 cells has been
reported within 1 hour of treatment with dibutyryl-cAMP.
Expression of PDE4B2 mRNA was shown to peak after
3 hours of treatment, whereas PDE4D1 mRNA expres-
sion peaked between 2 and 8 hours of treatment. PDE4B2

mRNA levels were shown to be decreased after 4 hours, and
both SASSI mRNA were reported to return to basal levels
at 24 hours. Protein expression was shown to follow a sim-
ilar pattern: peak expression was observed between 3 and 5
hours of treatment with a gradual decrease to basal levels at
24 hours [39]. Further studies on Jurkat T cells have demon-
strated that PDE4B2, PDE4D1, and PDE4D2 are among the
very first PDE4 isoforms to be upregulated upon cAMP el-
evation [40]. Together, these findings demonstrate that the
upregulation of SASSI is a compensatory response to in-
creased cAMP levels.

In a study aiming to elucidate the exact role of PDE4
in T-cell activation, fully activated T cells (those with T-cell
receptors (TCR) and CD28 receptors co-stimulated) were
shown to recruit SASSI PDE4B2, PDE4D1, and PDE4D2
together with β-arrestin to lipid rafts on the cell membrane
[41]. In an incompletely active state (upon TCR-only stim-
ulation), steady cAMP production, which inhibits inflam-
matory signaling, was observed. On the contrary, cAMP
levels in fully activated T cells were reported to be reduced.
These findings led to a model in which the co-stimulation
of TCR and CD28 induces recruitment of PDE4 and β-
arrestin to lipid rafts where PDE4 activity reduces cAMP
levels to enable maximal T-cell activation, highlighting the
essential role of PDE4 SASSI in inflammation [41]. Ex-
pectedly, short-interference RNA (siRNA) knockdown of
PDE4B and PDE4D in stimulated T cells has been reported
to reduce their proliferation and cytokine production. No-
tably, the PDE4D-targeting siRNA was demonstrated to
reduce T-cell proliferation to a similar extent as the pan-
PDE4-targeting siRNA, suggesting that the PDE4D sub-
family has the predominant role in T-cell activation [42].
On the other hand, PDE4B has been identified as a ma-
jor regulator of cAMP in monocytes/macrophages, as dis-
cussed in the context of the disease in the following sec-
tions. A more detailed overview of the role of PDE4 in
inflammatory processes exists [43].

5.2 Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory dis-
ease of the central nervous system (CNS) characterized by
the progressive myelin sheath degradation of neuronal ax-
ons. Symptoms may be episodic or progressive and in-
clude cognitive impairment, fatigue, and muscle weakness
[44]. It is estimated to affect 2.8 million people worldwide,
with a mean age of diagnosis of 32 and female patients
being twice as likely to live with MS compared to males
[45]. Pathologically, MS results from myelin-reactive T-
and B-cell infiltration of the CNS, which creates an in-
flammatory environment and drives neural degeneration.
Current therapies aim to reduce inflammation, but cura-
tive treatment remains an unmet clinical need [44]. Studies
on rat MS models have shown that PDE4B2 mRNA is up-
regulated in microglia residing near brain vessels, indicat-
ing the isoform’s involvement in disease progression [46].
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In vivo studies have reported that PDE4B2 is, in fact, the
only PDE4 upregulated in MS, and, importantly, it signif-
icantly correlates with disease score and the expression of
some inflammatory markers [47]. The PDE4B inhibitor,
A33, has been recently reported to reduce neuroinflamma-
tion by suppressing nitric oxide production in both human
and murine macrophages, as well as lowering the levels
of pathogenic T cells at the peak of disease in a mouse
MS model [48]. Notably, CRISPR-Cas9 knockdown of
PDE4D1 and PDE4D6 in primary mouse oligodendrocyte
precursor cells was shown to increase myelin basic protein
levels, a marker of oligodendrocyte differentiation and re-
myelination [48]. Collectively, these findings highlight the
potential of PDE4B and PDE4D SASSI as pharmacological
targets in MS.

5.3 Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurode-
generative disorder characterized by a decline in memory
and cognition which lead to behavioral changes and dete-
rioration in speech, orientation, and motoric function. It is
responsible for up to 80% of dementia cases, and its cura-
tive treatment remains an unmet clinical need [49]. Studies
on mouse models of AD have shown that the administra-
tion of small molecule PDE4 inhibitors, including rolipram
and roflumilast, improves cognition and reduces memory
loss [50,51]. Importantly, PDE4 inhibition has also been
demonstrated to significantly improve the cognitive perfor-
mance of healthy young and older adults [52,53]. These
findings strongly indicate that the PDE4 family of phospho-
diesterases is a relevant clinical target for AD treatment.

In vivo studies on mouse AD models have shown that
PDE4D but not PDE4B inhibition enhances cognitive ca-
pabilities [54]. What is more, an investigation into PDE4D
regulation changes in AD has uncovered a significant as-
sociation between PDE4D1 expression and cognitive im-
pairment: in temporal lobe AD patient samples, increased
PDE4D1 positively correlates with higher plaque pathology
[55]. Together with a study proposing that PDE4D1 has
a role in neuronal plasticity, these experimental outcomes
have led to the conclusion that in AD, increased PDE4D1
expression is implicated in decreased neuronal firing rates
and impaired memory formation, making it an attractive
AD drug target [55,56].

5.4 Traumatic Brain Injury

Traumatic brain injury (TBI) resulting from road traf-
fic injuries, sports concussions, and other accidents is esti-
mated to affect around 69 million people worldwide each
year, making it the biggest contributor to trauma-related
disability and death [57]. The response to TBI develops
within minutes and may result in neuronal apoptosis, fur-
ther exacerbated by pro-inflammatory cytokine signaling,
which reduces cAMP in microglia. Rolipram treatment of
TBI rat models prior to injury has been demonstrated to

restore cAMP levels, downregulate pro-inflammatory sig-
naling, and reduce neuronal apoptosis following TBI [58].
SASSI PDE4B2 (in neuronal dendrites) and PDE4D2 (in
ipsilateral cortex cells) have been identified as undergoing
significant upregulation as early as 30 minutes post-TBI in
rat models and maintaining significantly higher levels com-
pared to control animals until 24 hours post-injury [59].
In addition, a study on the effect of pro-inflammatory cy-
tokines on post-TBI microglial cAMP levels has revealed
significantly increased protein levels of both PDE4B2 and
PDE4A1 within 30 minutes of inflammatory stimulation.
Knockdown of PDE4B2 using siRNA has demonstrated
its essential role in microglial activation through increased
cAMP degradation [60]. Localization studies have indi-
cated that PDE4B2 is expressed in both neurons and infil-
trating leukocytes near the contusion site, whereas PDE4D
is predominantly found in immune cells but not neurons,
suggesting that PDE4B2 may have a role in both inflam-
mation and memory deficits following TBI [61]. Notably,
treatment of TBI rat models with a PDE4B-specific in-
hibitor has been reported to reduce inflammation, neuronal
apoptosis, and memory deficits, thus contributing to the
growing list of evidence in support of the clinical relevance
of PDE4 SASSI in neuroinflammation [62].

5.5 Cancer

Aberrant intracellular signaling underpins carcinogen-
esis, and, expectedly, altered cAMP levels resulting from
changes in PDE4 expression are implicated in malignancy.
In vivo studies have demonstrated that PDE4A1 overex-
pression in murine brain tumor xenografts correlates with
lower cAMP levels in tumor cells and significantly de-
creased cancer cell doubling times. Notably, when com-
bined with first-line therapeutics, rolipram has been shown
to improve the survival of mice bearing intracranial tumors
[63]. Further work on optic pathway glioma mouse mod-
els has affirmed the importance of PDE4A1 in brain car-
cinogenesis, as cortical PDE4A1 overexpression has been
shown to lead to the formation of tumors similar to those
observed in patients [64].

In a colorectal carcinoma (CRC) cell line, PDE4B2
has been observed to be upregulated by the mutant Kirsten
rat sarcoma (KRAS) oncoprotein, which has been shown
to induce acinar structure disruption in three-dimensional
(3D) cultures through Ak strain transforming (AKT) phos-
phorylation and activation. AKT phosphorylation has been
reported to be ameliorated by rolipram. Notably, PDE4B2
knockdown has been found to re-establish healthy luminal
apoptosis in 3D cultures [65]. These findings have been fur-
ther corroborated by work on KRAS-mutant mouse mod-
els, in which PDE4B2 was demonstrated to enhance tumor
growth, while the small molecule PDE4 inhibitor apremi-
last reduced tumor volume [66]. Altogether, these data
strongly suggest that PDE4B2 may be a viable therapeutic
target in CRC.
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In a study focused on PDE4D oncogenicity, PDE4D
shRNA treatment of a melanoma cell line stably expressing
exogenous PDE4D2 was reported to exhibit significantly
less tumor cell apoptosis compared to control melanoma
cells undergoing the same treatment: an indication that
PDE4D2 prevents tumor cell death. Notably, upon ectopic
PDE4D2 expression, increased proliferation has been ob-
served in both melanoma and gastric cancer cells in support
of the hypothesis that PDE4D2 dysregulation is implicated
in tumor progression [67].

5.6 Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease (COPD) is an

irreversible systemic condition affectingmore than 200mil-
lion people globally and is the third leading cause of death
worldwide. Risk factors include genetic predisposition, to-
bacco smoking, infections, malnutrition, and air pollution.
Patients may experience dyspnoea, coughing, and wheez-
ing, which worsen if not managed, as curative treatment is
yet unavailable [68].

Progressing COPD is characterized by a significant in-
crease in CD8+ T-cell, neutrophil, and macrophage num-
bers in the inflammatory infiltrate of the lung epithe-
lium, contributing to lung function decline [69]. Analy-
sis of PDE4 mRNA levels in neutrophils and monocytes
of healthy donors has revealed that PDE4B2 is the predom-
inantly expressed isoform: while neutrophils have a consti-
tutively high PDE4B2 expression, it is inducible in mono-
cytes. Notably, compared to other sites, including the lung,
brain, and spleen, PDE4B2 cDNA levels have been re-
ported to be the highest in leukocytes, indicating the poten-
tial of this short isoform as an anti-inflammatory drug target
[70]. What is more, tolerance to roflumilast in patients with
exacerbated COPD, driven by non-typeable Haemophilus
influenzae (NTHi), has been demonstrated to result from the
upregulation of PDE4B2 [71]. The synergy between roflu-
milast and NTHi has been reported to drive the increase in
PDE4B2 expression, and PDE4B2 has been suggested to
have two roles in the inflammation driving COPD: as a hy-
drolase and as an adaptor protein in the inhibitor of nuclear
factor kappa B pathway driving chemokine upregulation
[71]. Additionally, increased levels of monocyte PDE4B2
transcripts have been reported in smokers compared to non-
smokers [72], further emphasizing the importance of this
isoform in COPD and its potential as a drug target.

6. Conclusions
The discovery of the dnc gene and its role in D.

melanogaster behavior instigated extensive research into
rodent and human homologs, leading to the characterization
of the PDE4 family of phosphodiesterases. Their essen-
tial role in compartmentalized intracellular signaling means
that even minute changes in expression or regulation induce
abnormal cAMP effector activity and pathology. While
full-length PDE4 isoforms have long been in the spotlight

as drug targets for the treatment of auto-inflammatory dis-
eases, targeting PDE4 SASSI remains largely uncharted.
The present review has summarised the current knowledge
of PDE4 SASSI in pathology and has thus highlighted their
potential as pharmacological targets in several diseases, for
most of which there is no curative treatment available.

Isoform-selective inhibition of PDE4 remains an ob-
stacle, as clinically approved small molecules, including
roflumilast, apremilast, and crisaborole, rely on binding
the catalytic pocket of cAMP hydrolysis, which is highly
conserved across isoforms within each PDE4 subfamily.
Non-selective binding to long PDE4 isoforms causes dizzi-
ness, nausea, emesis, and gastrointestinal side effects in
patients, making PDE4 inhibitors second-line treatment at
best [16]. While some selectivity for long isoforms has been
achieved with the allosteric inhibitor BPN14770 which has
been reported to have higher potency against PDE4D3 and
PDE4D7 than against PDE4D2 [73], most molecules in de-
velopment and in trials either inhibit all PDE4 isoforms
or exhibit a higher selectivity for one of the four subfami-
lies [74]. The major structural difference between long and
short isoforms, namely the lack of UCR1 in SASSI and their
subsequent inability to form dimers, could be utilized in the
development of isoform-selective PDE4 inhibitors. Ther-
apeutics targeting unique domains of PDE4 SASSI have
the potential to overcome the long-standing challenge of
isoform-selective PDE4 inhibition to ultimately improve
patient quality of life.
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