Antiviral evaluation of new synthetic bioconjugates based on GA-Hecate: A new class of antivirals targeting different steps of Zika Virus replication

da Silva Sanches, P. R., Sanchez-Velazquez, R., Nogueira Batista, M., Moreira Carneiro, B., Bittar, C., De Lorenzo, G. , Rahal, P., Patel, A. H. and Maffud Cilli, E. (2023) Antiviral evaluation of new synthetic bioconjugates based on GA-Hecate: A new class of antivirals targeting different steps of Zika Virus replication. Molecules, 28(13), 4884. (doi: 10.3390/molecules28134884) (PMID:37446546) (PMCID:PMC10343505)

[img] Text
300836.pdf - Published Version
Available under License Creative Commons Attribution.

8MB

Abstract

Re-emerging arboviruses represent a serious health problem due to their rapid vector-mediated spread, mainly in urban tropical areas. The 2013–2015 Zika virus (ZIKV) outbreak in South and Central America has been associated with cases of microcephaly in newborns and Guillain–Barret syndrome. We previously showed that the conjugate gallic acid—Hecate (GA-FALALKALKKALKKLKKALKKAL-CONH2)—is an efficient inhibitor of the hepatitis C virus. Here, we show that the Hecate peptide is degraded in human blood serum into three major metabolites. These metabolites conjugated with gallic acid were synthesized and their effect on ZIKV replication in cultured cells was evaluated. The GA-metabolite 5 (GA-FALALKALKKALKKL-COOH) was the most efficient in inhibiting two ZIKV strains of African and Asian lineage at the stage of both virus entry (virucidal and protective) and replication (post-entry). We also demonstrate that GA-metabolite 5 does not affect cell growth after 7 days of continuous treatment. Thus, this study identifies a new synthetic antiviral compound targeting different steps of ZIKV replication in vitro and with the potential for broad reactivity against other flaviviruses. Our work highlights a promising strategy for the development of new antivirals based on peptide metabolism and bioconjugation.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:De Lorenzo, Dr Giuditta and Patel, Professor Arvind
Authors: da Silva Sanches, P. R., Sanchez-Velazquez, R., Nogueira Batista, M., Moreira Carneiro, B., Bittar, C., De Lorenzo, G., Rahal, P., Patel, A. H., and Maffud Cilli, E.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Molecules
Publisher:MDPI
ISSN:1420-3049
ISSN (Online):1420-3049
Copyright Holders:Copyright © 2023 The Authors
First Published:First published in Molecules 28(13):4884
Publisher Policy:Reproduced under a Creative Commons licence

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
172630Basis of the host range and tissue tropism for hepatitis C virusArvind PatelMedical Research Council (MRC)MC_UU_12014/2III - Centre for Virus Research