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Abstract: The liver performs a multitude of bodily functions, whilst retaining the ability to regenerate
damaged tissue. In this review, we discuss sex steroid biology, regulation of mammalian liver
physiology and the development of new model systems to improve our understanding of liver
biology in health and disease. A major risk factor for the development of liver disease is hepatic
fibrosis. Key drivers of this process are metabolic dysfunction and pathologic activation of the immune
system. Although non-alcoholic fatty liver disease (NAFLD) is largely regarded as benign, it does
progress to non-alcoholic steatohepatitis in a subset of patients, increasing their risk of developing
cirrhosis and hepatocellular carcinoma. NAFLD susceptibility varies across the population, with
obesity and insulin resistance playing a strong role in the disease development. Additionally, sex and
age have been identified as important risk factors. In addition to the regulation of liver biochemistry,
sex hormones also regulate the immune system, with sexual dimorphism described for both innate
and adaptive immune responses. Therefore, sex differences in liver metabolism, immunity and their
interplay are important factors to consider when designing, studying and developing therapeutic
strategies to treat human liver disease. The purpose of this review is to provide the reader with a
general overview of sex steroid biology and their regulation of mammalian liver physiology.

Keywords: liver; NAFLD; sex hormones; estrogen; testosterone; HRT; immune response; in vitro
models; human PSCs; tissue engineering

1. Introduction

The liver is a remarkable organ, which coordinates a multitude of critical functions,
whilst retaining the ability to dramatically remodel and regenerate damaged tissue [1].
In this review, we explore the role that sex steroids play in maintaining normal liver
function and discuss the importance of developing new model systems to improve our
understanding of the underpinning biology.

The liver is composed of four lobes which are subdivided into lobule structures. These
are hexagonal in appearance, with each corner displaying the portal triad that consists of
the portal vein, bile duct and hepatic artery [2]. The major metabolic cell type of the liver is
the hepatocyte, which accounts for ~70% of the organ’s mass. Hepatic function is regulated
by a number of factors, including oxygen availability, growth factor signaling, extracellular
matrix interactions and communication with the non-parenchymal cell compartment [3].
This is key to the liver’s ability to rapidly filter and detoxify waste products, thereby
reconditioning the blood [4].

Although the liver is an exceptionally regenerative organ, chronic exposure to toxins
can ultimately result in scar tissue formation. This does not only have consequences for
organ function but is also a major barrier for liver tissue remodeling and regeneration. If
this process continues unchecked, extensive scarring can prevent regeneration, leading to
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organ failure and death. Currently, orthotopic liver transplantation is the only effective
treatment for acute organ failure or end-stage disease. However, due to the limited number
of donor organs, as well as complex surgery and complications associated with lifelong
immunosuppression, this approach is not a universal treatment option for all patients [5].
Therefore, a number of alternative approaches have been employed to restore basic liver
function in humans. Adult donor hepatocytes have been successfully transplanted to treat
metabolic liver diseases such as urea cycle defects, Crigler–Najjar syndrome type I and
glycogen storage disease type 1a [6]; however, the cell transplants are not a permanent
solution as they are eventually cleared by the immune system [7]. Due to these current
treatment limitations, tissue engineering and the development of new sources of liver
tissue, such as adult progenitors and pluripotent stem cell-derived liver tissue, represent
attractive renewable systems of the future to treat failing liver function in humans.

Liver scarring occurs as a result of imbalanced matrix deposition and remodeling,
resulting in the buildup of fibrotic tissue [8]. This is a complex process that depends
on the interaction of both resident liver cells as well as recruited immune cells. Central
to liver fibrosis is the activation of hepatic stellate cells (HSC) by the immune system.
Key factors involved in HSC activation include the pro-inflammatory and pro-fibrogenic
cytokines, TGF-α and TGF-β, which increase cell proliferation and promote a myofibroblast
phenotype. In parallel, anti-fibrogenic cytokines (including IL-10, IFN-α, IFN-γ) are also
released from immune cells to moderate the pro-fibrogenic response. The balance of these
key players results in a net pro- or anti-fibrogenic HSC response (for a review see Acharya
et al., 2021 [9]). It is important to note that liver fibrosis is reversible in the early stages
of disease [10]. The major events promoting recovery are myofibroblast apoptosis and
macrophage transition from a pro-inflammatory to a pro-resolution phenotype [11]. During
these processes, deposited ECM is remodeled via matrix metalloproteinases, specifically
acting on collagen, gelatin and elastin [12].

A major risk factor for the development of liver disease is obesity, which is associated
with elevated blood glucose, cholesterol and triglyceride levels, as well as excess adipose
deposition around the waist. Together, these factors are termed metabolic syndrome (MetS),
which underpins non-alcoholic fatty liver disease (NAFLD) [13]. Specifically, NAFLD is
defined by the development of macrovesicular steatosis, whereby hepatocytes accumulate
triglycerides. Although steatosis is largely regarded as benign, it does progress to non-
alcoholic steatohepatitis (NASH) in approximately 30% of patients, increasing their risk
of developing fibrosis, cirrhosis and hepatocellular carcinoma in the future [13]. To date,
there are no specific therapeutics available to reverse or treat NAFLD or NASH. The only
effective intervention for obesity-induced disease is through weight reduction following
invasive and permanent bariatric surgery [14], highlighting a clinical unmet need to find
alternative less invasive treatment strategies. NAFLD susceptibility varies across the
population, with obesity and insulin resistance playing a strong role in the disease process.
Sex hormones, notably estrogens and androgens, also contribute to the risk of developing
liver disease. Specifically, epidemiological studies have reported that genetic sex and age
are important risk factors for NAFLD. NAFLD is twice as common in postmenopausal
women as in premenopausal women consistent with a protective role for estrogens, but
the mechanisms responsible remain under-explored [15]. In addition to the regulation of
biochemical processes within the liver, sex hormones also regulate the immune system
(for a review see Taneja et al., 2018 [16]), and sexual dimorphism has been described for
innate and adaptive immune responses [17]. These are important factors to consider when
designing therapeutic strategies for hepatic disease, which may need to be stratified for
men or women and take into account therapies such as hormone replacement therapy
(HRT) in postmenopausal women and in exogenous hormones in transgender people.

To model the relationship between healthy and diseased liver, as well as sex hormone
and immune interplay, we suggest implementing in vitro models. Although there are a
number of in vitro approaches to study liver disease, they do possess drawbacks. For
example, cell line-based models display perturbed genetic and metabolic function, arising
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from malignant transformation and/or immortalization. Whereas primary mouse and
human hepatocyte-based systems display species differences and unstable phenotype
post isolation, limiting their application. Additionally, human hepatocytes are commonly
isolated from transplant-rejected livers, often fatty in nature, which may adversely affect
their performance [18]. Therefore, we and others have opted to use pluripotent stem cell-
derived systems as a renewable source of human tissue to model liver disease (for a review
see Szkolnicka et al., 2016 [19]).

Given the international prevalence of NAFLD and the complexity of disease progres-
sion, we decided to write this review article, providing insight into the role of hormonal
signaling in mammalian liver physiology.

2. Sex Steroid Biosynthesis, Signaling and Regulation of Liver Function

Sex steroid hormones are synthesized by the gonads and adrenals, and to a lesser
extent in liver and adipose tissue [20,21]. The most potent sex steroids are estrogens,
androgens and progestins, all of which instruct cell and tissue function and may also
contribute to development of pathologies including malignant transformation [22]. To date,
most attention has been paid to the impact of sex steroids on reproductive tissues [23,24]
and hormone-dependent cancers [25,26]. In this review, we focus on estrogen and androgen
signaling, and their impact on liver biology.

2.1. Overview of Sex Hormone Biosynthesis

Cholesterol translocation to the mitochondrial membrane is the first step of sex hor-
mone biosynthesis within a cell [27,28] (Figure 1). Thereafter, cholesterol is converted
to pregnenolone by CYP11A1, a member of the cytochrome P450 superfamily of en-
zymes [29,30] at the start of a multistep enzymatic cascade that results in generation of
estrogens and androgens (Figure 1). Specifically, pregnenolone is converted to progesterone
by 3β-Hydroxysteroid dehydrogenase (3β-HSD). In addition, 3β-HSD may also metabolize
DHEA (formed from pregnenolone via 17α-hydroxyprogesterone) to androstenedione
or androstenediol to testosterone, T (metabolized from DHEA by 17β-Hydroxysteroid
dehydrogenase, 17β-HSD) [27,29–31]. Aromatase (CYP19A1) can catalyze the formation of
E1 (estrone) [27,29–31] or E2 (estradiol) from androstenedione and T, respectively [27,29,31].
As well as acting as a precursor for E2, T may also be processed to its potent form dihy-
drotestosterone (DHT) by 5α-reductase [29–31], something that predominantly happens
within peripheral tissues such as prostate [32]. Intraconversion of E1 and E2 is regulated
with 17β-HSDs of which there are ~14 isoforms in humans [27,29] (Figure 1). 17β-HSD
isoforms 2, 4, 5 (AKR1C3), 6–7 and 10–14 are all expressed in the liver [33–37]. In the liver,
low aromatase levels in hepatocytes have been associated with disorders such as cirrhosis
and steatosis in men [38]. Studies in male mice have shown that targeted deletion of the
aromatase gene (ArKO) resulted in glucose and insulin intolerance [39] (Table 1). Whilst
in female mice, aromatase deficiency has been associated with elevated T levels, that in
turn lead to impaired liver metabolism [40] (Table 1). Other enzyme deficiencies may also
contribute to liver disease; one example being 5α-reductase type 1 (Srd5a1) knockout which
leads to steatosis and fibrosis in male mice [41,42] (Table 1).

2.2. Circulating Hormones in Women

Estrogens are a group of female sex hormones, composed of E1, E2, estriol (E3) and
estetrol (E4, fetal liver) [27,29,43,44] (Figure 1). All four estrogens can bind to nuclear and
membrane estrogen receptors, however, they have different binding affinities and effects
on downstream gene expression. E2 is considered a ‘strong’ estrogen, with high affinity for
estrogen receptors, whilst E1 and E3 are deemed to be ‘weak’ estrogens based on analysis
of receptor-mediated signaling in cancer cells [45]. The relative abundance of circulating
estrogen depends on a women’s reproductive status. For example, E3 and E4 are predomi-
nantly detected during pregnancy, with E4 exclusively converted from E2 and E3 by fetal
liver enzymes [43,44] (Figure 1). E2 is the predominant form of circulating estrogen in pre-
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menopausal women [46], whilst E1 concentrations increase during menopause [29,47]. In
premenopausal women, E2 is produced by granulosa cells in ovarian follicles, whilst after
menopause cessation of ovulation means the hormone is synthesized in extragonadal tis-
sues [48]. Normal levels of total E2 in premenopausal women range between 30 and
400 pg/mL (depending on ovarian function), but this drops to 0–30 pg/mL in post-
menopausal women [49].
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P450 cholesterol side-chain cleavage enzyme; 3β-HSD, 3β-hydroxysteroid dehydrogenase D5-D4 
isomerase; DHEA, dehydroepiandrosterone; DHEA-S, dehydroepiandrosterone sulphate; 
CYP17A1, cytochrome P450 17α-hydroxylase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; DHT, 
dihydrotestosterone; CYP19A1, cytochrome P450 aromatase; E1, estrone; E2, estradiol; E3, estriol; 
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Figure 1. Sex hormone biosynthesis in vivo. Overview of testosterone and estrogen biosynthesis in
humans. Cholesterol is processed into different DHEA and progesterone via several steps, leading to
testosterone synthesis via androstenediol by 3β-HSD or androstenedione by 17β-HSD. Testosterone
can be further metabolized to its potent form, DHT, by 5α-reductase. E2, can be synthesized from
testosterone by aromatase or via E1 by 17β-HSD type 1. The other two forms of estrogen, E3 and
E4, are detected within pregnant women and the fetal liver. CYP11A1, cytochrome P450 choles-
terol side-chain cleavage enzyme; 3β-HSD, 3β-hydroxysteroid dehydrogenase D5-D4 isomerase;
DHEA, dehydroepiandrosterone; DHEA-S, dehydroepiandrosterone sulphate; CYP17A1, cytochrome
P450 17α-hydroxylase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; DHT, dihydrotestosterone;
CYP19A1, cytochrome P450 aromatase; E1, estrone; E2, estradiol; E3, estriol; E4, estetrol; CYP3A4/5,
cytochrome P450 3A4/5.

Women also produce testosterone, which is synthesized in the adrenal gland, ovary
and extragonadal tissues, including the liver [50]. Normal measurements range from 0.5
to 2.4 nmol/L [51]. During menopause, there is a relative increase in androgen levels
associated with reduced conversion to estrogens in the ovaries [52]. Some reproductive dis-
orders such as polycystic ovarian syndrome (PCOS) are associated with excess circulating
androgens and the development of metabolic syndrome [53]. PCOS is often also associated
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with obesity and is an example of the impact of disruption in androgen:estrogen balance in
women with implications for impaired lipid and glucose metabolism in the liver [54,55].
Excess androgens in women with PCOS also place them at higher risk of NAFLD with a
recent review highlighting the importance of SHBG, a steroid-binding protein produced
in the liver in the regulation of bioavailable androgens in women with a suggestion that
levels of SHBG could be used as a biomarker for NAFLD [56].

2.3. Circulating Hormones in Men

Androgens are considered the primary male sex hormones. There are several forms of
circulating androgens, with T and DHT acting as potent ligands for androgen receptors
(AR) [57]. Normal levels of overall T in men are 10–35 nmol/L [51]. Free testosterone
and testosterone loosely bound to albumin in blood can interact with AR, but the tight
complex of testosterone bound to SHBG cannot bind to AR in target tissues [58]. Notably,
circulating levels of SHBG are influenced by liver function and by obesity with implications
of androgen action in tissues such as muscle [59,60]. DHT has a higher affinity for AR in
binding studies and is considered a more potent receptor activator than testosterone [61].
In contrast to testosterone, only 20% of DHT is secreted by testes in men, whilst the rest is
converted by 5α-reductase in extragonadal tissues [62,63]. Both androgen and AR levels
decrease in men with age [64–66].

In contrast to women, E2 production in men does not primarily rely on the gonadal
tissues, but rather depends on the aromatization of testosterone in both gonads and extrag-
onadal tissues, such as adipose tissue [67]. Normal circulating E2 levels are between 10
and 50 pg/mL [49]. Decreased SHBG in obese men can increase the amount of T available
for conversion to E2 and the increase in fat mass results in upregulated aromatase activity
and consequently higher production of E2 [60,68]. With relevance to the liver, the decrease
of testosterone levels and the increase of circulating estrogen is associated with visceral
adiposity, insulin resistance and MetS [58,63,69], all of which are detrimental to health.

2.4. Receptor-Dependent Signaling by Estrogens and Androgens

Ligand binding to estrogen and androgen receptors can induce changes in gene
expression and cell function by two main mechanisms broadly referred to as genomic or
non-genomic (Figure 2).

2.5. Genomic Pathway

Two estrogen receptor genes have been identified in humans encoding alpha and
beta receptor subtypes, ERα (ESR1) and ERβ (ESR2). They share >95% amino acid ho-
mology in their DNA-binding domains and 59% sequence identity in their ligand-binding
domains [70,71]. When the ligand interacts with ERα or ERβ in the target cell, the re-
ceptors undergo a conformational change, forming homo- or heterodimers and become
associated with other proteins. Thereafter they bind to the estrogen response elements
(ERE) in the regulatory regions of target genes, promoting their expression [57]. Alter-
native gene activation may occur via so called ‘tethered’ mechanisms involving other
transcription factors such as AP-1 and Sp-1 that do not require ERE sequences for binding
to the promoter regions [72] (Figure 2). In relation to liver, ERα knockout (ERKO) mice
display increased insulin resistance and lipid storage in both males and females, leading to
NAFLD [73,74] (Table 1).

Androgen binding (T or DHT) to receptors within the cell results in a conformational
change in receptor protein, formation of homodimers and binding to androgen response
elements (ARE) in target genes [75], or to other transcription factors such as AP-1 [57]
(Figure 2). Androgens play a key role in the development and maintenance of male
phenotype in men and mice, with ARKO mice having smaller testes, and female-like
external genitalia. Specific to the liver, tissue-specific ablation of AR in male mice led to
steatosis due to increased de novo lipid synthesis and decreased fatty acid β-oxidation in
hepatocytes [76] (Table 1).
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Figure 2. Genomic and non-genomic effects of hormonal signaling. Several hormone pathways exist.
Ligand-bound nuclear hormone receptors (R) can either directly activate hormone response elements
(HREs), located on the regulatory sequences of target genes, or they bind to other transcription
factors (e.g., AP-1). Intracellular nuclear receptors can also be activated in the absence of hormone
via growth factors (e.g., EGF) via kinase-mediated phosphorylation (ligand-independent pathway).
In the presence of hormone, receptors may also regulate mtDNA transcription. Hormone-activated
membrane receptors activate protein-kinase cascades (e.g., MAPK signaling pathway) and regulate
the levels of secondary messengers within the cell (e.g., Ca2+ intracellular influx via GPER1). R,
hormone receptors (nuclear—blue, plasma membrane—green); HRE, hormone response elements;
TF, transcription factor; K, kinase; P, phosphorylation.

2.6. Non-Genomic Pathway

The non-genomic activities of sex hormones are associated with rapid activation of
downstream targets that are significantly faster than classical ligand-activated receptor
pathways [77] (Figure 2). [78]. Estrogens may act via membrane-bound variants of ERα
and ERβ, and on G-protein-coupled estrogen receptor (GPER1) [57,79,80]. Estrogen recep-
tors are present on the plasma membrane of every cell, however, their abundance varies
depending on the cell type. Both ER variants are expressed within human and rat liver
cells, although ERα is known to be expressed at higher levels than ERβ [81]. Estrogen-
stimulated ERα and ERβ receptors are also found on mitochondria and are believed to
coordinate organelle biology within the cell [82,83]. GPER1 is also present on endoplasmic
reticulum, mediating cell apoptosis via Ca2+ cascade [84]. Specific to liver, GPER1-KO
female mice exhibit higher risk of liver injury [85], whilst GPER1-KO affects aged male
mice resulting in fat accumulation and elevated triglyceride levels [85,86] (Table 1).
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Androgen receptors present on the plasma membrane also induce a rapid response to
testosterone and DHT [87] (Figure 2). The non-genomic activity of androgens involves the
production of secondary messengers and the activation of kinase-mediated pathways [87].
Furthermore, AR can also cooperate with ERα/ERβ to promote the activity of c-Src ki-
nase [88], suggesting that E2 and androgen signaling are interconnected. Plasma membrane
G protein-coupled receptors are also found to induce intracellular levels of Ca2+ upon
testosterone binding [87]. AR are also found in mitochondria and regulate OXPHOS and
mtDNA homeostasis [89].

2.7. Ligand-Independent Signaling Pathway by Estrogens and Androgens

Estrogen receptors can be activated in the absence of estrogen. The phosphorylation
of the specific residues of the receptors cause their translocation to the nucleus and the
initiation of target gene transcription as described in the genomic pathway section [78].
Estrogen-independent ER activators include epidermal growth factor (EGF), insulin and
others [78] (Figure 2).

Androgen-independent mechanisms involve constitutively active AR splice variants,
mutations within AR or activation of AR by growth factors [90]. Insulin-like growth
factor, EGF and others mediate AR-induced cell cycle regulation and apoptosis within
cells [91] (Figure 2).

2.8. Estrogen Signaling in Liver

Local estrogen bioavailability can be regulated by liver enzymes which include aro-
matase and 17β-HSD family members [92,93]. Amongst estrogen receptor subtypes, ERα
is reported to be the most abundant ER in both female and male hepatocytes [81,94]. In
both sexes, estrogen signaling regulates lipogenesis, glucose and cholesterol homeostasis.
Both male and female mice with ERα or liver-specific ERα knockout (ERKO and LERKO,
respectively) develop fatty liver consistent with a role for ER-dependent gene expression
in liver homeostasis [73,74,95] (Table 1). EREs are found in numerous promoters which
exhibit a sex bias in human and rat liver gene expression as has been observed for CYP450
superfamily members, including CYPs 1A2, 3A4 and 4A11 [96,97]. Sex-biased secretion
of hepatokines, such as adropin, whose mRNA levels are implicated in development of
fatty liver and insulin resistance, also showed estrogen-dependent regulation via ERα
in mice [98].

The level of bioavailable estrogen is therefore important for normal physiological
functioning of the liver and disruption of this signaling axis can have profound effects in
both men and women (summarized Figure 3A,B). For example, lower levels of circulating
estrogens found in postmenopausal women and in men are associated with an increase in
the levels of plasma cholesterol and low-density lipoprotein (LDL) promoting fat accumu-
lation and altering lipid homeostasis in the liver [99–101]. It has been shown that GPER1 is
more important in aging males [85,86], whereas plasma ERα is more important in female
lipid regulation [102,103] (Table 1). The estrogen pathway also plays a role in liver glucose
metabolism and homeostasis [104] (Table 1), regulating insulin release, expression of the
glucose transporter (GLUT) gene and glycogen synthesis [104–106]. It is interesting to note
that type 2 diabetes (T2D) is more prevalent in men than in women due to impaired E2
conversion in male livers [107]. Supporting this notion, aromatase-deficient men, but not
women, display obesity, insulin resistance and hyperinsulinemia [108]. After menopause,
lower levels of circulating estrogens can lead to women developing T2D, MetS [109] and
NAFLD. The progression to chronic liver disease, such as NASH and HCC, has also been
associated with altered estrogen signaling [110], with HCC being 4 times more common in
males than in females until menopause [111].
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2.9. Androgen Signaling in Liver Pathology

Androgens also regulate metabolism in the liver and perturbations in their biotrans-
formation and signaling can lead to the development of disease [57] (Figure 3). Elderly
men with MetS and obesity display significantly reduced serum testosterone levels and
increased E2 levels [112,113] (Table 1). However, lipid metabolism can be partially restored
in male mice with non-functional ARs and by treatment with T suggesting that andro-
gens have an impact on lipid homeostasis that is independent of functional ARs [114,115]
(Table 1). In women, increased androgen levels, such as in those with PCOS (see above)
pose an increased risk of visceral adiposity and fatty liver disease [116–118].

Androgens also act as regulators of glucose metabolism, although differently in men
and women (Figure 4A,B). High testosterone levels are associated with decreased risk of
insulin resistance and T2D in men but increase the risk in women [119]. In male mice,
testosterone and DHT maintain glucose homeostasis. Whereas in castrated male rats,
glucose is exported out of the liver, increasing blood glucose levels, which is a risk factor for
developing disease [41,120] (Table 1). Reduced DHT levels are also associated with weight
gain, hyperinsulinemia, hepatic steatosis and liver fibrosis in male mice [41] (Table 1).
When male and female obese and AR knockout mice are compared experimentally, only
male mice display decreased insulin sensitivity and elevated levels of protein tyrosine
phosphatase 1B [76] (Table 1).

Table 1. Summary of the impact of disruptions in synthesis of sex steroids or their receptors in male
and female mice and rats.

Animal Sex Modification Phenotype Reference

Mouse Male ArKO (aromatase deficient) in
liver and muscle

Obese
Hyperglycemia

Insulin resistanceUpon E2 administration:
recovery to WT phenotype

[39]

Mouse Female ArKO 10-fold elevated testosterone compared to
wild type (WT) [40]

Mouse Male 5α-reductase1-KO (Srd5a1−/−)

Impaired testosterone to DHT conversion

Obesity
Hyperinsulinemia
Hepatic steatosis

Predisposition to hepatic fibrosis

[41,42]

Mouse Female MOER (only plasma
membrane ERα)

Normal response to E2 in ERK and
PI3K activation

Abnormal reproductive tract, mammary
gland, hormone secretion

Obesity without functional nuclear ERα

[102,103]

Mouse Female ERKO (ERα knockout) and
LERKO (liver-specific ERKO)

Higher body weight than WT
Insulin resistance

Higher leptin levels
Fasting hyperinsulinaemia

Hyperglycemia
Altered hepatokine production

[73,74,95,98,104]
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Table 1. Cont.

Animal Sex Modification Phenotype Reference

Mouse Male ERKO (ERα knockout)
Similar body weight to WT
Fasting hyperinsulinemia

Hyperglycemia
[73,74,104]

Mouse Female BERKO (ERβ knockout) Normal body weight [73]

Mouse Female GPER1-KO (Gpr30-LacZ) and
high-fat diet supplementation

Young mice:
Lower levels of HDL,

higher risk of liver injury
[85]

Mouse Male GPER1-KO (Gpr30-LacZ) and
high-fat diet supplementation

Young mice:
No lipid profile changes,

reduced expression of liver damage
markers (ALAT, ASAT)

Old mice:
Weight gain,

elevated triglyceride levels and
cholesterol

[85,86]

Mouse Male ARKO (androgen
receptor knockout)

Failure to develop male phenotype
Reduced testes and serum testosterone

levels

Decreased fatty acid β-oxidation and
PPARα expression

Triglyceride accumulation
Hepatic steatosis

Insulin resistance
Leptin resistance

Risk of T2D

[76,115,121]

Mouse Female ARKO

Impaired ductal system within mammary
glands

Insulin resistance
Hepatic steatosis

[121,122]

Rat

Mouse

Female OVX (ovariectomized)

Removes ovarian E2
Impaired glycogen synthesis

Impaired TCA cycle
Risk of MetS and NAFLD

Altered hepatokine production

[106,123]

[98]

Rat

Mouse

Male

Castrated

Testicular feminized

Disrupted testosterone production
Impaired regulation of

glucose transporters
Elevated blood glucose levels

Risk of T2D

Increased hepatic lipid deposition

[120]

[114]
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Figure 4. Testosterone effects on liver. (A) Low levels of testosterone are associated with liver
pathology in males via increased lipid storage, MetS and hepatic steatosis, impaired insulin signaling
and T2D; (B) High testosterone levels are associated with liver pathology in females via increased
lipid storage, impaired glucose metabolism and T2D. NAFLD, non-alcoholic fatty liver disease;
NASH, non-alcoholic steatohepatitis; MetS, metabolic syndrome; T2D, type 2 diabetes; DHEA-S,
dehydroepiandrosterone sulphate; GLUT2 and 4, glucose transporters 2 and 4; SHBG, sex hormone-
binding globulin.
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2.10. Hormone Replacement Therapies for NAFLD

Hormonal regulation of liver metabolism is a potential therapeutic target for treatment
of human liver disease (Figures 3A and 4A) and has been investigated in clinical trials. For
example, when postmenopausal women with T2D received either E2 with or placebo for
6 months, the group which received the active hormone had lower levels of circulating
alanine aminotransferase and GGT suggesting decreased fat content within liver [124].
Additionally, a larger study of postmenopausal women demonstrated that NAFLD was
reduced in a group undergoing HRT therapy. After menopause, the rise in T may increase
the risk in developing NAFLD, suggesting testosterone antagonists could be used. Notably,
short-course trials with spironolactone, a competitive inhibitor of AR, showed decreased
serum fatty acids and visceral adiposity in women [54].

Similarly, androgen HRT in men reduces liver steatosis. Men with T2D and low-
ered serum testosterone levels that received testosterone therapy had lower liver fat than
compared to the placebo group, as well as decreased liver damage markers [125]. In the
same study, men who received testosterone treatment displayed a reduction in absolute
liver fat [125].

Although HRT improves liver physiology and function in patients, it also carries risks.
Estrogen-only therapy increases a risk for endometrial cancer in menopausal women with
a uterus. When considering HRT in women, it is important to compare risks of E-only and
combined regimes that may include androgens [126]. Some evidence suggests HRT may
be associated with increased risk of breast cancer, dementia, blood clots and stroke with
long-term use [127]. Testosterone therapy in men is also not risk-free. The administration
of testosterone can accelerate the development of benign prostatic hyperplasia and prostate
cancer and increases the risk of breast cancer and cardiovascular disease [128]. Therefore,
whilst liver function may be enhanced, improved formulations and better balanced regimes
need to be developed to balance out benefit versus risk, particularly with longer term
use, for example, amongst hypogonadal men, women with premature menopause and
transgender individuals [129].

3. The Role of the Immune System in Liver Biology and Metabolism

In its healthy state, the liver functions as an immune sentinel, sampling the blood
that enters it via the hepatic portal vein, before it reaches the spleen or lymph nodes.
This blood is rich in nutrients, as well as any pathogen-derived molecules that are in
circulation, such as lipopolysaccharide (LPS). Since the liver filters all of the blood, it is
in a prime position to detect these molecules and sound the alarm to the immune system.
It is, therefore, unsurprising that damage to the liver leads to a robust immune response,
by both the innate and adaptive arms of the immune system (Figure 5). NAFLD leads
to lipotoxicity within the liver, which, in turn, causes hepatocytes to become stressed or
die, and this process generates inflammatory factors called damage-associated molecular
patterns (DAMPs) [130], which are able to trigger activation of the immune system [131].
Whilst the precise mechanisms leading to the progression from NAFLD to NASH remain
unclear, there is evidence to suggest that these are, in part, immunological in nature.

3.1. Immunity and NAFLD/NASH

Approximately 30% of patients with NAFLD develop an inflammatory phenotype
and progress to NASH, with subsequent tissue injury and the development of hepatic
fibrosis. However, this key step between the relatively benign NAFLD phenotype and
inflammatory NASH remains subject to extensive debate. Chronic metabolic inflammation
(metaflammation) is initially promoted during metabolic diseases such as obesity and type
2 diabetes (T2D), and there is evidence to suggest that this fuels the NAFLD–NASH transi-
tion. In particular, the adipose tissue has been identified as a major source of inflammatory
cytokines, including pro-inflammatory tumor necrosis factor (TNF), interleukin-1β (IL-1β)
and IL-6 [132]. In mouse models of hepatic steatosis, systemic deletion of Tnf and chem-
ical inhibition of TNF-Receptor-1 reduces the prevalence of steatosis and hepatocellular
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injury [133,134]. At the hepatic level, lipotoxicity within hepatocytes drives the release of
CXCL10 (C-X-C motif ligand 10) [135], which is a chemoattractant, or CXCR3 (C-X-C motif
chemokine receptor 3)-expressing Kupffer cells [136], the tissue-resident macrophages of
the liver. Upon localization to the site of injury and stimulation of toll-like receptor 4
(TLR4), Kupffer cells also release TNF, IL-1β and IL-6 [137]. TNF-alpha (TNFα) is a major
contributor to the inflammatory response, regulating various aspects of sickness behavior
during infection, including fever and cachexia. In the context of NAFLD, TNFα was shown
to drive an increase in the expression of the genes Acaca (acetyl-CoA carboxylase alpha)
and Scd1 (stearoyl-CoA desaturase 1) [133]. Acaca encodes a rate-limiting enzyme for fatty
acid synthesis [138], whilst Scd1 encodes a lipogenic enzyme that catalyzes the synthesis of
monounsaturated fatty acids [139]. Furthermore, inhibition of the TNFα receptor, TNFR1,
improves liver steatosis and insulin resistance [134]. Given that TNFα is a major driver of
cachexia during infection, it is paradoxical that it also drives increased expression of these
two lipid storage enzymes in NAFLD, suggesting that the role of this cytokine is tissue-
and context-dependent.
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Figure 5. Liver immunity. Schematic of the broad immune changes occurring in the liver during
NAFLD. Hepatic steatosis causes the release of DAMPs and CXCL10, leading to activation of the
liver-resident macrophages (Kupffer cells). Kupffer cells, in turn, recruit the adaptive arm of the
immune system, including TH17 cells, which can lead to exacerbation of NAFLD. Additionally, IL-17A
stimulates secretion of TGFβ by Kupffer cells, which drives stellate cell activation and release of ECM
from fibroblasts. Kupffer cell-derived ROS and ATP also contribute to NAFLD- and NASH-associated
inflammation. NAFLD, non-alcoholic fatty liver disease; DAMPs, damage-associated molecular
patterns; TH17, T helper 17 cell; IL-17A, TH17-derived interleukin 17A; ECM, extracellular matrix;
ROS, reactive oxygen species; NASH, non-alcoholic steatohepatitis.
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IL-6 is an important driver of adaptive immune recruitment, selectively controlling T
cell recruitment by mediating chemokine secretion [140]. Further to recruitment of T cells,
IL-6 also drives polarization of CD4+ T cells, inhibiting T helper 1 (TH1) and promoting TH2
and TH17 differentiation [141,142]. In both NAFLD and NASH, patients exhibit increased
circulating IFNγ-producing TH1 cells, and patients with NASH could be stratified from
those with NAFLD by the increase in circulating TH17 cells [143]. TH17 cells are CD4+ cells
that express the transcription factor RORγt (retinoid orphan receptor gamma t) and RORα,
and are characterized by secretion of IL-17A and IL-17F. It was recently demonstrated that
IL-17A and IL-17F are drivers of adipocyte lipid usage in adipocytes during infection and,
moreover, promote infection-induced cachexia [144], suggesting that it may drive lipid
usage in other cell types, including hepatocytes. As with TNFα, this appears paradoxical, as
NAFLD is associated with increased hepatic lipid storage. However, increased expression
of TNFα and IL-17A may represent a mechanism by which the liver attempts to mobilize
and dispose of excess lipids to restore homeostatic function.

TH17 cells are known to expand in the liver of obese humans and mice [145], and multi-
ple rodent models of NAFLD show increased IL-17A signaling through the IL-17A receptor
(IL-17RA) [146,147]. The development of NAFLD leads to increased infiltration of non-
conventional CXCR3+ TH17 cells, which can co-express IFNγ. Adoptive transfer of CXCR3+

TH17 cells into mice with experimental NAFLD increased hepatic damage compared with
those given CXCR3− TH17 cells [148]. Furthermore, the livers of mice given CXCR3+ TH17
cells displayed increased triglyceride accumulation and hepatocyte ballooning. Moreover,
the presence of CXCR3+ TH17 cells correlated with increased disease severity in humans,
suggesting that this is an evolutionarily conserved aspect of NAFLD and NASH. However,
the mechanisms by which these CXCR3+ TH17 cells exacerbate disease remain unclear.
Typically, TH17 cell-secreted IL-17A recruits and activates neutrophils [149], a cell type
abundant in the liver of NASH patients, but it remains to be seen whether CXCR3+ TH17
cells exert their effects through neutrophil activation or an as yet unknown mechanism.
Further to its role in recruitment of neutrophils, IL-17A signals through IL-17RA on Kupffer
cells to promote production of TGF-β1 (transforming growth factor β1) [150], which, in
turn, promotes hepatic stellate cell (HSC) activation and extracellular matrix secretion,
contributing to NAFLD progression [151].

3.2. Immunometabolism in NAFLD/NASH

An emerging area of interest in NAFLD and NASH is immunometabolism. All
cells rely on nutrients to function and immune cells are no exception. Indeed, during
infection and injury, the immune system requires significant amounts of energy to fuel
itself, with different cell types relying on specific nutrients for optimal function. Activation
of Kupffer cells leads to enhanced glucose utilization [152] and a rapid increase in aerobic
glycolysis (the “Warburg Effect”), whereby cells preferentially rely on glycolysis despite
the presence of oxygen [153]. Although glycolysis is less energetically favorable than
oxidative phosphorylation (OXPHOS) [154], it carries a number of advantages for immune
cells. Early branching of the glycolytic pathway generates precursors for the pentose
phosphate pathway (PPP) and de novo nucleotide synthesis, which are required for the
function of multiple immune cell types [155]. For example, in macrophages, such as Kupffer
cells, the PPP is required to sustain superoxide anion production [156], a key component
for the phagocytic oxidative burst [157], which is a tool for destroying pathogens. In
the context of NAFLD, a wide variety of cells increase superoxide production, including
the aforementioned Kupffer cells, as well as neutrophils and other granulocytes [158],
which may contribute to NAFLD-associated oxidative stress. Furthermore, NAFLD is
associated with increased aerobic glycolysis [159], leading to increased lactate production
and stabilization of HIF-1α (hypoxia-inducible factor 1α). This HIF-1α stabilization, in turn,
promotes usage of the glycolytic pathway and promotes liver fibrosis in murine models of
NAFLD [160], potentially signaling a key step in the transition from NASH to cirrhosis.
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A further aspect of the immune system associated with NAFLD and progression to
NASH is the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome.
The NLRP3 inflammasome is an intracellular structure that senses microbial compounds
and environmental stress. Its assembly leads to production of IL-1β and IL-18, as well
as caspase-1-dependent apoptosis [161]. In mouse models of NASH, administration of
a selective NLRP3 inhibitor suppressed caspase-1 and IL-1β accumulation, and limited
the development of fibrosis [162], suggesting that the inflammasome plays a key role in
mediating the progression of NAFLD. One of the major drivers of the inflammasome is
ROS (reactive oxygen species) production, generated by OXPHOS. The mitochondrial
electron transport chain (ETC) is an essential structure for ATP generation and is composed
of multiple complexes (complexes I, II, III, IV and ATPase). Complex II, also known as
succinate dehydrogenase, links the ETC with the TCA cycle, and chemical inhibition of
this subunit prevents NLRP3 inflammasome activation [163]. Whilst there is evidence to
suggest that ROS production leads to activation of the NLRP3 inflammasome [164], recent
work suggests that it is ATP generation, and not ROS, that is required for inflammasome
activation [163]. Since NAFLD and NASH are prevalent in patients with concurrent obesity
and metabolic dysfunction, increased metabolic cycling through glycolysis and OXPHOS
may exacerbate inflammasome activation and oxidative damage.

Understanding the immune response mechanism in NAFLD is crucial for developing
a complete picture of sexual dimorphism in liver disease. As discussed previously in
this review, there is evidence suggesting that androgens and estrogens both play a role in
modulating the immune response, although many of the mechanisms by which they do this
remain unclear or controversial. This gap in our knowledge of liver disease pathogenesis
is one that needs filling urgently, as it has critical implications for the development of
therapeutic strategies.

4. Current Non-Alcoholic Fatty Liver Disease In Vitro Modeling Systems
4.1. Overview of Non-Alcoholic Fatty Liver Disease in Humans

NAFLD is a condition defined by the excess accumulation of fat within the liver [165].
In the initial stages of the disease, there is little or no sign of inflammation or liver dam-
age [166]. However, it is important to treat the benign stage of the disease because disease
progresses in approximately one-third of patients [167]. NASH is associated with lobular
and portal inflammation, hepatocyte ballooning and fibrosis [168–170], and can progress to
cirrhosis [171] and hepatocellular carcinoma (HCC) in some patients [172] (Figure 6).

Recent meta-analysis and systematic review have concluded that the current overall
prevalence of NAFLD worldwide is 32.4% [173], when 7 years ago it was ~24% [174]. The
overall prevalence is significantly higher in men compared to women [173]. NASH has
been identified in ~12% of the U.K. population [175] and was the second leading cause
for liver transplantation in the U.S. in 2016 [176]. Younger patients with NASH seem to
be predominantly men, however, after 50–60 years of age, the prevalence of NASH occurs
more frequently in women [111,177]. Despite the increasing global burden, there are no
licensed therapies for NAFLD or NASH [178,179]. There are several drug candidates for
metabolic homeostasis currently in clinical trial phase III that are expected to end in 2025
(obeticholic acid) and in 2028 (semaglutidine), and several drugs against NASH in phase
II [179]. Drug development in this space has been notoriously difficult and the phrase
NAFLD/NASH graveyard has been coined. To improve success rates, the field needs to
develop more physiologically relevant models, with a focus on human biology, diversity
and the microbiome. Below, we review the advantages and disadvantages of current cell-
and tissue-based systems pertinent to the study of human NAFLD/NASH ‘in the dish’.
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Figure 6. NAFLD progression. Schematic overview of NAFLD progression. Accumulation of >5%
fat within the liver leads to hepatic steatosis (NAFL). In some patients, steatosis progresses to the
inflammation and, consequently, the fibrosis stage, called NASH. NASH can further progress to the
development of liver cirrhosis and eventually lead to liver cancer (HCC). NAFLD, non-alcoholic fatty
liver disease; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis; F3–F4, fibrosis
stages 3 and 4; HCC, hepatocellular carcinoma.

4.2. Cell-Based Modeling of NAFLD

The hepatocyte is the key cell type involved in liver metabolism, with primary human
hepatocyte (PHH) considered the gold standard for in vitro research on liver [180–182].
Although highly relevant, the availability of healthy human liver tissue is extremely limited
and PHHs are mainly derived from transplant reject organs which could introduce artifacts
into subsequent in vitro modeling studies [181,183]. Another limitation of working with
PHHs is their instability in cell culture [180,181,184]. To overcome these limitations, multi-
ple approaches have been employed, including various 3D culture configurations [185–188].
However, the models are still expensive to establish and relatively short-term in nature.
To overcome the issues associated with PHHs, alternative primary cell sources have been
the focus of other studies. Hepatic progenitors (HPCs) have been isolated from liver tissue.
They are both expandable and are bipotent, resulting in differentiation to either cholangio-
cytes or hepatocytes [189,190]. Additionally, PHHs have been chemically induced in vitro
to form expandable hepatic progenitor populations (CLiPs) [191–193]. The workhorse of
the liver field are human cell lines established from transformed tissue and include HepG2,
HepaRG and Huh7 [194]. The benefits of using cell lines are their affordable maintenance
and expansion, and therefore they have been used extensively in NAFLD studies [195].
However, they do harbor numerous limitations which include incomplete phenotype,
altered epigenetic patterns and karyotypic abnormalities.

4.3. Genetically Defined Models of Liver Steatosis

Pluripotent stem cells (PSCs) are a self-renewing stem cell population capable of
differentiation into all human somatic cells [195]. The attraction of using this resource is
that it is possible to capture sex and genetic diversity and the cell products are renewable.
Since isolation of PHHs and their rapid de-differentiation in culture have limitations for
research purposes, PSCs provide a suitable alternative [196]. Moreover, it is possible to
create human tissue containing multiple cell types on the same genetic background. The
field has bloomed over the last 20 years, with technologies becoming more affordable
and reproducible. The simplest way to model NAFLD ‘in the dish’ is to use 2D PSC
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hepatocyte cultures and expose them to an excess of saturated and unsaturated free fatty
acids (FFAs) and energy substrates. Such NAFLD model revealed transcriptomic alterations
in genes involved in TCA cycle and OXPHOS, endoplasmic reticulum stress pathways
and allowed to take a closer look at the benchmarks involved in NAFLD progression,
such as de novo lipogenesis [197–200]. Despite their amenability to high-throughput
screening, 2D hepatocyte cultures fail to replicate key cell to cell interactions between
hepatocytes and non-parenchymal cells of the liver, resulting in altered hepatocellular
structure, phenotype and disease modeling capacity. Therefore 3D models have been
developed. Takebe et al. initially built liver tissue using a mix of PSC and primary cells,
before using a liver tissue engineering product from only PSCs to accurately model hepatic
steatosis [201–203]. Recently, a new 3D iPSC-derived liver organoid was developed which
also contains stellate cells and Kupffer cells [203]. Treatment of these organoids with
free fatty acids induced a steatohepatitis-like phenotype with concurrent development of
fibrosis. These exciting developments are moving the field closer to being able to modulate
immune–endocrine interactions, in a human-relevant setting, to identify new medicines to
treat disease.

5. Concluding Remarks

Chronic metabolic dysfunction, especially obesity and T2D, is associated with the
development of NAFLD. Clinical evidence from humans and studies in animal models
have demonstrated clear evidence of sex bias in pathways affecting NAFLD establishment,
progression and highlight the interplay between liver homeostasis, immune response and
sex hormone signaling. Sex hormone correction of liver metabolism is the rationale for HRT.
Although this has proven successful, improving liver function and reducing inflammation,
the long-term use of HRT does come with increased health risks. Therefore, the identi-
fication of more targeted treatment strategies is required, necessitating the development
of human models which accurately capture the interplay of metabolic syndrome, tissue
fibrosis and the immune system.
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17β-HSD 17β-hydroxysteroid dehydrogenase
3β-HSD 3β-hydroxysteroid dehydrogenase D5-D4 isomerase
Acaca acetyl-CoA carboxylase alpha
ALT alanine transaminase
AR androgen receptor
ARE androgen response element
CLiP chemically induced hepatic progenitor
CXCL10 C-X-C motif ligand 10
CYP11A1 cytochrome P450 cholesterol side-chain cleavage enzyme
CYP17A1 cytochrome P450 17α-hydroxylase
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CYP19A1 cytochrome P450 aromatase
CYP1A2 cytochrome P450 1A2
CYP3A4/5 cytochrome P450 3A4/5
CYP450 cytochrome P450 family
CYP4A1 cytochrome P450 4A1
DAMPs damage-associated molecular patterns
DHEA dehydroepiandrosterone
DHEA-S dehydroepiandrosterone sulphate
DHT dihydrotestosterone
E1 estrone
E2 estradiol
E3 estriol
E4 estetrol
ECM extracellular matrix
EGF epidermal growth factor
ERE estrogen response element
ERα estrogen receptor alpha
ERβ estrogen receptor beta
ETC electron transport chain
FFAs free fatty acids
GLUT glucose transporters
GPER1 G protein-coupled estrogen receptor 1
HCC hepatocellular carcinoma
HDL high-density lipoprotein
HIF-1α hypoxia-inducible factor 1α
HPC hepatic progenitor cell
HRE hormone response element
HRT hormone replacement therapy
HSC hepatic stellate cell
IL interleukin
LDL low-density lipoprotein
LPS lipopolysaccharide
MetS metabolic syndrome
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3
OXPHOS oxidative phosphorylation
PHH primary human hepatocyte
PPAR peroxisome proliferator-activated receptor
PPP pentose phosphate pathway
PSC pluripotent stem cell
ROR retinoid orphan receptor
ROS reactive oxygen species
Scd1 stearoyl-CoA desaturase 1
SHBG sex hormone-binding globulin
T testosterone
T2D type 2 diabetes
TCA tricarboxylic acid
TH T helper cell
TLR4 toll-like receptor 4
TNFα tumour necrosis factor alpha
TNFR1 TNFα receptor
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