Fully Reduced and Mixed-Valent Multi-Copper Aggregates Supported by Tetradentate Diamino Bis(thiolate) Ligands

Bo Wang, Justin Barnes, Skylar J. Ferrara, Stephen Sproules, Xiaodong Zhang, Joel T. Mague, and James P. Donahue*

Cite This: https://doi.org/10.1021/acs.inorgchem.3c00784

Read Online

| ACCESS \| Llll Metrics $\&$ More | 国 Article Recommendations | © Supporting Information |
| :--- | :--- | :--- | :--- |

Abstract

Tetradentate diamino bis(thiolate) ligands (L$\mathrm{N}_{2} \mathrm{~S}_{2}(2-)$) with saturated linkages between heteroatoms support fully reduced $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}\right)\right)_{2} \mathrm{Cu}_{2}\right]$ complexes that bear relevance as an entry point toward molecules featuring the $\mathrm{Cu}_{2}{ }^{\mathrm{I}} \mathrm{Cu}_{2}{ }^{\mathrm{II}}\left(\mu_{4}-\mathrm{S}\right)$ core composition of nitrous oxide reductase $\left(\mathrm{N}_{2} \mathrm{OR}\right)$. Tetracopper $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}_{2}}\right)_{2}\right)\right)_{2} \mathrm{Cu}_{2}\right] \quad\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}}{ }_{2} \mathrm{H}\right)_{2}=N^{1}, N^{2}-b i s(2-m e t h y l-2-\right.$ mercaptopropane)- N^{1}, N^{2}-dimethylethane-1,2-diamine) does not support clean S atom oxidative addition but undergoes Cl atom transfer from PhICl_{2} or $\mathrm{Ph}_{3} \mathrm{CCl}$ to afford $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}}\right)_{2}\right)\right)_{3}(\mathrm{CuCl})_{5}\right]$, 14. When introduced to $\mathrm{Cu}(\mathrm{I})$ sources, the $\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}} \mathrm{H}\right)_{2}$ ligand ($\mathrm{L}-$ $\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}} \mathrm{H}\right)_{2}=N^{1}, N^{2}$-bis(2-mercaptophenyl)- N^{1}, N^{2}-dimethylethane-1,2-diamine), made by a newly devised route from N^{1}, N^{2}-bis(2- fluorophenyl)- N^{1}, N^{2}-dimethylethane-1,2-diamine, ultimately yields the mixed-valent pentacopper $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2} \mathrm{Ar}_{2}\right)\right)_{3} \mathrm{Cu}_{2}\right]$ (19), which has 3 -fold rotational symmetry $\left(D_{3}\right)$ around a Cu_{2} axis. The single $\mathrm{Cu}^{\mathrm{II}}$ ion of 19 is ensconced within an equatorial $\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}(2-)$ ligand, as shown by ${ }^{14} \mathrm{~N}$ coupling in its EPR spectrum. Formation of 19 proceeds from an initial, fully reduced product, $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}{ }_{2}\right)\right)_{3} \mathrm{Cu}_{2}(\mathrm{Cu}(\mathrm{MeCN}))\right](17)$, which is C_{2} symmetric and exceedingly air-sensitive. While unreactive toward chalcogen donors, 19 supports reversible reduction to the all-cuprous state; generation of $[19]^{1-}$ and treatment with S atom donors only return 19 because structural adjustments necessary for oxidative addition are noncompetitive with outer-sphere electron transfer. Oxidation of 19 is marked by intense darkening, consistent with greater mixed valency, and by dimerization in the crystalline state to a decacopper species ($[\mathbf{2 0}]^{2+}$) of S_{4} symmetry.

- INTRODUCTION

Nitrous oxide functions as a terminal electron acceptor in anaerobic respiration by soil-dwelling bacteria, which execute this two-electron reduction as the final step in the denitrifying pathway in the nitrogen cycle through the agency of nitrous oxide reductase $\left(\mathrm{N}_{2} \mathrm{OR}\right) .{ }^{1}$ Nitrous oxide reductase has elicited considerable interest because $\mathrm{N}_{2} \mathrm{O}$ is a potent greenhouse gas whose atmospheric concentration is steadily increasing ${ }^{2}$ with an atmospheric lifetime that is ~ 300-fold greater than that of $\mathrm{CO}_{2}{ }^{3}$ and because it is projected to be the foremost ozone depleting substance in the 21 st century. ${ }^{4}$ Further attention has been drawn to $\mathrm{N}_{2} \mathrm{OR}$ because, early in its characterization, it was identified as a multicopper enzyme with an active site composition that is unique in biology.
A consensus description of the $\mathrm{N}_{2} \mathrm{O}$ reductase active site, commonly designated as $\mathrm{Cu}_{\mathrm{Z}} / \mathrm{Cu}_{\mathrm{z}}{ }^{*}$, emerged in the period 2000-2006 from the collective insights provided by a succession of independent crystal structures ${ }^{5-9}$ of the enzyme from several species of Gram-negative bacteria. Four copper ions arrayed in a butterfly fold with a $\mu_{4}-\mathrm{S}^{2-}$ ligand ensconced between them, albeit with a somewhat asymmetric placement, are its defining features (Figure 1). In its resting state, the catalytic site bears an
oxygenous ligand-either $\mathrm{H}_{2} \mathrm{O}$ or OH -along one coppercopper edge, which is the presumed site of $\mathrm{N}_{2} \mathrm{O}$ substrate binding in the course of catalysis. One structural study of an $\mathrm{N}_{2} \mathrm{O}$ reductase preparation under strictly anaerobic conditions from Pseudomonas stutzeri, however, revealed a second S^{2-} at this position. ${ }^{10}$ Seven histidine ligands complete the coordination environment about this $\mathrm{Cu}_{4} \mathrm{~S}$ core, five of them via the $\mathrm{N} \varepsilon$ of the imidazole ring (Figure 1). A redox titration of $\mathrm{N}_{2} \mathrm{O}$ reductase, as monitored by EPR spectroscopy, demonstrated that the onset of catalytic activity correlated with reduction to the all-cuprous $\mathrm{Cu}_{4}{ }^{\mathrm{I}} \mathrm{S}$ state. ${ }^{11}$ Thus, the two-electron reduction of $\mathrm{N}_{2} \mathrm{O}$ is coupled to a cycling between $\mathrm{Cu}_{4}{ }^{\mathrm{I}}$, and $\mathrm{Cu}_{2}{ }^{\mathrm{I}} \mathrm{Cu}_{2}{ }^{\mathrm{II}}\left(\mu_{4}-\mathrm{S}\right)$ redox levels.

The foregoing facts bring particular relevance to the synthesis and properties of small molecules that bear a $\mathrm{Cu}_{4} \mathrm{~S}$ core or

[^0]

Figure 1. $\mathrm{N}_{2} \mathrm{O}$ reductase catalytic site, as revealed by X-ray crystallography. The numbering of histidine residues is from the Pseudomonas nautica (Marinobacter hydrocarbonoclasticus) structure. ${ }^{5}$
otherwise present compositional similarity to the $\mathrm{Cu}_{\mathrm{Z}} / \mathrm{Cu}_{\mathrm{Z}}{ }^{*}$ site. A model system devised by Mankad and co-workers (Figure 2a) with mesityl-substituted formamidinate supporting ligands

(b)

Figure 2. Model systems of Mankad (a) and Tolman (b). A tetracopper(I) compound reported by Henkel and co-workers (c).
incorporates the $\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{S}\right)$ core and, despite not being reducible to the all-cuprous state, has been reported to support a $\mathrm{N}_{2} \mathrm{O}$-to- N_{2} turnover. ${ }^{12,13}$ A topologically similar $\mathrm{Cu}_{4} \mathrm{~S}$ compound with charge-neutral, amine-bridged bis(phosphine) ligands has also been described as supporting $\mathrm{N}_{2} \mathrm{O}$ reduction but without preservation of the $\mathrm{Cu}_{4} \mathrm{~S}$ core composition. ${ }^{14,15}$ Somewhat earlier, the Tolman laboratory reported a mixedvalent tricopper compound featuring a disulfide ligand in a $\mu_{3}-$ $\eta^{2}, \eta^{1}-S, \eta^{1}, S^{\prime}$ bridging motif that was also competent to reduce
$\mathrm{N}_{2} \mathrm{O}$ to N_{2} (Figure 2b). ${ }^{16}$ Other small-molecule copper complexes that have been devised as $\mathrm{N}_{2} \mathrm{O}$ active site models have been reviewed by Mankad. ${ }^{17}$

In 2003, a brief report by Henkel and co-workers related the preparation and structure of a pair of charge-neutral tetracuprous compounds supported by tetradentate diamino bis(thiolate) $\left(\mathrm{L}-\mathrm{N}^{\mathrm{R}}{ }_{2} \mathrm{~S}_{2}(2-)\right)$ ligands (Figure 2c) but with no attending account of their reactivity. ${ }^{18}$ Considering their fully reduced state, these compounds appeared plausible as candidates to a $\mathrm{Cu}_{2}{ }^{\mathrm{I}} \mathrm{Cu}_{2}{ }^{\mathrm{II}}\left(\mu_{4}-\mathrm{S}\right)$ model compound by direct S atom addition. We initiated an investigation of this point using L^{-} $\mathrm{N}_{2} \mathrm{~S}_{2}(2-)$ ligands that incorporate, for effect, either alkyl- or aryl-type thiolates, whose results are summarized here. In this context, a recent review by Denny and Darensbourg of the structural coordination chemistry of $\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}(2-)$ ligands usefully summarizes the general properties of their complexes with the first-row transition metals. ${ }^{19}$

GENERAL CONSIDERATIONS

All reactions and manipulations were performed under a pure dinitrogen or argon atmosphere using either modified Schlenk techniques or an inert atmosphere box. Solvents used for syntheses and crystallizations were dried with a system of drying columns from the Glass Contour Company $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}\right.$, and THF), freshly distilled according to standard procedures (MeOH and $\mathrm{CH}_{3} \mathrm{CN}$), ${ }^{20}$ or purchased in an anhydrous form suitable for immediate use (DMF). N, N^{\prime}-Bis(2-methyl-2-mercaptopropane)- N, N^{\prime}-dimethylethane-1,2-diamine (L$\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}_{2}} \mathrm{H}\right)_{2}$ 1) was prepared following a literature protocol. ${ }^{21}$ The identifying numbers for all compounds are defined in Chart 1 and pictorially in Schemes 1, 2, and 3. Other reagents, and all

Chart 1. Numbering identification of compounds.

solvents used in column chromatography purifications, were used as received from commercial sources. Silica columns were run in the open air using $60-230 \mu \mathrm{~m}$ silica (Dynamic Adsorbents).

All NMR spectra were recorded at $25^{\circ} \mathrm{C}$ with a Varian Unity Inova spectrometer operating at 400 or 100.5 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively, or with a Bruker DSX 300 operating at 300 or 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively, and were referenced to the partially labeled solvent residual. Mass spectra were obtained by

Scheme 1. Summary of Ligand Syntheses ${ }^{a}$

${ }^{a}$ Ligand 1 was prepared via the literature method. ${ }^{21}$ While also a known compound, 5 was synthesized by the newly devised route $\mathbf{6} \rightarrow \mathbf{7} \rightarrow \mathbf{4 a} / \mathbf{4 b} /$ $4 \mathrm{c} \rightarrow 5$ as an alternative to the previously disclosed sequence of $2 \rightarrow 3 \rightarrow 4 \mathrm{c} \rightarrow 5{ }^{26}$

Scheme 2. Synthesis of Copper Compounds with ${ }_{\mathrm{L}}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}} \mathbf{H}\right)_{2}$

either MALDI-TOF (Bruker Autoflex III instrument) or by electrospray ionization methods (Bruker microOTOF with Agilent Technologies 1200 Series LC). Progress in the formation of compounds $\mathbf{4 a}-\mathbf{4 c}$ was monitored with a Varian Model 450 GC-MS operating with a Model 300 MS quadupole. The UV-vis spectra were acquired on a Hewlett-Packard 8752A diode array spectrometer, while the X-band EPR spectra were recorded on a Bruker ELEXSYS E500 spectrometer with simulations performed using XSophe. ${ }^{22}$ Elemental analyses were performed by Midwest Microlab, LLC of Indianapolis, IN, or by Kolbe Microanalytical Laboratory in Oberhausen, Germany. Electrochemical measurements were performed using a CHI 620C electrochemical analyzer workstation with a Ag / AgCl reference electrode, glassy carbon working electrode, Pt wire auxiliary electrode, and $\left[{ }^{n} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as the supporting electrolyte. Under these conditions, the $\mathrm{Cp}_{2} \mathrm{Fe}^{+} / \mathrm{Cp}_{2} \mathrm{Fe}$ couple consistently occurred at +0.50 V . A description of the methods of crystal growth and of the procedures for X-ray data collection, structure solution, and refinement is deferred to the Supporting

Information. Selected unit cell and refinement statistics for all crystallographically characterized compounds are collected in Tables 1 and 2. A description of the computational methods, theory level, and basis sets implemented in the calculations involving 19 is also found in the Supporting Information.

Syntheses. N^{1}, N^{2}-Bis(2-fluorophenyl)- N^{1}, N^{2}-dimethyl-ethane-1,2-diamine, 7. In a 100 mL Schlenk flask equipped with a reflux condenser, 2-fluoro- N-methylaniline $(4.00 \mathrm{~g}, 32.0$ mmol), 1,2 -dibromoethane ($3.01 \mathrm{~g}, 16.0 \mathrm{mmol}$), and diisopropylethylamine ($4.14 \mathrm{~g}, 32.0 \mathrm{mmol}$) were heated overnight at $135{ }^{\circ} \mathrm{C}$. After cooling to room temperature, the reaction mixture was extracted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(45 \mathrm{~mL})$. A 44 mL portion of 0.5 M KOH solution was added to the aqueous layer, and an extraction with another 45 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was conducted. The combined organic phases were dried with MgSO_{4} and filtered through Celite. All volatiles were then removed via rotary evaporation, and the residual oil was recrystallized from EtOH three times to yield analytically pure 7 as colorless crystals. Yield: $1.83 \mathrm{~g}, 41.4 \%$. MP: $32{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR

Scheme 3. Synthesis of Copper Compounds with $\left[\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right]^{2-a}$

17

$[20]^{2+}$
${ }^{a}$ The colored image of $\mathbf{1 7}$ (bottom left) emphasizes its 2-fold rotational symmetry. The C_{2} axis coincides with the MeCN ligand and the Cu^{I} ions shown in black. The colored image of $[\mathbf{2 0}]^{2+}$ (bottom right) highlights the S_{4} axis that contains the Cu ions in black and bisects the $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}\right)\right]$ fragments at front (vertically oriented) and back (horizontally arranged). Successive clockwise executions of the S_{4} operation moves the red fragment as follows: red \rightarrow violet \rightarrow green \rightarrow blue \rightarrow red.
$\left(\delta, \mathrm{C}_{6} \mathrm{D}_{6}\right): 6.97-6.73(\mathrm{~m}, 4 \mathrm{H}$, aromatic CH$), 6.67-6.51(\mathrm{~m}, 4$ H , aromatic CH$), 3.27\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.54(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\delta, \mathrm{C}_{6} \mathrm{D}_{6}\right): 155.13(\mathrm{~d}, J=242 \mathrm{~Hz}), 140.08$ $(\mathrm{d}, J=9 \mathrm{~Hz}), 124.40(\mathrm{~d}, J=4 \mathrm{~Hz}), 120.45(\mathrm{~d}, J=8 \mathrm{~Hz}), 118.60$ $(\mathrm{d}, J=4 \mathrm{~Hz}), 116.25(\mathrm{~d}, J=21 \mathrm{~Hz}), 53.07(\mathrm{t}, J=3 \mathrm{~Hz}), 39.61(\mathrm{~s})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2}$: C, 69.55; H, 6.57; N, 10.14. Found: C, 69.80; H, 6.80; N, 10.28 .
N^{1}, N^{2}-Bis(2-('propylthio)phenyl)- N^{1}, N^{2}-dimethylethane-1,2-diamine, 4a. A portion of solid $\mathrm{NaH}(5.0 \mathrm{~g}, 0.209 \mathrm{~mol})$ in a Schlenk flask was suspended in 200 mL of degassed, anhydrous DMF that had been transferred to it via a cannula. The flask was cooled in a dry ice-acetone bath, and 2-propanethiol (19.4 mL ,
0.208 mol) was added in a dropwise fashion with vigorous stirring. Bubbles of $\mathrm{H}_{2}(\mathrm{~g})$ formed immediately. After being stirred for 5 h , the solution was warmed to ambient temperature. With an outward flow of N_{2}, a solid portion of $7(5.75 \mathrm{~g}, 20.8$ mmol) was added to the flask, and the mixture was then heated to reflux for 21 days. The progress of the reaction was monitored by GC-MS. When the reaction was complete, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~L})$. This DMF- $\mathrm{H}_{2} \mathrm{O}$ mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Following removal of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ by filtration, the solvent was removed from the filtrate under reduced pressure to yield pure 4 a as an oil. Yield: $7.5 \mathrm{~g}, 19$

Table 1. Crystal and Refinement Data for $\mathbf{4 a} \cdot \mathbf{2 (H C l}), 4 b, 4 c, 7$, and 9-11

Compound	$\mathbf{4 a} \cdot 2(\mathrm{HCl})$		4b	4c		
formula	$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$		$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{~S}_{2}$		
FW	461.53		416.67	484.69		
xtl system	monoclinic		triclinic	monoclinic		
space group	$P 2_{1} / \mathrm{c}$		P-1	$P 2_{1} / n$		
color, habit	colorless plate		thick white wedge	colorless block		
size, mm	$0.02 \times 0.21 \times 0.42$		$0.07 \times 0.31 \times 0.47$	$0.12 \times 0.12 \times 0.15$		
a, \AA	13.0510(4)		7.0210(5)	9.7229 (7)		
b, \AA	10.1657(3)		$9.4375(6)$	9.3312(7)		
c, \AA	9.1259(3)		10.0316(7)	14.2753(10)		
α, deg.	90		88.089(1)	90		
β, deg.	95.978(1)		76.270(1)	100.6420(11)		
γ, deg.	90		69.802(1)	90		
V, \AA^{3}	1204.17(6)		605.14(7)	1272.87(16)		
$T, \mathrm{~K}$	150		150	150		
Z	2		1	2		
d, $\mathrm{g} / \mathrm{cm}^{3}$	1.273		1.143	1.265		
reflections collected	2308		10741	22040		
independent data	2308		2804	3148		
restraints	0		0	41		
parameters refined	130		144	155		
$R 1,{ }^{a, b} w R 2^{b, c}$	0.0349, 0.0881		0.0395, 0.1102	0.0390, 0.0976		
$R 1,{ }^{a, d} w R 2^{c, d}$	0.0393, 0.0909		0.0463, 0.1140	0.0500, 0.1056		
GooF ${ }^{e}$	1.066		1.116	1.045		
compound	7	9	10	11. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$		
formula	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~S}_{3}$	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{~S}_{4}$		
FW	276.32	276.41	411.59	528.57		
xtl system	monoclinic	monoclinic	monoclinic	triclinic		
space group	$P 2_{1} / n$	$P 2_{1} / \mathrm{c}$	$P 2 /{ }_{1}$	P1		
color, habit	colorless block	yellow column	yellow block	yellow column		
size	$0.11 \times 0.11 \times 0.21$	$0.11 \times 0.14 \times 0.28$	$0.09 \times 0.13 \times 0.19$	$0.03 \times 0.05 \times 0.17$		
a, \AA	5.4275(1)	12.4663(3)	11.5996(9)	$8.2111(2)$		
b, \AA	8.3334(2)	7.9419(2)	10.5464(8)	10.6229(2)		
c, \AA	15.7929(3)	14.5714(3)	15.7796(12)	15.0778(3)		
α, deg.	90	90	90	109.789(1)		
β, deg.	98.996(1)	110.3330(9)	90.044(1)	91.824(1)		
γ, deg.	90	90	90	101.8271)		
V, \AA^{3}	705.52(3)	1352.76(6)	1930.4(3)	1203.90(4)		
$T, \mathrm{~K}$	150	150	150	150		
Z	2	4	4	2		
d, $\mathrm{g} / \mathrm{cm}^{3}$	1.301	1.357	1.416	1.458		
reflections collected	5211	10484	34564	13015		
independent data	1322	2438	4973	4648		
restraints	0	0	0	0		
parameters refined	92	165	247	283		
$R 11^{a, b} w R 2^{b, c}$	0.0368, 0.0883	0.0291, 0.0776	0.0520, 0.1368	0.0493, 0.1184		
$R 1,{ }^{a, d} w R 2^{c, d}$	0.0446, 0.930	0.0326, 0.0801	0.0659, 0.1495	0.0664, 0.1292		
GooF ${ }^{e}$	1.103	1.044	1.047	1.043		
${ }^{a_{R}} R 1=\Sigma\left\\|F_{\mathrm{o}}\left\|-\left\|F_{c} \\| / \Sigma\right\| F_{\mathrm{o}}\right\|^{b}{ }^{b} R\right.$ indices for data cut-off at $I>2 \sigma(I) .{ }^{c} w R 2=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right\}^{1 / 2} ; w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(x P)^{2}+y P\right]$, where $P=$ $\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$. ${ }^{d} R$ indices for all data. ${ }^{e} \mathrm{GooF}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(n-p)\right\}^{1 / 2}$, where $n=$ number of reflections and p is the total number of parameters refined.						

mmol, 93% based on $7 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.30(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH), $7.21-7.09(\mathrm{~m}, 4 \mathrm{H}$, aromatic CH), 7.08-6.99 $(\mathrm{m}, 2 \mathrm{H}$, aromatic CH$), 3.55$ (hept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.24\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.80(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 1.35\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 152.27, 132.94, 129.50, 126.20, 123.82, 121.00, 54.49, 42.03, 35.27, 23.24.
N^{1}, N^{2}-Bis(2-(tbutylthio)phenyl)- N^{1}, N^{2}-dimethylethane-1,2diamine, $4 b$. The procedure and scale followed were analogous
to those employed for the preparation of $4 \mathbf{a}$ except that 8 equiv (0.1664 mol) of both NaH and tert-butylthiol was introduced to 7 rather than 10 equiv. The reaction was observed to be complete in 14 days, and a series of work-up steps identical to those used for $\mathbf{4 a}$ produced $\mathbf{4 b}$ as a white solid. Yield: $7.79 \mathrm{~g}, 90 \%$ based on 7. ${ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $7.48(\mathrm{~d}, 2 \mathrm{H}$, aromatic CH$)$, $7.36-7.19(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), 7.17-7.04(\mathrm{~m}, 2 \mathrm{H}$, aromatic $\mathrm{CH}), 6.91(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), 3.41\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, $2.79\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 1.23\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(\delta$,

Table 2. Crystal and Refinement Data for 13, 14, [16][$\left.\mathrm{PF}_{6}\right] \cdot{ }^{1} / 2[17],[18]\left[\mathrm{PF}_{6}\right], 19 \cdot 2 \mathrm{THF}$, and $[20]\left[\mathrm{PF}_{6}\right]_{2}$

compound	13	14	$[16]\left[\mathrm{PF}_{6}\right] \cdot 1 / 2[17]$
cocryst. solvent	${ }^{t} \mathrm{BuOMe} \cdot 2 \mathrm{MeCN}$	$3.05 \mathrm{C}_{6} \mathrm{H}_{6} \cdot 0.45 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	${ }^{t} \mathrm{BuOMe} \cdot 2 \mathrm{MeCN}$
formula	$\mathrm{C}_{24} \mathrm{H}_{52} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{~S}_{4}$	$\mathrm{C}_{58} \mathrm{H}_{100.75} \mathrm{Cl}_{5} \mathrm{Cu}_{8} \mathrm{~N}_{6} \mathrm{O}_{0.5} \mathrm{~S}_{6}$	$\mathrm{C}_{134} \mathrm{H}_{160.5} \mathrm{Cu}_{16} \mathrm{~F}_{6} \mathrm{~N}_{19.5} \mathrm{OPS}_{15}$
FW	779.09	1768.12	3702.82
xtl system	monoclinic	tetragonal	monoclinic
space group	$P 2_{1} / \mathrm{c}$	$P 4_{2} / n$	C2/c
color, habit	colorless block	dark blue plate	colorless plate
size, mm	$0.16 \times 0.27 \times 0.31$	$0.16 \times 0.27 \times 0.31$	$0.06 \times 0.13 \times 0.16$
a, \AA	13.8940(11)	27.8548(9)	39.4732(12)
b, \AA	12.0059(10)	27.8548(9)	28.2023(9)
c, \AA	20.8983(17)	19.1577(9)	32.1982(1)
α, deg.	90	90	90
β, deg.	99.227(1)	90	109.113(1)
γ, deg.	90	90	90
V, \AA^{3}	3440.9(5)	14864.3(12)	33868.2(18))
T, K	150	170	100
Z	4	8	8
d, $\mathrm{g} / \mathrm{cm}^{3}$	1.504	1.580	1.452
reflections collected	66379	672248	183138
independent data	9775	20103	14810
restraints	0	9	12
parameters refined	337	687	1742
$R 11^{a, b} w R 2^{b, c}$	0.0235, 0.0632	0.0503, 0.1255	0.0346, 0.0956
$R 1{ }^{a, d} w R 2^{c, d}$	0.0296, 0.0651	0.0755, 0.1501	0.0366, 0.0971
GooF ${ }^{e}$	1.056	1.147	1.069
compound	[18] PF_{6}]	19	[20][$\left.\mathrm{PF}_{6}\right]_{2}$
cocryst. solvent	$\mathrm{C}_{5} \mathrm{H}_{12}$	2THF	2 MeCN
formula	$\mathrm{C}_{55} \mathrm{H}_{69} \mathrm{Cu}_{6} \mathrm{~F}_{6} \mathrm{~N}_{7} \mathrm{PS}_{6}$	$\mathrm{C}_{56} \mathrm{H}_{70} \mathrm{Cu}_{5} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{6}$	$\mathrm{C}_{100} \mathrm{H}_{102} \mathrm{Cu}_{10} \mathrm{~F}_{12} \mathrm{~N}_{14} \mathrm{P}_{2} \mathrm{~S}_{12}$
FW	1546.84	1369.24	2810.01
xtl system	triclinic	monoclinic	tetragonal
space group	$P-1$	C2/c	$14_{1} / a$
color, habit	blue plate	green-yellow block	black wedge
size	$0.09 \times 0.11 \times 0.24$	$0.03 \times 0.05 \times 0.17$	$0.12 \times 0.40 \times 0.41$
a, \AA	10.2198(18)	40.455(3)	27.910(3)
b, \AA	17.198(3)	11.6468(9)	27.910(3)
c, \AA	17.552(3)	27.274(2)	17.459(2)
α, deg.	82.128(3)	90	90
β, deg.	83.047(2)	114.855(1)	90
γ, deg.	81.000(3)	90	90
V, \AA^{3}	3002.5(9)	11660.4(16)	13600(4)
T, K	100	100	100
Z	2	8	4
d, $\mathrm{g} / \mathrm{cm}^{3}$	1.711	1.560	1.372
reflections collected	14336	111732	79563
independent data	14336	15694	4796
restraints	0	0	73
parameters refined	707	682	410
$R 1,{ }^{a, b} w R 2^{b, c}$	0.0841, 0.2054	0.0336, 0.0834	0.1147, 0.3281
$R 1,{ }^{a, d} w R 2^{c, d}$	0.1297, 0.2312	0.0477, 0.0873	0.1255, 0.3381
GooF ${ }^{e}$	0.966	1.026	1.126

${ }^{a} R 1=\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{c} \| / \Sigma\right| F_{\mathrm{o}} \mathrm{I}^{b}{ }^{b} R\right.\right.$ indices for data cut-off at $I>2 \sigma(I) .{ }^{c} w R 2=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right\}^{1 / 2} ; w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(x P)^{2}+y P\right]$, where $P=$ $\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 .{ }^{d} R$ indices for all data. ${ }^{e} \mathrm{GooF}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(n-p)\right\}^{1 / 2}$, where $n=$ number of reflections and p is the total number of parameters refined.
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 157.70, 140.41, 129.70, 126.85, 121.62, 119.92, 55.60, 47.35, 41.09, 31.09. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{~S}_{2}$: C, 69.18; H , 8.71; N, 6.72. Found, C, 69.42; H, 8.68; N, 6.85.
N^{1}, N^{2}-Bis(2-(benzylthio)phenyl)- N^{1}, N^{2}-dimethylethane-1,2-diamine, $4 c$. The procedure followed was analogous to that employed for the preparation of 4 a except that 4 equiv of NaH and benzylthiol were introduced to 7 rather than 10 equiv. No
further progress in the reaction was noted after 14 days. Crude 4c was purified on a silica column eluted with $95: 5$ hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: 10% based on 7 . $\mathrm{R}_{\mathrm{f}}: 0.6$ in $95: 5$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.43-7.18(\mathrm{~m}, 10 \mathrm{H}$, aromatic CH$)$, $7.09-6.58(\mathrm{~m}, 8 \mathrm{H}$, aromatic CH$), 3.61\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{SCH}_{2} \mathrm{Ph}\right)$, $3.36\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.85\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$.
N^{1}, N^{2}-Bis(2-('propylthio)phenyl)- N^{1}, N^{2}-dimethylethane-1,2-diamine Bis(hydrochloride), $\left[4 a \cdot \mathrm{H}_{2}\right] \mathrm{Cl}_{2}$. A portion of N^{1}, N^{2}-bis(2-(${ }^{i}$ propylthio) phenyl)- N^{1}, N^{2}-dimethylethane-1,2diamine ($0.500 \mathrm{~g}, 1.29 \mathrm{mmol}$) was added to a Schlenk flask containing concentrated $\mathrm{HCl}(50 \mathrm{~mL})$, and the mixture was refluxed overnight under a N_{2} atmosphere. After cooling to ambient temperature, the solution was reduced to dryness under vacuum to afford $\left[\mathbf{4 a} \cdot \mathbf{H}_{2}\right] \mathrm{Cl}_{2}$ as a white solid. Crystals of X-ray diffraction quality were obtained by layered diffusion of n pentane into an ethanol solution. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{OD}\right): 7.63-$ $7.61(\mathrm{~m}, 3 \mathrm{H}$, aromatic CH$), 7.46-7.43(\mathrm{~m}, 3 \mathrm{H}$, aromatic CH$)$, $7.30-7.27(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH), 3.60 (hept, $J=4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.51\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 3.04(\mathrm{~s}, 6 \mathrm{H}$, $\left.-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 1.39\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. The -NH protons were not observed due to exchange with $\mathrm{CD}_{3} \mathrm{OD}$.
N^{1}, N^{2}-Bis(2-mercaptophenyl)- N^{1}, N^{2}-dimethylethane-1,2diamine Bis(hydrochloride), $\left[L-(\mathrm{NH})_{2}\left(\mathrm{~S}^{A r} \mathrm{H}_{2}\right] \mathrm{Cl}_{2},\left[5 \cdot \mathrm{H}_{2}\right] \mathrm{Cl}_{2}\right.$. A solid portion of $\mathbf{4 b}(0.200 \mathrm{~g}, 0.48 \mathrm{mmol})$ was added to a flask, followed by 15 mL of concentrated HCl . The mixture was refluxed overnight and, following cooling to ambient temperature, the solution was reduced to dryness under vacuum to afford a brown solid. Compound $\left[5 \cdot \mathrm{H}_{2}\right] \mathrm{Cl}_{2}$ is hygroscopic but otherwise stable in air. Yield: $0.174 \mathrm{~g}, 96 \%$. ${ }^{1} \mathrm{H}$ NMR (δ, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic CH$), 7.55(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 4 \mathrm{H}$, aromatic CH), 7.45-7.29 (m, 2 H , aromatic CH), 3.54 $\left(\mathrm{s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 3.10\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$. The -NH and -SH protons are not observed due to exchange with $\mathrm{CD}_{3} \mathrm{OD}$.
N^{1}, N^{2}-Bis(2-mercaptophenyl)- N^{1}, N^{2}-dimethylethane-1,2diamine, 5. A three-necked Schlenk flask, equipped with a stir bar and a dry ice condenser, was charged with $N^{1}, N^{2}-b i s(2-$ (isopropylthio)phenyl)- N^{1}, N^{2}-dimethylethane-1,2-diamine $(5.00 \mathrm{~g}, 12.9 \mathrm{mmol})$ and 40 mL of hexanes. A dry ice-acetone bath was used to cool the mixture to $-78^{\circ} \mathrm{C}$. Gaseous ammonia was admitted via a flow control adapter fitted to one of the side necks of the flask until the total volume of condensed $\mathrm{NH}_{3} /$ hexanes was approximately 100 mL . Sodium metal ($3.45 \mathrm{~g}, 150$ mmol) was slowly added in small portions with stirring, which yielded a dark blue solution. After being stirred for 10 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(8.30 \mathrm{~g}, 155 \mathrm{mmol})$, and the cooling bath was allowed to slowly warm to ambient temperature over $\sim 12 \mathrm{~h}$. Ammonia was allowed to evaporate and vent itself through the pressure release system of the Schlenk line. Aqueous HCl was then added, and the mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then filtered. The solvent was removed under reduced pressure to afford N^{1}, N^{2}-bis (2-(mercaptophenyl)- N^{1}, N^{2}-dimethylethane-1,2-diamine (L$\left.\mathbf{N}_{2}\left(\mathbf{S}^{\mathrm{Ar}} \mathbf{H}\right)_{2}, 5\right)$ as a white solid with a pale blue tint. Compound 5 is mildly sensitive to air. X-ray diffraction quality crystals deposit from a hexane solution held at $-20^{\circ} \mathrm{C}$ for several days. Yield: $3.6 \mathrm{~g}, 11.8 \mathrm{mmol}, 92 \%{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.28$ (d, 2 H , aromatic CH$), 7.12(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), 7.07(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), 6.97(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), 5.00(\mathrm{~s}, 2 \mathrm{H},-\mathrm{SH})$, $3.07\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.66\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C}$ NMR ($\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 149.14, 132.20, 128.78, 125.76, 125.15, 122.11, 54.46, 42.59 .

2,8,14-Trithiatetracyclo[13.3.1.1 $1^{3,7} .1^{9,13}$]heneicosa-1-(19),3,5,7(21),9,11,13(20),15,17-Nonaene, 6,12,18-Tris(Nmethylamine), 10, and 2,8,14,15-Tetrathiatetracyclo[14.3.1.1 $1^{3,7} .1^{9,13}$]docosa-1(20),3,5,7(22),9,11,13(21),16,18nonaene, 6,12,19-Tri(N-methylamine)-, 11. A portion of 2(methylamino)benzenethiol was dissolved in MeCN and stirred overnight in the open air to produce $2,2^{\prime}$-disulfanediylbis $(N$ -
methylaniline), 9. The solvent was removed under reduced pressure. A separate three-necked flask was charged with $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.492 \mathrm{~g}, 3.56 \mathrm{mmol}$) and 100 mL of dry MeCN under N_{2}. To this flask, separate solutions of $2,2^{\prime}$-disulfanediylbis(N-methylaniline) and 1,2-diiodoethane, both in dry MeCN , were added in a dropwise fashion at the same time. The solution color changed from yellow to red-brown after overnight stirring, and formation of a precipitate was observed. After being stirred for 2 days, the mixture was filtered, and the filtrate was extracted with hexanes. The solvent was removed from the combined extracts under reduced pressure to afford a crude product mixture. This product mixture was separated on a silica column eluted with $1: 1$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. R_{f} : 0.4 for $\mathbf{1 0}$ and 0.1 for $\mathbf{1 1}$. Crystals for both 10 and 11 were obtained by diffusion of n-pentane vapor into THF solutions. ${ }^{1} \mathrm{H}$ NMR for $10\left(\delta, \mathrm{CDCl}_{3}\right): 7.22(\mathrm{dd}, J=8.3$, $2.2 \mathrm{~Hz}, 3 \mathrm{H}$, aromatic CH), $7.16(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}$, aromatic $\mathrm{CH}), 6.45(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 3 \mathrm{H}$, aromatic CH$), 4.73(\mathrm{br}, 3 \mathrm{H}), 2.88$ $\left(\mathrm{d}, J=4.8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right) .{ }^{1} \mathrm{H}$ NMR for $11\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.48$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic CH$), 7.35(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic $\mathrm{CH}), 7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic CH), $7.05(\mathrm{~s}, 1 \mathrm{H}$, aromatic CH$), 6.98(\mathrm{~s}, 1 \mathrm{H}$, aromatic CH$), 6.74(\mathrm{~s}, 1 \mathrm{H}$, aromatic CH$), 6.57(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic CH$), 6.52(\mathrm{~d}, J=$ $9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic CH$), 6.38(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic CH), 5.37 (br s, $1 \mathrm{H},-\mathrm{NH}$), 4.28 (br s, $1 \mathrm{H},-\mathrm{NH}), 2.91(\mathrm{~d}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$. The third -NH signal that should be present was not apparent but was possibly obscured by another signal.
$\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{M e_{2}}\right)_{2}\right)\right)_{2} \mathrm{Cu}_{2}\right]$, 13. In a N_{2} glovebox, portions of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}(0.991 \mathrm{~g}, 2.66 \mathrm{mmol})$ and $1(0.360 \mathrm{~g}, 1.36$ mmol) were added to separate Schlenk flasks, which were then affixed to a Schlenk line. Addition of dry THF (20 mL) to $\mathbf{1}$ formed a colorless solution; subsequent addition of NaHBEt_{3} ($2.7 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 2.7 mmol) in a dropwise fashion at room temperature to the stirring solution of 1 was attended by bubbling of $\mathrm{H}_{2}(\mathrm{~g})$. After $\sim 2 \mathrm{~h}$, a white suspension was observed. The $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$ was dissolved in dry $\mathrm{MeCN}(25 \mathrm{~mL})$ and added via a cannula to the stirring $\mathrm{Na}_{2}[\mathbf{1}]$ solution, whereupon a yellow color was induced. The reaction mixture was stirred overnight, after which time the solvent was removed in vacuo to afford an orange-yellow residue. To this reside, dry, degassed toluene ($\sim 40 \mathrm{~mL}$) was added to form an orange-yellow suspension, which was stirred for $\sim 2 \mathrm{~h}$. The suspension was filtered through a packed Celite pad, and the filtrate was then concentrated under reduced pressure to yield an orange-yellow solid. This solid was washed with copious amounts of n-pentane and then dried in vacuo to afford a yellow powder. Crystals of Xray diffraction quality are formed by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapor into a concentrated toluene solution. Yield: $0.337 \mathrm{~g}, 0.433 \mathrm{mmol}$, 65%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{C}_{6} \mathrm{D}_{6}\right): 2.36\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.13-2.04$ (multiple overlapped signals, $12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}-\right)$), $1.91(\mathrm{br} \mathrm{s}, 4 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}-\right)\right), 1.82\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.52(\mathrm{br} \mathrm{s}, 12 \mathrm{H}$, $\left.\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right)$. UV-vis $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\text {max }}, \mathrm{nm}\right]: 320$. MS (ESI $\left.{ }^{+}\right)$, calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{52} \mathrm{Cu}_{4} \mathrm{~N}_{4} \mathrm{~S}_{4}\right]^{1+}, \mathrm{m} / \mathrm{z} 778.0195$; observed: m / z 778.0240; error (δ): 5.88 ppm .
$\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}}\right)_{2}\right)\right)_{3}(\mathrm{CuCl})_{5}\right], 14$. To a 25 mL Schlenk flask charged with $13(0.050 \mathrm{~g}, 0.064 \mathrm{mmol})$, dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 5 \mathrm{~mL})$ was added via a syringe with stirring to yield a yellow solution. A solution of $\mathrm{PhICl}_{2}(6.4 \mathrm{~mL}, 0.01 \mathrm{M}, 0.064$ mmol) was added dropwise via a syringe over a period of ~ 10 min, during which time the solution gradually assumed a dark blue/black color. This reaction mixture was stirred for $\sim 2 \mathrm{~h}$, whereupon the solvent was removed under reduced pressure to afford a dark blue/black solid residue. This residue was washed
with toluene, followed by $\mathrm{Et}_{2} \mathrm{O}$ and then was collected by filtration to yield a dark blue/black powder. Yield: $0.038 \mathrm{~g}, 91 \%$ based on PhICl_{2} as a limiting reagent. X-ray quality crystals were obtained from diffusing benzene into a concentrated odichlorobenzene solution. Compound 14 can be similarly obtained by implementation of $\mathrm{Ph}_{3} \mathrm{CCl}$, instead of PhICl_{2}, as the chlorinating agent. UV-vis $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\max } \mathrm{nm}(\varepsilon)\right]: 236$ (36000), ~302 (sh, ~10000), 452 (4500), 492 (4800). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{78} \mathrm{~N}_{6} \mathrm{~S}_{6} \mathrm{Cl}_{5} \mathrm{Cu}_{8}$: C, 29.35; H, 5.34; N, 5.71. Found: C, 28.95; H, 5.26; N, 5.61.
$\left[\left[\mathrm{Cu}_{2}\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right)\right)_{3}(\mathrm{Cu}(\mathrm{N} \equiv \mathrm{CMe}))\right]_{2} \mathrm{Cu}\right]\left[\mathrm{PF}_{6}\right] \cdot 1 / 2\left[\mathrm{Cu}_{2}(\mathrm{Cu}-\right.$ $\left.\left.\left(L-N_{2}\left(S^{A r}\right)_{2}\right)\right)_{3}(C u(N \equiv C M e))\right], \quad[16]\left[P F_{6}\right] \cdot 1 / 217$. A 100 mL Schlenk flask in an Ar box was charged with $5(0.150 \mathrm{~g}, 0.493$ mmol) and then affixed to a N_{2} Schlenk line. Dry THF (20 mL) was added via a syringe, followed by 2 equiv of $\mathrm{NaEt}_{3} \mathrm{BH}(1.0 \mathrm{M}$ in THF, $0.985 \mathrm{~mL}, 0.985 \mathrm{mmol}$), which was attended by the liberation of bubbles of H_{2} gas. The reaction mixture was stirred overnight and then taken to dryness under reduced pressure to remove the BEt_{3} byproduct. A 15 mL portion of fresh, dry THF was then added to the flask. The solution was then transferred via a cannula to another Schlenk flask containing $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}(0.367 \mathrm{~g}, 0.98 \mathrm{mmol})$. This mixture was stirred for 3 h , yielding an orange solution with a white precipitate. The white precipitate was removed by cannula filtration, and the filtrate was reduced to dryness under vacuum to produce an orange crude solid product. Diffusion of n pentane into a THF solution of this crude product yielded small portions of colorless, square plate crystals suitable for interrogation by X-ray diffraction. This crystalline material, identified crystallographically as $\mathbf{1 7}$ co-crystallized with the Cu^{1+}-bridged dimer $[\mathbf{1 6}]\left[\mathrm{PF}_{6}\right]$, was extremely sensitive to water and oxygen and was not tractable to further characterization.

Synthesis of $\left[C u_{2}\left(C u\left(L-N_{2}\left(S^{A r}\right)\right)\right)_{3}(C u(N \equiv C M e))\right]\left[P F_{6}\right]$, [18][PF ${ }_{6}$]. A 100 mL Schlenk flask in an Ar glovebox was charged with $5(0.150 \mathrm{~g}, 0.493 \mathrm{mmol})$, and the flask was then affixed to a N_{2} Schlenk line. Dry THF (20 mL) was added via a syringe, followed by NaHBEt_{3} (1.0 M in THF, $0.985 \mathrm{~mL}, 0.985$ $\mathrm{mmol})$. The addition of NaHBEt_{3} was marked by the visible evolution of bubbles of H_{2} gas. The reaction mixture was stirred overnight at ambient temperature, whereupon all volatiles were removed under reduced pressure. A 15 mL portion of fresh, dry THF was added to the flask to redissolve the ligand dianion, and the solution was then transferred via a cannula to a second Schlenk flask containing $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}(0.367 \mathrm{~g}, 0.985$ mmol). This mixture was stirred for 3 h , yielding an orange solution with a white precipitate. A solid portion of $\mathrm{Ph}_{3} \mathrm{SbS}$ ($0.0949 \mathrm{~g}, 0.246 \mathrm{mmol}$) was added, which immediately induced formation of a green color. Stirring was continued for 5 h . The solvent was removed under vacuum to afford a dark solid residue, which was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. This crude product was further purified on a silica gel chromatography column eluted with 1:1 THF in hexanes. Yield: 0.040 g , $0.027 \mathrm{mmol}, 17 \%$. $R_{\mathrm{f}}: 0.50$ ($1: 1 \mathrm{THF} /$ hexanes). ${ }^{1} \mathrm{H}$ NMR (δ, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}$, aromatic CH), $7.17-7.07$ (overlapping $\mathrm{m}, 14 \mathrm{H}$, aromatic CH), 7.00-6.83 (overlapping $\mathrm{m}, 6 \mathrm{H}$, aromatic CH$), 3.38-3.09\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, 2.92-2.75 (m, $\left.18 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 151.1,150.9,137.4,133.9,130.6,126.8$, 126.4, 126.0, 125.6, 124.8, 124.3, 123.9, 123.5, 123.3, 121.9, 121.1, 120.7, 55.7, 55.4, 54.8, 50.8, 44.7, 43.3, 42.3, 41.1, 30.1 . ESI-MS: $1287.91\left(\mathrm{M}^{+}-\mathrm{MeCN}\right)$. UV-vis $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\max } \mathrm{nm}\right.$ $(\varepsilon)]: 332$ (14500), 453 (1200), 587 (1200).
$\left[\mathrm{Cu}_{2}\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right)\right)_{3}\right]$, 19. A 100 mL Schlenk flask was charged with 5 ($0.105 \mathrm{~g}, 0.345 \mathrm{mmol}$), followed by dry THF (20 mL) added via a syringe. After the ligand fully dissolved, 1 equiv of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right](0.129 \mathrm{~g}, 0.345 \mathrm{mmol})$ was added under an outward flow of N_{2}. Upon being stirred for $\sim 5 \mathrm{~min}$, the color of the reaction mixture became dark. Stirring was continued for 12 h , after which time all volatiles were removed under reduced pressure. The residual solid was dissolved in a minimal volume of THF and filtered. Slow diffusion of n-pentane into this THF filtrate afforded dark crystals of $\left[\mathrm{Cu}_{2}\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right)\right)_{3}\right]$. 2(THF). Yield: $0.0853 \mathrm{~g}, 78 \%$ based on the Cu starting material. The product can also be purified by column chromatography on silica gel ($R_{\mathrm{f}}: 0.3,1: 1 \mathrm{THF} /$ hexanes $) .{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}$, aromatic CH$), 7.16$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}$, aromatic CH$), 7.08(\mathrm{t}, 6 \mathrm{H}$, aromatic CH$)$, $6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}$, aromatic CH$), 3.22(\mathrm{~s}, 12 \mathrm{H}$, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.78\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: 151.0, 133.9, 127.0, 125.6, 125.5, 121.9, 55.7, 43.3. UV-vis $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\max } \mathrm{nm}(\varepsilon)\right]: 342$ (8300), 454 (1500), 580 (1600). ESI-MS: 1224.9760, M^{+}. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{Cu}_{5} \mathrm{~N}_{6} \mathrm{~S}_{6}$: C, 47.06; H, 4.44; N, 6.86. Found: C, 46.96; H, 4.35; N, 6.78.
$\left[\mathrm{Cu}_{2}\left(\mathrm{Cu}\left(L-\mathrm{N}_{2}\left(\mathrm{~S}^{A r}{ }_{2}\right)\right)\right)_{3}\right]\left[P F_{6}\right] /\left[\left[C U_{2}\left(\mathrm{Cu}\left(L-\mathrm{N}_{2}\left(\mathrm{~S}^{A r}{ }_{2}\right)\right)\right)_{3}\right]_{2}\right]\left[P F_{6}\right]_{2}$, [19][PF $\left.{ }_{6}\right] /[20]\left[P_{6}\right]_{2}$. In a N_{2} glovebox, a 50 mL Schlenk flask was charged with freshly prepared and crystallized $\left[\mathrm{Cp}_{2} \mathrm{Fe}\right]$ [PF_{6}] ($0.0135 \mathrm{~g}, 0.0408 \mathrm{mmol}$), followed by 15 mL of dry THF. Solid $19(0.050 \mathrm{~g}, 0.0408 \mathrm{mmol})$ was added to the flask under N_{2} flow, and the color of the solution became dark yellow-green as it dissolved and then further darkened after overnight stirring. The solvent was removed under reduced pressure to yield a gray solid as the product along with some orange crystals of ferrocene. The crude solid was extracted with dry hexanes $(3 \times 30 \mathrm{~mL})$ to remove $\mathrm{Cp}_{2} \mathrm{Fe}$ and then was dried again under vacuum. Yield: $0.0553 \mathrm{~g}, 0.020 \mathrm{mmol}, 99 \%$. In solution, $[19]\left[\mathrm{PF}_{6}\right]$ appears to be the dominant species, as gauged by ${ }^{1} \mathrm{H}$ NMR and cyclic voltammetry (vide infra), but preparation of this oxidation product in crystalline form yields $[20]\left[\mathrm{PF}_{6}\right]_{2}$. A crystal of $[20]\left[\mathrm{PF}_{6}\right]_{2}$ suitable for X-ray diffraction was obtained by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a saturated MeCN solution of crude [19][$\left.\mathrm{PF}_{6}\right] .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CD}_{3} \mathrm{CN}\right): 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$, aromatic CH$), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}$, aromatic CH$), 7.20(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 6 \mathrm{H}$, aromatic CH$), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}$, aromatic $\mathrm{CH}), 3.12\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.37\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$. UV-vis $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\text {max }}, \mathrm{nm}(\varepsilon)\right]: 372$ (27000), 477 (16000), 587 nm (21000).

- RESULTS AND DISCUSSION

Syntheses and Structures. An efficient and general means of synthesis of diamino dithiolate (2-) ligands ($\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}(2-)$) with saturated connections between heteroatoms is by a ringopening $\mathrm{S}_{\mathrm{N}} 2$ reaction between the corresponding diamine and the appropriate thiirane. ${ }^{21,23-25}$ When implemented with N^{1}, N^{2}-dimethylethylene-1,2-diamine in neat isobutylene sulfide, this approach reproducibly provides $N^{1}, N^{2}-b i s(2$-methyl-2mercaptopropane) - N^{1}, N^{2}-dimethylethane-1,2-diamine, L$\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}{ }_{2}} \mathrm{H}\right)_{2}\left(1\right.$ in Scheme 1), in essentially quantitative yields. ${ }^{21}$ Compared to its analogues without the geminal methyl substituents, 1 offers both greater solubility and convenient simplicity by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The intrinsic chirality arising from the two tertiary amine nitrogen atoms in this ligand type necessarily imposes symmetry constraints on the coordination complexes formed (vide infra). As described by Henkel and co-workers for the synthesis of $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}^{\mathrm{Me}}{ }_{2} \mathrm{~S}_{2}\right)\right)\right.$ $\left.\mathrm{Cu}_{2}\right]$ and $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}^{\mathrm{Et}} \mathrm{S}_{2}\right)\right) \mathrm{Cu}_{2}\right] \quad\left(\mathrm{L}-\mathrm{N}^{\mathrm{Me}}{ }_{2} \mathrm{~S}_{2}=N^{1}, N^{2}-b i s(2-\right.$
mercaptoethane)- N^{1}, N^{2}-dimethylpropylenediamine(2-); L$\mathrm{N}^{\mathrm{Et}}{ }_{2} \mathrm{~S}_{2}=N^{1}, N^{2}$-bis(2-mercaptoethane)- $N^{1}, N^{2}-$ diethylpropylenediamine(2-)), ${ }^{18}$ diamino dithiol 1 reacts in a straightforward fashion with Cu^{1+} sources to produce tetracopper(I) complex 13 (Scheme 2), which is isolable as colorless block crystals in yields of $\sim 65 \%$.
Crystals of 13, both with and without interstitial solvent, were examined by X-ray diffraction and reveal core structures that are essentially indistinguishable in their metrical details. The structure of $\mathbf{1 3}$ features a planar Cu_{4} core in which two cuprous ions $(\mathrm{Cu}(2)$ and $\mathrm{Cu}(4)$ in Figure 3, top) define the shared edge of two equilateral Cu_{3} triangles (Table 3). The complex is best described as a pair of $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}_{2}}\right)_{2}\right)\right]^{1-}$ anions held in place and stabilized by a $\mathrm{Cu}_{2}{ }^{2+}$ axis. The triangular $\mathrm{Cu}_{2} \mathrm{~S}$ "flaps" on the periphery of the Cu_{4} core [e.g., the plane defined by $\mathrm{Cu}(1)$,

Figure 3. Thermal ellipsoid plots (50% probability) of $\mathbf{1 3}$ (top) and 14 (middle and bottom). The middle image shows the pseudo C_{3} axis of 14 orthogonal to the plane of the paper, while the bottom image shows the core of 14 with the pseudo C_{3} axis [along the $\mathrm{Cu}(6) \cdots \mathrm{Cu}(8)$ line] in the vertical direction. All H atoms are omitted for clarity.
$\mathrm{Cu}(2)$, and $\mathrm{S}(2)]$ alternate in an up-down fashion and meet the Cu_{4} mean plane at angles of $50-55^{\circ}$. The optical configuration at the amine nitrogen atoms within a given ligand, and for both ligands within the same Cu_{4} complex, is the same (R, in Figure 3), as this arrangement minimizes conformational strain and intraligand steric interactions. Consequently, the Cu_{4} complex as a whole is chiral with D_{2} point group symmetry. The three orthogonal C_{2} axes for 13 coincide with the $\mathrm{Cu}(2)-\mathrm{Cu}(4)$ segment, the $\mathrm{Cu}(1) \cdots \mathrm{Cu}(3)$ line, and the perpendicular to the Cu_{4} plane at the $\mathrm{Cu}(2)-\mathrm{Cu}(4)$ midpoint. Preservation of this structure in solution is indicated by ${ }^{1} \mathrm{H}$ NMR data, showing only half of one $\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Me}}{ }_{2}(2-)$ to be unique. Because 13 occurs in the centric space group $P 2_{1} / c$, the molecule with all R configuration at the nitrogen donor atoms necessarily has an inversion-related partner with the all S configuration. In all qualitative respects, the foregoing features enumerated for the structure of 13 are similar to the compounds reported from the Henkel laboratory. Possibly because ligand $\mathbf{1}$ presents more basic thiolate anions than does Henkel's $\mathrm{L}-\mathrm{N}^{\mathrm{Me}}{ }_{2} \mathrm{~S}_{2}(2-)$, thereby providing for tighter binding to the $\mathrm{Cu}_{2}{ }^{2+}$ axial core, all intermetal distances in $\mathbf{1 3}$ are appreciably shorter than the corresponding values for $[(\mathrm{Cu}(\mathrm{L}-$ $\mathrm{N}^{\mathrm{Me}}{ }_{2} \mathrm{~S}_{2}$)) Cu_{2}] (Table 3).

Upon treatment with typical S-atom donors such as S_{8}, additional thiirane, or $\mathrm{Ph}_{3} \mathrm{SbS}, 13$ undergoes no observable reaction. It is, however, susceptible to an ill-defined decomposition upon protracted stirring in the open air, which is manifested, inter alia, by the onset of a bluish color. Chlorine atom donors such as PhICl_{2} and trityl chloride react with 13 to afford a mixed-valent octacopper cage complex, 14 (Scheme 2 and Figure 3, middle), which is of a form that appears not to have been identified previously with diamino dithiolate ligands. This cage complex is not the result of simple dimerization following oxidation, as $\mathbf{1 4}$ contains three diamino bis(thiolate) ligands and an odd number of cationic charges (11+). With five Cl^{-}and six thiolate sulfur atoms, the offsetting metal composition necessarily is $\left[\left(\mathrm{Cu}^{1+}\right)_{5}\left(\mathrm{Cu}^{2+}\right)_{3}\right]$. Although deviating appreciably from a colinear disposition, the $\mathrm{Cu}(6)-\mathrm{Cl}(4)$ and $\mathrm{Cu}(8)-$ $\mathrm{Cl}(5)$ bonds define a pseudo C_{3} axis. The remaining six copper ions form an equatorial belt between $\mathrm{Cu}(6)$ and $\mathrm{Cu}(8)$ around which $\left\{\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}_{2}}\right)_{2}\right)\right\}$ and $\{\mathrm{Cu}-\mathrm{Cl}\}$ fragments alternate but in an uneven fashion such that, for example, the $\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)$ interatomic distance is $2.7653(7) \AA$, while the $\mathrm{Cu}(1) \cdots \mathrm{Cu}(7)$ separation is 3.6923 (8) \AA (Figure 3, bottom, and Table 3). This asymmetry further removes the structure from the idealized C_{3} point group. The significant shortening by $\sim 0.2 \AA$ of the $\mathrm{Cu}-\mathrm{N}$ bonds in 14 as compared to 13 indicates, as the known preference of Cu^{2+} for harder donor atoms would suggest, that the three Cu^{2+} ions are situated within the three $\mathrm{L}-$ $\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}}\right)_{2}(2-)$ ligands.

The attenuated basicity of an aryl thiolate vs. alkyl thiolate, in conjunction with a lessened conformational fluidity for diamino dithiolate ligands with arene rings incorporated into the chelate architecture, suggests that $N^{1}, N^{2}-b i s\left(2\right.$-mercaptophenyl) $-N^{1}, N^{2}-$ dimethylethane-1,2-diamine, $\mathbf{5}$, could manifest both different structural chemistry and reactivity in its coordination complexes with copper. The original synthesis of $\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\text {Ar }} \mathrm{H}\right)_{2}(\mathbf{5}$ in Scheme 1), described by Enemark and co-workers, ${ }^{26}$ employs a sequence of steps beginning with a base-mediated ring-opening hydrolysis of 3-methylbenzothiazolium iodide (2, Scheme 1). Following Sbenzylation, the secondary aniline 3 is subjected to a condensation with glyoxal that is templated with ZnCl_{2} and followed by reduction with sodium cyanoborohydride. While glyoxal is described as accessible in a monomeric, anhydrous

Table 3. Selected Interatomic Distances (\AA), Angles (deg.) for Compounds $13^{b},\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}^{\mathrm{Me}}{ }_{2} \mathrm{~S}_{2}\right)\right) \mathrm{Cu}_{2}\right]^{c}$ from Henkel et al., ${ }^{18}$ and 14^{a}

	13	$\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}^{\mathrm{Me}}{ }_{2} \mathrm{~S}_{2}\right)\right) \mathrm{Cu}_{2}\right]^{c}$		14
$\mathrm{Cu}-\mathrm{N}$	2.2269[6]	2.202[2]	$\mathrm{Cu}-\mathrm{N}$	2.046[2]
$\mathrm{Cu}_{\text {eq }}-\mathrm{S}^{e}$	2.2563[2]	2.2677[7]	$\mathrm{Cu}_{\mathrm{N} 2 \mathrm{~S} 2}-\mathrm{S}$	2.2501[5]
$\mathrm{Cu}(2) \cdots \mathrm{Cu}(4)$	2.6766(3)	2.726(1)	$\mathrm{Cu}_{\mathrm{ax}}-\mathrm{S}^{i}$	2.3686 [4]
$\mathrm{Cu}(1) \cdots \mathrm{Cu}(3)$	4.4658(4)	4.6251(9)	$\mathrm{Cu}_{\mathrm{ax}}-\mathrm{Cl}^{i}$	2.2735 [8]
$\mathrm{Cu}_{\mathrm{eq}}-\mathrm{Cu}_{\mathrm{ax}}{ }^{e, f}$	2.6042[2]	2.6847 [4]	$\mathrm{Cu}_{\text {eq }}-\mathrm{Cl}^{j}$	$2.2178[7]$
$\mathrm{Cu}_{\mathrm{ax}-\mathrm{S}}$	2.1910[2]	2.1666 [8]	$\mathrm{Cu}_{\text {eq }} \cdots \mathrm{Cu}_{\text {eq }}$, range ${ }^{j}$	2.7653(7)-3.7676(7)
$\delta_{\text {mean }}{ }^{g}$	0.0341	0.023	$\mathrm{Cu}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$	119.79 (2) ${ }^{k}$
$\delta_{\text {max }}{ }^{g}$	0.0348	0.023	$\mathrm{Cu}(4)-\mathrm{Cu}(5)-\mathrm{Cu}(7)$	125.28(2)
$\mathrm{Cu}_{\text {eq }}-\mathrm{Cu}_{\mathrm{ax}}-\mathrm{Cu}_{\mathrm{ax}}$	50.079[3]	59.49[1]	$\mathrm{S}-\mathrm{Cu}_{\mathrm{ax}}-\mathrm{S}$, range	94.67(4)-111.80(4)
$\mathrm{Cu}_{\mathrm{ax}}-\mathrm{Cu}_{\text {eq }}-\mathrm{Cu}_{\mathrm{ax}}$	61.842[6]	61.02[1]	$\mathrm{S}-\mathrm{Cu}_{\mathrm{ax}}-\mathrm{S}$, ave	104.79[2]
θ^{h}	52.531[6]	51.00	φ^{k}	-12.2

${ }^{a}$ Averaged ${ }^{d}$ values are given where two or more chemically identical interatomic distances or angles are present. ${ }^{b}$ Data are from unsolvated crystal form (JPD812) only. ${ }^{c}\left(\mathrm{~L}-\mathrm{N}^{\mathrm{Me}}{ }_{2} \mathrm{~S}_{2}=N^{1}, N^{2}\right.$-bis(2-mercaptoethane) $-N^{1}, N^{2}$-dimethylpropylenediamine(2-)). ${ }^{d}$ Uncertainties are propagated according to Taylor, J. R. An Introduction to Error Analysis; 2nd ed.; University Science Books: Sausalito, CA, 1997, pp 73-77; propagated uncertainties are designated with []. ${ }^{e}$ The equatorial $\mathrm{Cu}(\mathrm{I})$ ions in 13 are $\mathrm{Cu}(1)$ and $\mathrm{Cu}(3) .{ }^{f}$ The axial $\mathrm{Cu}(\mathrm{I})$ ions in 13 are $\mathrm{Cu}(2)$ and $\mathrm{Cu}(4) .{ }^{g} \delta=$ atom deviation (\AA) from the Cu_{4} plane. ${ }^{h} \theta=$ average angle between the $\mathrm{Cu}_{2} \mathrm{~S}$ planes ("flaps") and the Cu_{4} plane. ${ }^{i}$ The axial Cu ions in 14 are $\mathrm{Cu}(6)$ and $\mathrm{Cu}(8)$. ${ }^{j}$ The equatorial Cu ions in 14 are $\left.\mathrm{Cu}(1), \mathrm{Cu}(2), \mathrm{Cu}(3), \mathrm{Cu}(4), \mathrm{Cu} 5\right)$, and $\mathrm{Cu}(7)$. ${ }^{k}$ Torsion angle defined by $\mathrm{Cl}(4)-\mathrm{Cu}(6)-\mathrm{Cu}(8)-\mathrm{Cl}(5)$.
form from its cyclic trimer by heating in the presence of $\mathrm{P}_{4} \mathrm{O}_{10}{ }^{27}$ we have found that its generation in useful quantity, free from higher oligomers, is difficult to reproducibly execute. An alternate route to 5 that has been devised by Sellmann and coworkers still demands the use of glyoxal. ${ }^{28}$
The challenges encountered in reliably producing anhydrous glyoxal prompted our consideration of alternative approaches to 5. In one approach, disulfide 9 was treated with 1,2-diiodoethane in the presence of base in MeCN at room temperature. Instead of the intended N -alkylation and cyclization, a complex product mixture formed from which cyclic 10 and 11 were isolated in minor amounts and identified by X-ray crystallography. As depicted in Scheme 1 and as can be seen in Figure 4, the structures of 10 and 11 reveal a "two down, one up" disposition of arene rings with respect to the plane defined by the sulfur atoms. The structure of $\mathbf{1 0}$ is similar to that of $\mathbf{1 1}$. These products likely arise through a sequence that begins as illustrated in Scheme S1 and is enabled by a capacity for the disulfide bond to fragment heterolytically and produce a thiolate leaving group. Being unintended and occurring as a mixture, $\mathbf{1 0}$ and $\mathbf{1 1}$ were not further characterized.
The commercial availability of 2-fluoro- N -methylaniline suggested the possibility that N-alkylation to install the ethane backbone might be done prior to functionalization with sulfur. This step is accomplished in moderate yield, affording 7, but without the need for purification measures beyond several recrystallizations. The substitution of fluoride in 7 can be accomplished with any of several thiolates but demands the use of forcing conditions (refluxing DMF) and protracted reaction times ($14-21 \mathrm{~d}$). Yields with isopropylthiolate (4a) and tertbutylthiolate (4b) are comparable ($\sim 90 \%$), but that found with benzylthiolate is substantively lower ($\sim 10 \%$). The crystal structures of $\mathbf{7}, \mathbf{4 a} \cdot 2(\mathrm{HCl}), \mathbf{4 a}$, and $\mathbf{4 b}$ (Figures $4, \mathrm{~S} 1-\mathrm{S} 4$) all show a trans anti configuration about the ethane linker between nitrogen atoms such that the carbon-carbon midpoint coincides with a crystallographic inversion center. Consequently, the two tertiary amine nitrogen atoms in $7,4 a \cdot 2(\mathrm{HCl})$, $\mathbf{4 a}$, and $\mathbf{4 b}$ have opposite optical configurations. Deprotection of molecules 4 using $\mathrm{Na} / \mathrm{NH}_{3}$ is uncomplicated and reproducibly produces diamino bis(thiol) $\mathbf{5}$ in gram quantities with yields of ~90\%.

Figure 4. Thermal ellipsoid plots (50\%) of ligand precursors 7 and $\mathbf{4 b}$ and of $\mathbf{1 1}$ with partial atom labeling. All H atoms are omitted for clarity.

Figure 5. Thermal ellipsoid plots [(a), 50\%] and mixed wireframe thermal ellipsoid plots [(b), 50\%] of cation [16] ${ }^{1+}$ and charge-neutral cage $\mathbf{1 7}$ with partial atom labeling. All H atoms are omitted for clarity. Cation [16] ${ }^{1+}$ resides on an inversion center, coincident with $\mathrm{Cu}(7)$, while $\mathbf{1 7}$ resides upon a C_{2} axis passing through $\mathrm{Cu}(16)$ and $\mathrm{Cu}(18)$. The terminal Me group of the MeCN ligand of 17 is disordered over two positions, both of which are shown in the full thermal ellipsoid plot.

The same reaction conditions that lead to 13 , when applied with ligand 5, do not produce the analogous tetracopper compound ($\mathbf{1 5}$ in Scheme 3) but rather an altogether different cuprous species of exceeding air sensitivity. The all cuprous nature of this compound is punctuated by its colorless appearance. Thin plate crystals of this product could only be characterized by X-ray crystallography, which identified it as a mixture of $\left[\mathrm{Cu}_{13}\right]^{+}$and Cu_{6} species. The former of these multicopper species, [16] ${ }^{+}$(Figure 5), is a centrosymmetric assembly composed of two Cu_{6} fragment cages that are bridged in a linear fashion by an additional Cu^{1+} ion through $\mathrm{S} \cdots \mathrm{Cu} \cdots \mathrm{S}$ interactions from a $\left[\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\text {Ar }}\right)_{2}\right]^{2-}$ ligand on each side. The lone Cu_{6} cage, 17, is of the same composition and essentially the same
structure as the two Cu_{6} moieties that constitute $[16]^{+}$such that $[16]^{+}$can be alternatively formulated as $\left[[\mathbf{1 7}]_{2}\left(\mu-\mathrm{Cu}^{\mathrm{I}}\right)\right]^{+}$ (Scheme 3). Compound $\mathbf{1 7}$ is comprised of three $[\mathrm{Cu}(\mathrm{L}-$ $\left.\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right]^{1-}$ groups, two Cu^{1+} ions, and a singular [Cu$(\mathrm{MeCN})]^{1+}$ group with resulting overall charge neutrality. The $\mathrm{Cu}(\mathrm{MeCN})$ group is coincident with a C_{2} axis that bisects the $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right]^{1-}\right.$ group (containing $\mathrm{Cu}(16)$) on the cage's opposite side, thereby rendering only half of 17 structurally unique (Figure 5, bottom, and Scheme 3, bottom). Within this assembly, $\mathrm{Cu}-\mathrm{N}, \mathrm{Cu}-\mathrm{S}$, and $\mathrm{Cu} \cdots \mathrm{Cu}$ distances vary broadly in an irregular fashion (Table 4).

Upon even slight exposure to air or to handling in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, compound $[\mathbf{1 6}]^{1+} / \mathbf{1 7}$ undergoes immediate oxidation, first

Table 4. Selected Interatomic Distances and Angles for 17 and [16] ${ }^{+}$

17		17	
$\mathrm{Cu}(15)-\mathrm{S}(13)$	2.2233(14)	$\mathrm{S}(15)-\mathrm{Cu}(16)-\mathrm{S}(15 \mathrm{~A})$	161.80(8)
$\mathrm{Cu}(15)-\mathrm{S}(14)$	2.2792(13)	$\mathrm{N}(16)-\mathrm{Cu}(15)-\mathrm{N}(17)$	85.95(14)
$\mathrm{Cu}(16)-\mathrm{S}(15)$	2.1968(12)	$\mathrm{N}(18)-\mathrm{Cu}(16)-\mathrm{N}(18 \mathrm{~A})$	82.5(2)
$\mathrm{Cu}(15)-\mathrm{N}(16)$	2.138(4)	$\mathrm{S}(15)-\mathrm{Cu}(17)-\mathrm{S}(13)$	136.00(5)
$\mathrm{Cu}(15)-\mathrm{N}(17)$	2.202(4)	$S(15)-\mathrm{Cu}(17)-\mathrm{S}(14 \mathrm{~A})$	108.39(5)
$\mathrm{Cu}(16)-\mathrm{N}(18)$	2.333(4)	$S(13)-\mathrm{Cu}(17)-\mathrm{S}(14 \mathrm{~A})$	113.63(5)
$\mathrm{Cu}(17)-\mathrm{S}(13)$	2.2549(14)	$\mathrm{S}(15)-\mathrm{Cu}(17)-\mathrm{Cu}(15)$	123.62(5)
$\mathrm{Cu}(17)-\mathrm{S}(14 \mathrm{~A})$	2.3480 (13)	$\mathrm{Cu}(15)-\mathrm{Cu}(18)-\mathrm{Cu}(15 \mathrm{~A})$	162.65(5)
$\mathrm{Cu}(15)-\mathrm{Cu}(18)$	2.4872(7)	$\theta_{1}{ }^{\text {a }}$	84.8
$\mathrm{Cu}(15)-\mathrm{Cu}(17)$	2.6361(10)	$\theta_{2}{ }^{\text {b }}$	90.1
$\mathrm{Cu}(17)-\mathrm{Cu}(18)$	2.7080 (9)	[16] ${ }^{+}$	
$\mathrm{Cu}(17) \cdots \mathrm{Cu}(17 \mathrm{~A})$	4.209	$\mathrm{S}(6 \mathrm{~A})-\mathrm{Cu}(7)-\mathrm{S}(6)$	180
$S(13)-\mathrm{Cu}(15)-\mathrm{S}(14)$	147.23(5)	$\mathrm{Cu}(7)-\mathrm{S}(6)$	2.1549(12)
${ }^{a}$ Angle between intraligand $S(13)-\mathrm{C}_{6}-\mathrm{N}(16)$ and $\mathrm{S}(14)-\mathrm{C}_{6}-\mathrm{N}(17)$ mean planes. ${ }^{b}$ Angle between intraligand $\mathrm{S}(15)-\mathrm{C}_{6}-\mathrm{N}(18)$ and $\mathrm{S}(15 \mathrm{~A})-$ $\mathrm{C}_{6}-\mathrm{N}(18 \mathrm{~A})$ mean planes.			

manifesting a blue color but ultimately transforming to a mixedvalent red-brown species of a notably robust characteristic. This new cage compound, 19 , is quite tractable to crystallization and yields a variety of polymorphs/pseudopolymorphs (Tables 2 and S4) that are the same in all essential respects. As revealed by X-ray crystallography (Figure 6), 19 has a charge-neutral

Figure 6. Thermal ellipsoid plot (50\%) of the pentacopper compound 19 with partial atom labeling. All H atoms are omitted for clarity.
formulation with a pentacopper core displaying a distinctive 3fold axial symmetry. The conversion of $\mathbf{1 7}$ to 19 requires only a one-electron oxidation and extrusion of the $[\mathrm{Cu}(\mathrm{MeCN})]^{+}$ fragment. Two of the copper ions $[\mathrm{Cu}(4)$ and $\mathrm{Cu}(5)$ in Figure 6] define a central axis around which three $\mathrm{Cu}\left[\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right]$ groups are arrayed with a modestly twisted disposition. Relative to the central Cu_{2} axis, the intrachelate $\mathrm{S} \cdots \mathrm{S}$ line segment of each $\left[\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right]^{2-}$ ligand is inclined at a $\sim-33^{\circ}$ torsion angle. In contrast to the free $\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}$ ligands and their precursors, which typically crystallize with opposing chiral configuration at each tertiary nitrogen atom, the handedness at each amine nitrogen in $\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}$ coordination complexes is invariably the same because this arrangement better accommodates the lower energy puckered chelate ring configuration. Thus, each individual $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}\right)\right]$ fragment in 19 conforms to C_{2} local symmetry with the rotational axis bisecting the $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ and $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$
angles. Taken together as a set, three $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}{ }_{2}\right)\right]$ fragment complexes of the same optical configuration trigonally arranged around a central axis present idealized D_{3} point group symmetry. Structural integrity is maintained in solution, as demonstrated by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra that reveal half of a $\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}(2-)$ ligand to be unique and mass spectrometric data that show only the parent ion with no fragmentation. In one of the polymorphs identified (cf. Figure S22), 19 occurs on a crystallographic C_{2} that coincides with a molecular C_{2}; in all other instances, 19 is found on a general position. If the handedness of 19 as a whole is defined by viewing down the C_{3} axis and considering whether each thiolate sulfur of the triangular S3 face has the connectivity leading to its intraligand partner sulfur atom emanating to the left (Λ) or right (Δ), Figure 6 shows the Δ isomer. Because all the polymorphs/pseudopolymorphs of 19 that have been found occur in centric space groups ($P-1$ or $C 2 / c$), they are necessarily racemic mixtures in these crystalline forms.

The core of 19 is quite compact with a $\mathrm{Cu}_{\mathrm{ax}} \cdots \mathrm{Cu}_{\mathrm{ax}}$ separation of 2.7005(4) \AA and an average $\mathrm{Cu}_{\mathrm{ax}} \cdots \mathrm{Cu}_{\mathrm{eq}}$ distance of 2.6205[2] \AA that define a trigonal bipyramidal Cu_{5} core (Table 5). The $\mathrm{Cu}(17) \cdots \mathrm{C}(17 \mathrm{~A})$ separation of $4.209 \AA$ in 17 (Figure 5), which condenses to define the C_{3} axis in 19, accentuates the close

Table 5. Selected Interatomic Distances (\AA) and Angles (deg.) for $19^{a, b}$

$\mathrm{Cu}_{\mathrm{ax}}-\mathrm{Cu}_{\mathrm{ax}}$	$2.7005(4)$	$\mathrm{C}-\mathrm{C}_{\text {arene }}$	$1.403[1]$
$\mathrm{Cu}_{\mathrm{ax}}-\mathrm{Cu}_{\mathrm{eq}}$ ave	$2.6205[2]$	$\mathrm{S}-\mathrm{Cu}_{\mathrm{N} 2 S 2}-\mathrm{S}$	$158.42[1]$
$\mathrm{Cu}_{\mathrm{ax}}-\mathrm{Cu}_{\mathrm{eq}}$, range	$2.5292(4)-2.6725(4)$	$\mathrm{S}-\mathrm{Cu}_{\mathrm{ax}}-\mathrm{S}$	$116.57[1]$
$\mathrm{Cu}_{\mathrm{eq}}-\mathrm{Cu}_{\text {eq }}$, ave	$3.8890[2]$	$\mathrm{N}-\mathrm{Cu}_{\mathrm{N} 2 S 2}-\mathrm{N}$	$85.67[3]$
$\mathrm{Cu}_{\mathrm{eq}}-\mathrm{Cu}_{\mathrm{eq}}$, range	$3.8336(4)-3.9389(4)$	$\theta_{1}{ }^{c}$	89.7
$\mathrm{Cu}_{\mathrm{N} 2 S 2}-\mathrm{S}$	$2.2346[2]$	$\theta_{2}{ }^{d}$	83.1
Cu	$\theta_{3}{ }^{e}$	83.4	
$\mathrm{~S}-\mathrm{C}$	$2.2143[7]$		

${ }^{a}$ Data are for the $C 2 / c$ polymorph with 19 on general position (JPD722). ${ }^{b}$ Averaged values are given where two or more chemically identical interatomic distances or angles are present. Uncertainties are propagated according to Taylor, J. R. An Introduction to Error Analysis; 2nd ed.; University Science Books: Sausalito, CA, 1997, pp 73-77; propagated uncertainties are designated with []. ${ }^{c}$ Angle between intraligand $S(1)-\mathrm{C}_{6}-N(1)$ and $\mathrm{S}(2)-\mathrm{C}_{6}-\mathrm{N}(2)$ mean planes. ${ }^{d}$ Angle between intraligand $S(3)-\mathrm{C}_{6}-N(3)$ and $S(4)-\mathrm{C}_{6}-N(4)$ mean planes. ${ }^{e}$ Angle between intraligand $\mathrm{S}(5)-\mathrm{C}_{6}-\mathrm{N}(5)$ and $\mathrm{S}(6)-\mathrm{C}_{6}-$ $\mathrm{N}(6)$ mean planes.
packing within the latter. Although the observation of $[\mathbf{1 6}]^{1+}$ and 17 as initial products, at least when MeCN is implemented as a solvent, suggests that the intended 15 (Scheme 3) is not formed, 19 could be created, at least as a formalism, from the addition of $\left[\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}\right)\right]$ to the Cu_{2} axis of 15 . The $\mathrm{Cu}-\mathrm{N}$ bond lengths in 19 are modestly shorter than in 13 (Tables $5 v s 3$), in contrast to the significant $\mathrm{Cu}-\mathrm{N}$ contraction in 14 vs 13 , which is consistent with the single cupric ion being disordered among the three equatorial $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}\right)\right]$ sites. An intriguing point regarding 19 is its relationship to a trigonally symmetric Cu_{5} compound reported by Schugar and co-workers (Figure 7), ${ }^{29}$

Figure 7. A 3-fold symmetric dicationic pentacopper compound reported by Schugar and co-workers. ${ }^{29}$
which was structurally characterized as a dication featuring an expanded core that is quantified most simply by its $\mathrm{Cu}_{\mathrm{ax}} \cdots \mathrm{Cu}_{\mathrm{ax}}$ separation of 3.016 (3) Å. The two-electron difference between 19 and Schugar's compound suggests that both cage species might support $2 \mathrm{e}^{-}$redox chemistry under the appropriate conditions.
Ligand 5, when introduced to any of a variety of $\mathrm{Cu}^{\mathrm{II}}$ sources, again yielded 19 as the only identifiable product rather than mononuclear $\left[\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}\right)\right]$ (Scheme 3), the ligand probably serving as the source of reducing equivalents that enables this result. ${ }^{30}$ When treated with $\left[\mathrm{Cp}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ in $\mathrm{MeCN}, 19$ underwent a striking change in color from red-brown to intense violet. As with 19 itself, only half of each $\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}(2-)$ ligand is spectroscopically distinct by ${ }^{1} \mathrm{H}$ NMR (Figure S57), suggesting that, in solution, this oxidized product is [19] ${ }^{+}$with preservation of the D_{3} symmetry. The cyclic voltammetry behavior of 19 (vide infra) is also consistent with retention of its pentacopper formulation upon a full, stoichiometric oneelectron oxidation.

Dark wedge-shaped crystals grown by the diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a MeCN solution of $[19]^{+}$were interrogated by X-ray diffraction and identified as the decacopper dication shown as $[\mathbf{2 0}]^{2+}$ (Scheme 3 and Figure 8). Considered as a simple matter of composition, $[\mathbf{2 0}]^{2+}$ is a dimer of $[\mathbf{1 9}]^{1+}$. However, the structure of $[20]^{2+}$ does not admit of simple description in relation to 19 , suggesting that, while the redox chemistry may be rapid, there is an attending structural reorganization on a slower timescale. The trigonal symmetry of $\mathbf{1 9}$ is altogether lost and is not observed even as localized symmetry in fragments of $[\mathbf{2 0}]^{2+}$. Rather, $[\mathbf{2 0}]^{2+}$ occurs in tetragonal $I 4_{1} / a$ (no. 88) on an S_{4} axis that is defined by ions $\mathrm{Cu}(3)$ and $\mathrm{Cu}(3 \mathrm{~A})$ (vertical direction, Figure 8, top, and Scheme 3, bottom right). The remaining copper ions comprise two sets of four ions $[\mathrm{Cu}(2)-\mathrm{Cu}(2 \mathrm{c})$ and $\mathrm{Cu}(1)-\mathrm{Cu}(1 \mathrm{c})$; cf., Figure 8b], the members of each set being related by successive executions of the S_{4} operation. The S_{4} point group demands that the $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}\right)\right]$ fragments containing
$\mathrm{Cu}(3)$ and $\mathrm{Cu}(3 \mathrm{~A})$ at the top and bottom of the cage assembly, as presented in Figure 8 (top), have opposite C_{2} handedness. Similarly, the $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}\right)\right]$ groups holding $\mathrm{Cu}(1)-\mathrm{Cu}(1 \mathrm{C})$ alternate in their isolated C_{2} chirality. The central cavity of [20] $]^{2+}$ features an $\mathrm{Cu}_{6} \mathrm{~S}_{4}$ adamantanoid-like environment created by the four Cu ions not encapsulated by $\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}(2-)$ ligands $[\mathrm{Cu}(2 \mathrm{~A})-\mathrm{Cu}(2 \mathrm{D})]$, the two Cu ions that coincide with the S_{4} axis $[\mathrm{Cu}(3)$ and $\mathrm{Cu}(3 \mathrm{~A})]$, and the four sulfur atoms of the two ligands chelating $\mathrm{Cu}(3)$ and $\mathrm{Cu}(3 \mathrm{~A})[\mathrm{S}(3)-\mathrm{S}(3 \mathrm{C})]$. A related decacopper cage compound bearing the formulation $\left[\left(\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}\right)\right)_{4}\left(\mu_{2}-\mathrm{Cu}^{\mathrm{I}}(\mathrm{MeCN})_{2}\right)_{2}\left(\mu_{3}-\mathrm{Cu}^{\mathrm{I}}(\mathrm{MeCN})\right)_{4}\right]^{6+}$, where $\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}=N, N^{\prime}$-dimethyl- N, N^{\prime}-bis(2-mercaptoethyl)ethylenediamine $(2-)$, is similarly of S_{4} symmetry but differs in having four $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}\right)\right]$ fragments rather than six as in $[20]^{2+} .{ }^{31}$ A striking contrast between 19 and $[20]^{2+}$ is the near orthogonality of the intraligand aminothiolate rings in the former $(\theta$, Table 5$)$ and their near planarity in the latter $(\theta$, Table 6).

When $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right]$ is treated first with $[5]^{2-}$ in THF and then, in a subsequent step, $1 / 4$ equiv of $\mathrm{Ph}_{3} \mathrm{SbS}$ is administered, the intended oxidative addition of sulfur does not occur but rather a presumed one-electron oxidation of in situ generated $\mathbf{1 7}$ to afford [18] ${ }^{+}$(Scheme 3). The mixed-valence constitution of $[\mathbf{1 8}]^{+}$confers upon it a marked stability that contrasts sharply with the air sensitivity of fully reduced 17. While, as a matter of composition, $[\mathbf{1 8}]^{+}$is a one-electron oxidized form of 17 , its structure departs from the C_{2} symmetry of the latter by a moderate twisting of one $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right)\right]$ fragment with respect to the others. Consequently, the overall appearance of $[\mathbf{1 8}]^{+}$bears a closer relationship to 19 than to 17 , as it in principle could arise by the addition of $[\mathrm{Cu}(\mathrm{MeCN})]^{+}$to an equatorial edge of the Cu_{5} trigonal bipyramid of 19 , the C_{3} axis of which is defined by the $\mathrm{Cu}(4) \cdots \mathrm{Cu}(5)$ segment (cf. Figures 6 and 9 and Scheme 3). In Figure 9, atoms $\mathrm{Cu}(6)-$ $N(7)-C(49)-C(50)$ define this added group, while the $\mathrm{Cu}(3) \cdots \mathrm{Cu}(1)$ segment marks the edge of the Cu_{3} equatorial belt to which it has been joined. Selected interatomic distances and angles for $[\mathbf{1 8}]^{+}$are collected in Table 7. Scheme 4 summarizes in abbreviated form the formal stoichiometric relationships between $17,[18]^{+}$, and 19 , but the interconversions involving the latter two have not been proven by deliberate synthesis starting from pure, isolated samples.

Spectra and Electrochemistry. Compounds 13 and $[16]^{+} / 17$, being of an all cuprous formulation, are diamagnetic and without any informative features in the electronic absorption spectrum. Compounds 19, 14, and $[19]^{+}$, however, are distinctively colored (red-brown, blue, and violet, respectively) with higher intensities and lower energies that correlate with increasing ratio of $\mathrm{Cu}^{\mathrm{II}} / \mathrm{Cu}^{\mathrm{I}}$ (Figure 10). The electronic absorption spectra of the pentacopper cation in Figure 7 and related multicopper complexes with $\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}(2-)$ ligands have been analyzed in some detail by Schugar, Potenza, and co-workers and attributed to a complex overlay of $\mathrm{Cu}^{\mathrm{I}} \rightarrow$ $\mathrm{Cu}^{\mathrm{II}}$ MMCT, $\mathrm{S} \pi / \mathrm{S} \sigma \rightarrow \mathrm{Cu}^{\text {II }}$ LMCT, and $\mathrm{Cu}^{\mathrm{I}} \rightarrow \mathrm{S}$ MLCT transitions. ${ }^{32}$ Considering the compositional similarities that 14, 19, and $[19]^{+}$share with these compounds, analogous assignments are undoubtedly pertinent to them, although transitions involving $\mathrm{S} \pi$ charge transfer are likely energy-shifted due to the influence of the arene ring. Rigorous spectral deconvolutions and computationally assisted assignments have not been attempted here.

The room-temperature X-band EPR spectrum of 19 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ reveals the quartet signal of a single spin at ${ }^{63} \mathrm{Cu} /{ }^{65} \mathrm{Cu}$

Figure 8. (a) Thermal ellipsoid plot (50%) of dication $[\mathbf{2 0}]^{2+}$ with partial atom labeling. All H atoms are omitted for clarity. (b) Core topology of $[\mathbf{2 0}]^{2+}$ defined by the Cu and S atoms and (c) mixed wireframe/thermal ellipsoid (50%) image of $[\mathbf{2 0}]^{2+}$ revealing the central $\mathrm{Cu}_{6} \mathrm{~S}_{4}$ adamantanoid cage defined by $\mathrm{Cu}(3)$ and $\mathrm{Cu}(3 \mathrm{~A})$, with the sulfur atoms of their $\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}(2-)$ ligands, and $\mathrm{Cu}(2 \mathrm{~A})-\mathrm{Cu}(2 \mathrm{D})$.

Table 6. Selected Interatomic Distances (\AA) and Angles (deg.) for [20 $]^{2+a}$

$\mathrm{Cu}_{\mathrm{N} 2 \mathrm{~S} 2}-\mathrm{N}$	$2.042[6]$	$\mathrm{Cu}(2) \cdots \mathrm{Cu}(2 \mathrm{~A})$	$3.898[2]$
$\mathrm{Cu}_{\mathrm{N} 2 \mathrm{~S} 2}-\mathrm{S}$	$2.260[2]$	$\mathrm{Cu}(1) \cdots \mathrm{Cu}(1 \mathrm{C})$	$9.749(2)$
$\mathrm{Cu}_{\mathrm{S}_{4}-\mathrm{S}}$	$2.327[2]$	$\theta_{1}{ }^{c}{ }^{\text {a }}$	8.9
$\mathrm{~S}-\mathrm{C}$	$1.788[8]$	$\theta_{2}{ }^{d}$	8.4
$\mathrm{Cu}(3) \cdots \mathrm{Cu}(3 \mathrm{~A})$	5.541	$\tau_{1}{ }^{e}$	22.1°
		$\tau_{2}{ }^{f}$	31.5°

${ }^{a}$ Averaged ${ }^{b}$ values are given where two or more chemically identical interatomic distances or angles are present. ${ }^{b}$ Uncertainties are propagated according to Taylor, J. R. An Introduction to Error Analysis; 2nd ed.; University Science Books: Sausalito, CA, 1997, pp 73-77; propagated uncertainties are designated with []. ${ }^{c}$ Angle between intraligand $\mathrm{S}(1)-\mathrm{C}_{6}-\mathrm{N}(1)$ and $\mathrm{S}(2)-\mathrm{C}_{6}-\mathrm{N}(2)$ mean planes. ${ }^{d}$ Angle between intraligand $S(3)-\mathrm{C}_{6}-\mathrm{N}(3)$ and $\mathrm{S}(3 \mathrm{C})-$ $\mathrm{C}_{6}-\mathrm{N}(3 \mathrm{C})$ mean planes. ${ }^{e}$ Angle between "cis"-disposed $\mathrm{CuN}_{2} \mathrm{~S}_{2}$ mean planes for $\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}^{A r}\right)\right]$ fragments not bisected by the S_{4} axis. ${ }^{f}$ Angle between "trans" disposed $\mathrm{CuN}_{2} \mathrm{~S}_{2}$ mean planes for $[\mathrm{Cu}(\mathrm{L}-$ $\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Ar}}{ }_{2}$)] fragments not bisected by the S_{4} axis.
with hyperfine coupling to ${ }^{14} \mathrm{~N}$ (Figure 11), thus indicating that the Cu^{11} ion is situated within a $\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}(2-)$ chelate and is not, considering the close $2.7005(4) \AA \mathrm{Cu}_{\mathrm{ax}} \cdots \mathrm{Cu}_{\mathrm{ax}}$ contact, delocalized along the central Cu_{2} core axis. Because the ESI mass spectrum of 19 reveals no fragmentation peaks between 330
amu and the parent mass at $\sim 1225 \mathrm{amu}$ (Figure S60), attribution of this signal to intact 19, as opposed to mononuclear $\left[\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right]\right.$ arising by facile disassembly, stands as a secure interpretation. Although 19 was not tractable to a straightforward gas-phase geometry optimization, possibly because its energy surface is comprised of multiple shallow minima without a decisive global minimum, a single-point calculation performed using the crystallographic coordinates and a subsequent spin density plot affirm that the unpaired spin is largely localized at a single copper site (Figure S63).

Owing to its fully reduced formulation, 13 reveals only a quasi-reversible anodic wave at $\sim-0.54 \mathrm{~V} \mathrm{Fc}^{+} / \mathrm{Fc}$ (Figure 12a), followed by an irreversible process at $\sim-0.15 \mathrm{~V}$. The lack of reversibility possibly has its basis in facile, out-of-plane movement of one of the $\left[\mathrm{Cu}\left(\mathrm{N}_{2} \mathrm{~S}^{\mathrm{Me}_{2}}\right)\right]$ fragments from the remaining cuprous core. Compound 14 shows only irreversible behavior in its voltammogram, which is unsurprising in view of the irregularity of its core structure and the structural fluidity that it implies. This observation contrasts sharply with that of the hexacopper complex $\left.[(\text { bme*daco }) \mathrm{Cu}]_{2}(\mu-\mathrm{CuCl})_{4}\right]($ bme*daco $=b i s\left(N, N^{\prime}-2\right.$-mercapto-2-methylpropyl)-1,5-diazocyclooctane) described by Darensbourg, which undergoes two reversible $\mathrm{Cu}^{\text {II }}$ $+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{\mathrm{I}}$ reductions and two reversible $\mathrm{Cu}^{\mathrm{II}}-\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{\mathrm{III}}$ oxidations. ${ }^{33}$ The greater structural stability of this compound's

Figure 9. Thermal ellipsoid plot (50\%) of cation [18] ${ }^{+}$with all H atoms removed for clarity (left). Mixed wireframe thermal ellipsoid (50\%) image of $[18]^{+}$with the $\mathrm{Cu}(2) \cdots \mathrm{C}(6)$ axis in the vertical direction rather than horizontal (right).

Table 7. Selected Interatomic Distances and Angles for [18] ${ }^{+}$

$\mathrm{Cu}(1)-\mathrm{S}(1)$	$2.2419(17)$	$\mathrm{Cu}(3)-\mathrm{N}(5)$	$2.201(5)$
$\mathrm{Cu}(1)-\mathrm{S}(2)$	$2.2238(18)$	$\mathrm{Cu}(3)-\mathrm{N}(6)$	$2.193(5)$
$\mathrm{Cu}(2)-\mathrm{S}(3)$	$2.2248(17)$	$\mathrm{Cu}(1)-\mathrm{Cu}(6)$	$2.6093(11)$
$\mathrm{Cu}(2)-\mathrm{S}(4)$	$2.2433(18)$	$\mathrm{Cu}(3)-\mathrm{Cu}(6)$	$2.5896(11)$
$\mathrm{Cu}(3)-\mathrm{S}(5)$	$2.2440(18)$	$\mathrm{Cu}(4)-\mathrm{Cu}(6)$	$2.5670(11)$
$\mathrm{Cu}(3)-\mathrm{S}(6)$	$2.2612(17)$	$\mathrm{Cu}(5)-\mathrm{Cu}(6)$	$2.6434(12)$
$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2.202(5)$	$\mathrm{Cu}(4) \cdots \mathrm{Cu}(5)$	$4.1002(13)$
$\mathrm{Cu}(1)-\mathrm{N}(2)$	$2.174(5)$	$\mathrm{S}(2)-\mathrm{Cu}(1)-\mathrm{S}(1)$	$148.20(7)$
$\mathrm{Cu}(2)-\mathrm{N}(3)$	$2.036(5)$	$\mathrm{S}(3)-\mathrm{Cu}(2)-\mathrm{S}(4)$	$102.46(6)$
$\mathrm{Cu}(2)-\mathrm{N}(4)$	$2.033(5)$	$\mathrm{S}(5)-\mathrm{Cu}(3)-\mathrm{S}(6)$	$144.20(7)$

Scheme 4. Interconversions Relating 17, [18] ${ }^{+}$, and 19

adamantanoid-like topology undoubtedly underpins this markedly different behavior.
The cyclic voltammogram of 19 reveals a reversible reduction at $-0.98 \mathrm{~V} v \mathrm{Fc}^{+} / \mathrm{Fc}$ and an oxidation wave of smaller current amplitude at -0.42 V (Figure 12b). When scanning within the same parameters is initiated in the cathodic direction, rather than the anodic direction as in Figure 12b, these two features maintain their reversible appearance and relative intensity (Figure S64). Both the reduction and oxidation processes are metal-based, corresponding to $\mathrm{Cu}^{\mathrm{II}}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{\mathrm{I}}$ and $\mathrm{Cu}^{\mathrm{I}}-\mathrm{e}^{-} \rightarrow$ $\mathrm{Cu}^{\mathrm{II}}$, respectively, as confirmed by a single-point calculation using the crystal coordinates of 19 and an inspection of its frontier MOs. The current amplitude for the reduction is approximately twice that of the oxidation process, provided that the anodic scanning does not go beyond $\sim-0.1 \mathrm{~V} v \mathrm{Fc}^{+} / \mathrm{Fc}$. Continued oxidative scanning beyond this threshold is marked by an irreversible wave with current maximum at +0.24 V and the restoration of current intensity to the initial oxidation wave such that it becomes comparable in amplitude to the reduction process (Figure 12c). As hinted by the identification of [20 $]^{2+}$ (a dimerized oxidized form of 19) in the crystalline state, the smaller current for the oxidation wave in Figure 12b may have its basis in a rapid dimerization between $[19]^{+}$and neutral 19,

Figure 10. Overlaid UV-vis spectra for 13 and 14, with [L-$\left.\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}}\right)_{2}\right]^{2-}$ (top), and for $[18]^{+}, 19$, and $[19]^{+}$, with $\left[\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right]^{2-}$ (bottom). All spectra have been acquired using solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
which depletes the concentration of 19 at the diffusion layer and diminishes the current in comparison to the cathodic wave (Scheme 5). If continued anodic scanning generates $[19]_{2}{ }^{2+}$, which undergoes facile fragmentation to an equilibrium favoring $2[19]^{+}$because of charge repulsion (Scheme 5), then the

Figure 11. X-band EPR spectrum of 19 recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 293 K (experimental conditions: frequency, 9.8017 GHz ; power, 63 mW ; and modulation, 0.1 mT). Experimental data are represented by the black line; simulation is depicted by the red trace. Simulation parameters: $g_{\text {iso }}=2.0633 ; A_{\text {iso }}\left\{{ }^{63,65} \mathrm{Cu}\right\}=81.4 \times 10^{-4} \mathrm{~cm}^{-1}(1)$; and $A_{\text {iso }}\left\{{ }^{14} \mathrm{~N}\right\}=8.3 \times 10^{-4} \mathrm{~cm}^{-1}(2)$.
concentration of [19] ${ }^{+}$at the diffusion layer is returned to a value similar to that which it would have had in the absence of a competing dimerization, and the current amplitude of the first oxidation is reconstituted to a scale similar to the reduction wave. The electrochemistry of $[\mathbf{2 0}]^{2+}$ was not investigated but likely does not relate simply to that of 19 because of the appreciable structural reorganization that separates them.

Reaction of in situ generated [19] ${ }^{1-}$ with S_{8} was examined as a means toward a $\mathrm{Cu}_{3}{ }^{\mathrm{I}} \mathrm{Cu}_{2}{ }^{\mathrm{II}}\left(\mu_{5}\right.$-S) species that would have relevance to the oxidized $\mathrm{Cu}_{\mathrm{z}}{ }^{*}$ site. However, rapid reoxidation of $[19]^{1-}$ back to 19 was the observed outcome, indicating that a fast, outer-sphere electron transfer is kinetically much more competitive than sulfur atom addition regardless of what thermodynamic favorability an expanded $\mathrm{Cu}_{3}{ }^{\mathrm{I}} \mathrm{Cu}_{2}{ }^{\mathrm{II}}\left(\mu_{5}-\mathrm{S}\right)$ cage might enjoy.

■ SUMMARY AND CONCLUSIONS

The principal findings of this report are as follows:
(1) A newly designed, reproducible synthesis of $N^{1}, N^{2}-b i s(2-$ mercaptophenyl)- N^{1}, N^{2}-dimethylethane-1,2-diamine (L$\left.\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}} \mathrm{H}\right)_{2}\right)$ is described, which proceeds through the key intermediate N^{1}, N^{2}-bis(2-fluorophenyl)- N^{1}, N^{2}-dimethyl-ethane-1,2-diamine and avoids the use of anhydrous glyoxal.
(2) The diamino bis(thiolate) ligand $N^{1}, N^{2}-b i s(2-m e t h y l-2-$ mercaptopropane)- N^{1}, N^{2}-dimethylethane-1,2-diamine) $\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}_{2}}\right)_{2}(2-)\right)$ supports the formation of the allcuprous tetracopper compound $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}}\right)_{2}\right)\right)_{2}(\mu\right.$ $\left.\left.\mathrm{Cu}_{2}\right)\right]$, which was targeted as a synthon toward a $\mathrm{Cu}_{2}{ }^{\mathrm{I}} \mathrm{Cu}_{2}{ }^{\mathrm{II}}(\mu-\mathrm{S})$ species relevant to the $\mathrm{Cu}_{\mathrm{Z}} / \mathrm{Cu}_{\mathrm{Z}}{ }^{*}$ site of nitrous oxide reductase.
(3) Tetracopper $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}_{2}}\right)_{2}\right)\right)_{2}\left(\mu-\mathrm{Cu}_{2}\right)\right]$ does not undergo well-defined sulfur atom addition but rather chlorine atom addition from PhICl_{2} or $\mathrm{Ph}_{3} \mathrm{CCl}$ to a new, mixed-valent octacopper species, $\quad[(\mathrm{Cu}(\mathrm{L}-$ $\left.\left.\left.\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Me}_{2}}\right)_{2}\right)\right)_{3}(\mathrm{CuCl})_{5}\right]$.
(4) Introduction of $\mathrm{Cu}(\mathrm{I})$ sources to $\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}} \mathrm{H}\right)_{2}$ or its deprotonated form in MeCN leads initially to a highly airsensitive C_{2}-symmetric hexacuprous species, identified

Figure 12. Cyclic voltammograms of 13 (a), 19 at $300 \mathrm{mV} / \mathrm{sec}$ (b), and 19 at variable scan speed (c) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $\left[{ }^{n} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ supporting electrolyte.

Scheme 5. Proposed Oxidation Processes and Solution Equilibria for 19

$$
19 \xrightarrow{-e^{-}}[19]^{+} \xrightarrow{19}[19]_{2}^{+} \xrightarrow{-e^{-}}[19]_{2}^{2+} \longrightarrow 2[19]^{+}
$$

crystallographically as being composed of $3\left[\mathrm{Cu}^{\mathrm{I}}(\mathrm{L}-\right.$ $\left.\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right]$ fragments and three additional $\mathrm{Cu}(\mathrm{I})$ ions, one of which is bound to a MeCN ligand. Upon exposure to air, this hexacuprous compound undergoes rapid transformation to a mixed-valent pentacopper $[(\mathrm{Cu}(\mathrm{L}-$ $\left.\left.\left.\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right)\right)_{3}\left(\mu-\mathrm{Cu}_{2}\right)\right]$, where the single cupric ion is ensconced within one of the $\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\operatorname{Ar}}\right)_{2}(2-)$ ligands, as demonstrated by EPR.
(5) Pentacopper $\left[\left(\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right)\right)_{3}\left(\mu-\mathrm{Cu}_{2}\right)\right]$ shows both reversible reduction and reversible oxidation by cyclic voltammetry. Chemical generation of $[(\mathrm{Cu}(\mathrm{L}-$
$\left.\left.\left.\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right)\right)_{3}\left(\mu-\mathrm{Cu}_{2}\right)\right]^{1-}$ followed by reaction with S_{8} returns only the neutral starting compound; chemical oxidation with $\left[\mathrm{Cp}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ results in $[(\mathrm{Cu}(\mathrm{L}-$ $\left.\left.\left.\mathrm{N}_{2}\left(\mathrm{~S}^{\mathrm{Ar}}\right)_{2}\right)\right)_{3}\left(\mu-\mathrm{Cu}_{2}\right)\right]^{+}$in solution, which features intense absorptions in its electronic spectrum, but a dimerized dicationic decacopper aggregate is identified in the crystalline state.
We conclude from this work that diamino dithiolate tetradentate complexes of copper are not well suited to accommodate bridging sulfide by oxidative addition and that, if this ligand platform is compatible with a sulfide-bridged multicopper core, the $\mu_{4}-S$ ligand must be present first in an appropriate precursor. In multicopper aggregates of the form $\left[\left[\mathrm{Cu}\left(\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}\right)\right]_{x} \mathrm{Cu}_{y}{ }^{\mathrm{I}}\right]^{n}$, such redox chemistry as they can support generally appears to be restricted to $\mathrm{Cu}^{\mathrm{II}}+\mathrm{e}^{-} \leftrightarrow \mathrm{Cu}^{\mathrm{I}}$ and $\mathrm{Cu}^{\mathrm{II}}-$ $\mathrm{e}^{-} \leftrightarrow \mathrm{Cu}^{\text {III }}$ processes by the ions installed within the $\left[\mathrm{L}-\mathrm{N}_{2} \mathrm{~S}_{2}\right]^{2-}$ ligands, while the Cu^{I} ions exogenous to these ligands adjust structurally with their accommodating coordination sphere numbers and geometries as dictated by the exigencies of sterics, charge accumulation, etc. We suspect that our observations reflect kinetic effects rather than a thermodynamic impossibility of forming a $\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{S}\right)$ compound with diamino dithiolate ligands. In continuing work, we are evaluating the coordination chemistry of $\mathrm{Cu}(\mathrm{I})$ with new polyimidazole ligands, the aim of which is generation of compounds with compositional and reactivity relevance to $\mathrm{Cu}_{\mathrm{Z}} / \mathrm{Cu}_{\mathrm{Z}}{ }^{*}$.

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00784.

Procedures for crystal growth, X-ray diffraction data collection, and structure solution and refinement; description of computational procedures; unit cell and refinement data; thermal ellipsoid plots with complete atom labeling; and analytical, spectroscopic, and electrochemical data for compounds reported (PDF)

Accession Codes

CCDC 2194600 - 2194616 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

- AUTHOR INFORMATION

Corresponding Author

James P. Donahue - Department of Chemistry, Tulane University, New Orleans, Louisiana 70118-5638, United States; © orcid.org/0000-0001-9768-4813; Email: donahue@tulane.edu

Authors

Bo Wang - Department of Chemistry, Tulane University, New Orleans, Louisiana 70118-5638, United States
Justin Barnes - Department of Chemistry, Tulane University, New Orleans, Louisiana 70118-5638, United States
Skylar J. Ferrara - Department of Chemistry, Tulane University, New Orleans, Louisiana 70118-5638, United States; © orcid.org/0000-0001-7826-5621

Stephen Sproules - WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.; © orcid.org/0000-0003-3587-0375
Xiaodong Zhang - Department of Chemistry, Tulane University, New Orleans, Louisiana 70118-5638, United States
Joel T. Mague - Department of Chemistry, Tulane University, New Orleans, Louisiana 70118-5638, United States
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.inorgchem.3c00784

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The Louisiana Board of Regents (LEQSF-(2002-03)-ENH-TR67) and the National Science Foundation (MRI-1228232 and 0619770) are thanked for funding of Tulane University's X-ray crystallography and mass spectrometry instrumentation, and Tulane University is acknowledged for its ongoing assistance with operational costs for the X-ray diffraction facility. The authors gratefully acknowledge support for this project from the National Science Foundation (CHE-1800520 for B.W., J.B., and J.P.D.). Professor Robert A. Pascal of the Chemistry Department at Tulane University is thanked for helpful discussion regarding the synthesis of ligand 5 .

REFERENCES

(1) Canfield, D. E.; Glazer, A. N.; Falkowski, P. G. The Evolution and Future of Earth's Nitrogen Cycle. Science 2010, 330, 192-196.
(2) Lan, X.; Thoning, K. W.; Dlugokencky, D. J. Trends in GloballyAveraged $\mathrm{CH}_{4}, \mathrm{~N}_{2} \mathrm{O}$, and SF_{6} Determined from NOAA Global Monitoring Laboratory Measurements. Version 2023-05. https://doi. org/10.15138/P8XG-AA10. Last accessed 21 February 2023.
(3) https://www.epa.gov/ghgemissions/overview-greenhouse-gases\#nitrous-oxide. Last accessed 21 February 2023.
(4) Ravishankara, A. R.; Daniel, J. S.; Portmann, R. W. Nitrous Oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$: The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123-125.
(5) Brown, K.; Tegoni, M.; Prudêncio, M.; Pereira, A. S.; Besson, S.; Moura, J. J.; Moura, I.; Cambillau, C. A Novel Type of Catalytic Copper Cluster in Nitrous Oxide Reductase. Nat. Struct. Biol. 2000, 7, 191195.
(6) Brown, K.; Djinovic-Carugo, K.; Haltia, T.; Cabrito, I.; Saraste, M.; Moura, J. J. G.; Moura, I.; Tegoni, M.; Cambillau, C. Revisiting the Catalytic CuZ Cluster of Nitrous Oxide ($\mathrm{N}_{2} \mathrm{O}$) Reductase: Evidence of a Bridging Inorganic Sulfur. J. Biol. Chem. 2000, 275, 41133-41136.
(7) Haltia, T.; Brown, K.; Tegoni, M.; Cambillau, C.; Saraste, M.; Mattila, K.; Djinovic-Carugo, K. Crystal Structure of Nitrous Oxide Reductase from Paracoccus denitrificans at $1.6 \AA$ Resolution. Biochem. J. 2003, 369, 77-88.
(8) Paraskevopoulos, K.; Antonyuk, S. V.; Sawers, R. G.; Eady, R. R.; Hasnain, S. S. Insight into Catalysis of Nitrous Oxide Reductase from High-Resolution Structures of Resting and Inhibitor-Bound Enzyme from Achromobacter cycloclastes. J. Mol. Biol. 2006, 362, 55-65.
(9) Pauleta, S. R.; Dell'Acqua, S.; Moura, I. Nitrous Oxide Reductase. Coord. Chem. Rev. 2013, 257, 332-349.
(10) Pomowski, A.; Zumft, W. G.; Kroneck, P. M. H.; Einsle, O. N $\mathrm{N}_{2} \mathrm{O}$ Binding at a [4Cu:2S] Copper-Sulphur Cluster in Nitrous Oxide Reductase. Nature 2011, 477, 234-237.
(11) Chen, P.; Gorelsky, S. I.; Ghosh, S.; Solomon, E. I. $\mathrm{N}_{2} \mathrm{O}$ Reduction by the μ_{4}-Sulfide-Bridged Tetranuclear Cu_{Z} Cluster Active Site. Angew. Chem., Int. Ed. 2004, 43, 4132-4140.
(12) Johnson, B. J.; Antholine, W. E.; Lindeman, S. V.; Mankad, N. P. $\mathrm{A} \mathrm{Cu}_{4} \mathrm{~S}$ Model for the Nitrous Oxide Reductase Active Sites Supported Only by Nitrogen Ligands. Chem. Commun. 2015, 51, 11860-11863.
(13) Johnson, B. J.; Antholine, W. E.; Lindeman, S. V.; Graham, M. J.; Mankad, N. P. A One-Hole $\mathrm{Cu}_{4} \mathrm{~S}$ Cluster with $\mathrm{N}_{2} \mathrm{O}$ Reductase Activity: A Structural and Functional Model for $\mathrm{Cu}_{\mathrm{Z}}{ }^{*}$. J. Am. Chem. Soc. 2016, 138, 13107-13110.
(14) Johnson, B. J.; Lindeman, S. V.; Mankad, N. P. Assembly, Structure, and Reactivity of $\mathrm{Cu}_{4} \mathrm{~S}$ and $\mathrm{Cu}_{3} \mathrm{~S}$ Models for the Nitrous Oxides Reductase Active Site, $\mathrm{Cu}_{\mathrm{Z}}{ }^{*}$. Inorg. Chem. 2014, 53, 1061110619.
(15) Hsu, C.-W.; Rathnayaka, S. C.; Islam, S. M.; MacMillan, S. N.; Mankad, N. P. $\mathrm{N}_{2} \mathrm{O}$ Reductase Activity of a $\left[\mathrm{Cu}_{4} \mathrm{~S}\right]$ Cluster in the $4 \mathrm{Cu}^{\mathrm{I}}$ Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angew. Chem., Int. Ed. 2020, 59, 627-631.
(16) Bar-Nahum, I.; Gupta, A. K.; Huber, S. M.; Ertem, M. Z.; Cramer, C. J.; Tolman, W. B. Reduction of Nitrous Oxide to Dinitrogen by a Mixed Valent Tricopper-Disulfido Cluster. J. Am. Chem. Soc. 2009, 131, 2812-2814.
(17) Rathnayaka, S. C.; Mankad, N. P. Coordination Chemistry of the Cu_{Z} Site in Nitrous Oxide Reductase and its Synthetic Mimics. Coord. Chem. Rev. 2021, 429, 213718.
(18) Schneider, J.; Köckerling, M.; Kopitzky, R.; Henkel, G. MetalControlled Stereoselectivity in Complex Formation: Assembly of Tetranuclear Copper(I) Complexes with Four Stereogenic Nitrogen Donor Functions in all- (R) and all- (S) Configurations. Eur. J. Inorg. Chem. 2003, 2003, 1727-1734.
(19) Denny, J. A.; Darensbourg, M. Y. Metallodithiolates as Ligands in Coordination, Bioinorganic, and Organometallic Chemistry. Chem. Rev. 2015, 115, 5248-5273.
(20) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals; 4th ed.; Butterworth-Heinemannn: Oxford, U.K., 2000.
(21) Grapperhaus, C. A.; Mullins, C. S.; Kozlowski, P. M.; Mashuta, M. S. Synthesis and Oxygenation of a Nickel(II) and Zinc(II) Dithiolate: An Experimental and Theoretical Comparison. Inorg. Chem. 2004, 43, 2859-2866.
(22) Hanson, G. R.; Gates, K. E.; Noble, C. J.; Griffin, M.; Mitchell, A.; Benson, S. XSophe-Sophe-XeprView ${ }^{\circledR}$. A computer simulation software suite (v. 1.1.3) for the analysis of continuous wave EPR spectra. J. Inorg. Biochem. 2004, 98, 903-916.
(23) Karlin, K. D.; Lippard, S. J. Sulfur-Bridged Binuclear Iron(II) Complexes. Effect of Ligand Constraints on Their Physical Properties; Reactions with Carbon Monoxide and Alkyl Isocyanides. J. Am. Chem. Soc. 1976, 98, 6951-6957.
(24) Smee, J. J.; Miller, M. L.; Grapperhaus, C. A.; Reibenspies, J. H.; Darensbourg, M. Y. Subtle Bite-Angle Influences on $\mathrm{N}_{2} \mathrm{~S}_{2} \mathrm{Ni}$ Complexes. Inorg. Chem. 2001, 40, 3601-3605.
(25) Mills, D. K.; Font, I.; Farmer, P. J.; Hsiao, Y.-M.; Tuntulani, T.; Buonomo, R. M.; Goodman, D. C.; Musie, G.; Grapperhaus, C. A.; Maguire, M. J.; Lai, C.-H.; Hatley, M. L.; Smee, J. J.; Bellefeuille, J. A.; Darensbourg, M. Y. 1,5-Diazacyclooctane, Pendant Arm Thiolato Derivatives and [N, N^{\prime}-Bis(2-mercaptoethyl)-1,5-Diazacyclooctanato]nickel(II). Inorg. Synth. 1998, 32, 89-98.
(26) Dowerah, D.; Spence, J. T.; Singh, R.; Wedd, A. G.; Wilson, G. L.; Farchione, F.; Enemark, J. H.; Kristofzski, J.; Bruck, M. Molybdenum(VI) and Molybdenum(V) Complexes with N, N^{\prime}-Dimethyl N, N^{\prime} '-bis(2-mercaptophenyl)ethylenediamine. Electrochemical and Electron Paramagnetic Resonance Models for the Molybdenum(VI/V) Centers of the Molybdenum Hydroxylases and Related Enzymes. J. Am. Chem. Soc. 1987, 109, 5655-5665.
(27) (a) Harries, C.; Temme, F. Monomolecular and Trimolecular Glyoxal. Ber. Dtsch. Chem. Ges. 1907, 40, 165-172. (b) Mattioda, G.; Blanc, A. Glyoxal. In Ullman's Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH \& Co.: Weinheim, Germany, 2014; Vol. 2, 651-655.
(28) (a) Sellmann, D.; Ruf, R.; Knoch, F.; Moll, M. Transition Metal Complexes with Sulfur Ligands, CVIII ${ }^{+}$. A Facile Synthesis of the Tertiary Amine-thiolato Ligand ' $\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{Me}_{2}{ }^{\prime 2-}$. Influence of the Aminomethylation on the Coordination Chemistry of Nickel and Ruthenium Complexes with $\left[\mathrm{M}\left(\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{R}_{2}{ }^{\prime}\right)\right.$] Frameworks $\left(\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}\right)$. (' $\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{Me}_{2}{ }^{\prime 2-}=1,2$-Ethanediamino-N,N'-dimethyl-N,N'-bis(2-
benzenethiolato)(2-)). Z. Naturforsch., B: Chem. Sci. 1995, 50, 791801. (b) Corbin, J. L.; Work, D. E. Nitrogen-Sulfur Ligand Systems via Reduction of Schiff's Base—Zinc Complexes Derived from Benzothiazolines. Can. J. Chem. 1974, 52, 1054-1058.
(29) Bharadwaj, P. K.; John, E.; Xie, C.-L.; Zhang, D.; Hendrickson, D. N.; Potenza, J. A.; Schugar, H. J. Crystal Structure and Magnetic Properties of the Cluster Complex $\mathrm{Cu}_{2}{ }_{2} \mathrm{Cu}^{\mathrm{II}}{ }_{3}\left[\left(\mathrm{SCH}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)\right.\right.$ -$\left.\left.\mathrm{NHCH}_{2}-\right)_{2}\right]_{3} \cdot 2 \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, a Mixed-Valence Copper-Mercaptide Species. Inorg. Chem. 1986, 25, 4541-4546.
(30) Hanss, J.; Krüger, H.-J. The First Stable Copper(III) Complex Containing Aliphatic Thiolates as Ligands: Structural and Spectroscopic Evidence for $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{III}}$ Ions in Complexes with SquarePlanar $\mathrm{CuN}_{2} \mathrm{~S}_{2}$ Coordination Environments. Angew. Chem., Int. Ed. 1996, 35, 2827-2830.
(31) Ferrara, S. J.; Wang, B.; Donahue, J. P. An S_{4}-Symmetric MixedValent Decacopper Cage Comprised of $\left[\mathrm{Cu}^{\mathrm{II}}\left(L-\mathrm{S}_{2} \mathrm{~N}_{2}\right)\right]$ Complexes Bridged by $\mathrm{Cu}^{\mathrm{I}}(\mathrm{MeCN})_{\mathrm{n}}(n=1$ or 2$)$ Cations. Dalton Trans. 2016, 45, 2997-3002.
(32) Stibrany, R. T.; Fikar, R.; Brader, M.; Potenza, M. N.; Potenza, J. A.; Schugar, H. J. Charge-Transfer Spectra of Structurally Characterized Mixed-Valence Thiolate-Bridged $\mathrm{Cu}(\mathrm{I}) / \mathrm{Cu}(\mathrm{II})$ Cluster Complexes. Inorg. Chem. 2002, 41, 5203-5215.
(33) Miller, M. L.; Ibrahim, S. A.; Golden, M. L.; Darensbourg, M. Y. Adamantane-like Cluster Complexes of Mixed-Valent Copper-Copper and Nickel-Copper Thiolates. Inorg. Chem. 2003, 42, 2999-3007.

T Recommended by ACS

Structural and Spectroscopic Characterization of Copper(III) Complexes and Subsequent One-Electron Oxidation Reaction and Reactivity Studies

Moumita Bera, Sayantan Paria, et al.
MARCH 27, 2023
INORGANIC CHEMISTRY
READ ©
Cytotoxicity and Antibacterial Potentials of Mixed Ligand $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$ Complexes: A Combined Experimental and Computational Study

Mamaru Bitew Alem, Taye B. Demissie, et al.
MARCH 29, 2023
ACS OMEGA
READ [/
Three-Electron Two-Centered Bond and Single-Electron Transfer Mechanism of Water Splitting via a Copper-Bipyridine Complex

Koteswara Rao Gorantla and Bhabani S. Mallik
JANUARY 03, 2023
THE JOURNAL OF PHYSICAL CHEMISTRY A READ
Cation-/Ligand-Induced Solvent-Assisted Transformations of $\mathrm{Zn}(\mathrm{II})$ and $\mathrm{Cu}($ II $)$ Complexes Featuring Single-Pocket Multidentate Chelating Members

Siya T. Hulushe, Gareth M. Watkins, et al.
JUNE 07, 2023
CRYSTAL GROWTH \& DESIGN
READ [']
Get More Suggestions >

[^0]: Received: March 9, 2023

