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Abstract: The combination of transportation electrification and clean energy in the shipping industry
has been a hot topic, and related applications of hybrid all-electric ships (AESs) have emerged recently.
However, it has been found that ship efficiency will be negatively impacted by improper component
size and operation strategy. Therefore, the bilevel optimal sizing and operation method for the fuel
cell/battery hybrid AES is proposed in this paper. This method optimizes the sizing of the AES
while considering joint optimal energy management and voyage scheduling. The sizing problem
is formulated at the upper level, and the joint scheduling problem is described at the lower level.
Then, multiple cases are simulated to verify the effectiveness of the proposed method on a passenger
ferry, and the results show that a 5.3% fuel saving and 5.2% total cost reduction can be achieved.
Correspondingly, the ship’s energy efficiency is improved. This approach also can be used in similar
vessels to enhance their overall performance and sustainability.

Keywords: sizing; fuel cell/battery hybrid ship; zero-emission; all-electric ship (AES); energy
management; voyage scheduling

MSC: 90c90

1. Introduction

Over the past ten years, the problem of reducing emissions has been critical in the
shipping industry. Although more than 80% of global trade was undertaken by interna-
tional shipping, about 3% of global greenhouse gas (GHG) emissions were emitted by the
shipping industry [1]. To tackle this issue, in 2018, the International Maritime Organiza-
tion (IMO) proposed an ambitious target to reduce the annual GHG emissions for global
shipping by at least 50% by 2050 compared to 2008 [2,3]. In order to meet this goal, various
new technologies have been proposed and investigated on board [4–6]. Among them, the
all-electric ship (AES), which has superior efficiency and flexibility by distributing the
electricity power uniformly, is considered one of the most promising technologies, and has
been extensively studied [7–11]. In this paper, the zero-emission AES utilizing clean and
renewable energy sources will be investigated.

With the advancements in fuel cell technology and hydrogen production and storage,
there has been a rise in the number of hydrogen-fuel-cell-powered ships [12–15]. For small
ferry boats, zero-emission AESs with hydrogen fuel cells (FCs) and battery integration are
receiving more attention [16]. One of the key benefits of using FCs is that there is no direct
GHG emission during usage, making it a much cleaner alternative to diesel generators
(DGs) [2]. In addition, its noise and vibrations are much lower, and the efficiency of
electricity generation is much higher. However, considering the FC’s characteristics of
low dynamic reaction, batteries are usually integrated on board to cover the sudden load
variation, which also can be used to achieve the balance between power sources and loads
to improve the system’s flexibility further [17,18].

Contrary to the research on the optimal operation of land-based microgrids, which
only considers energy management [19], it is common for scholars to focus on optimizing
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both energy management and voyage scheduling in the field of all-electric shipboard
microgrids to improve the overall energy efficiency [11,20–23]. Since energy management
and voyage scheduling in the AESs are coupled due to the relationship between propulsion
loads and ship speed, Shang et al. [20] formulated a multi-objective optimization model
to achieve the joint generation and voyage scheduling for an AES with the integration of
diesel generators and energy storage systems (ESSs). The results show that joint scheduling
could reduce operational costs and GHG emissions simultaneously compared to fixed
voyage scheduling. Huang et al. [21] regarded thermal storage and load as a virtual ESS,
and proposed a multi-objective optimization model to optimize the voyage scheduling and
power generation of the AES coordinately. The results also show the superiority of the joint
optimization method over the fixed voyage scheduling methods.

ESS sizing based on the joint optimal generation–voyage scheduling has also been in-
vestigated in some studies [24–26]. Considering that a single ESS deployment ship may not
meet the increasingly stringent regulation of GHG emissions in the future, Fang et al. [24]
chose to install the carbon capture system (CCS) and ESS on board, and introduced a two-
stage planning method to determine the optimal capacity. The capacity of CCS and ESS is
determined in the first stage. Then, the joint scheduling is implemented in the second stage
under the given capacity of components. Wen et al. [25] presented a biobjective bilevel
optimization method to optimize voyage routing and ESS sizing coordinately based on
solar power prediction. Zhao et al. [26] proposed a biobjective optimization model to
optimize ESS size and voyage routine, considering the uncertainty of onshore electricity
prices. However, the research objectives in these studies are the diesel/battery hybrid ship,
which differs from the fuel cell/battery hybrid ship.

In the previous studies of fuel cell/battery hybrid AESs, some scholars focused on the
energy management of the shipboard microgrid [17,27–30]. Banaei et al. [17] proposed an
optimal energy management strategy considering different operation constraints of FCs
and batteries. Then, the model predictive control (MPC) method was used to reduce the
load forecast error. Some studies focus on the sizing of FC and battery on board [18,31].
Letafat et al. [18] investigated the energy management and component sizing method for
the fuel cell/battery hybrid AES to minimize the total cost, including the operation cost
and daily investment cost. The result shows that the sizes of FCs and batteries can be
determined effectively while optimal energy management is achieved. Wang et al. [31]
proposed a method to optimize the sizing of diesel engines, batteries, fuel cells, and energy
management of a hybrid offshore support vessel. However, only energy management is
considered in these sizing methods, and the voyage and load profiles are predetermined.
Motivated by this problem, Pan et al. [32] proposed a hybrid energy configuration method
based on the coordinated navigation routing and power generation scheduling model to
optimize the capacity of the battery and FC. Nevertheless, the research objective of the
passenger ferry in this paper usually has a fixed time window different from the cargo ship
studied in [32].

The purpose of this paper is to propose an optimization method to determine the
optimal component size for a fuel cell/battery hybrid ferry while optimizing the generation–
voyage scheduling. This method can be used to offer guidance to the designer during the
early stages of the ship design and building process, as well as to provide information to
ship owners before the voyage. Our main contributions are twofold: (1) an optimal sizing
and operation framework is proposed based on the bilevel optimization model; (2) a bilevel
optimal sizing and operation method for the fuel cell/battery hybrid AES is proposed.
At the upper level, the sizes of the components are optimized to minimize the total cost,
while the energy management and voyage scheduling are optimized jointly at the lower
level to minimize the operation cost, considering the constraints related to the practical
operation of AESs, i.e., the output constraint, the ramp rate constraint, and the spinning
reserve constraint.

The rest of this article is organized as follows. In Section 2, the problem is stated,
and the framework of the proposed method is described. In Section 3, the mathematical
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model of AES and hydrogen fuel cell is established. In Section 4, the problem is formulated,
and the solution algorithm is described. In Section 5, the solution algorithm is detailed.
In Section 6, the numerical experiments are investigated, and their results are analyzed.
Finally, conclusions are presented in Section 7.

2. Problem Statement
2.1. Topology of the AES

The topology of the shipboard microgrid of the AES is illustrated in Figure 1. The
power of the fuel cell and the battery is distributed by the power network to satisfy the
demand of propulsion and service loads on board. The fuel cell supplied by the hydrogen
tank is selected as the primary energy source. The battery is used to balance the power
source and loads, which ensures that the FCs can be operated at their optimal operating
point and improves the flexibility of the ship’s operation. Specifically, when the output
power of the FCs exceeds the load demand, the battery will be charged. Conversely, when
the load demand exceeds the output power of the FCs, the battery will be discharged.
In addition, when the ship anchors at the port, the cold ironing can be connected to the
shipboard microgrid to supply electricity to service loads and charge the battery. The loads
on board involve the propulsion loads of two waterjet engines and service loads of lighting,
radar, and air conditioning.

Figure 1. Topology of fuel cell/battery AES.

2.2. Framework of Proposed Method

The framework of the proposed method is given in Figure 2. The optimization of the
design and operation for a fuel cell/battery hybrid ferry are closely connected. However,
combining these problems into a single optimization challenge can result in an overwhelm-
ing number of variables and constraints that are difficult to solve computationally [33]. The
bilevel optimization model has been proposed by researchers to solve similar problems,
and is reported to exhibit good performance [24,25,32]. It is adopted in this paper to solve
the problem of excessive variables and constraints. Bilevel optimization models are charac-
terized by two optimization problems that are hierarchically related [34]. In such problems,
an optimal solution in the lower-level problem must be associated with each feasible upper-
level solution. In this paper, the upper level is used to determine the optimal sizing of the
FC and battery while minimizing the total cost, which includes the investment cost of the
FC and battery and operation cost at the lower level. The optimal operation of the AES
is investigated at the lower level. With the given capacity of components from the upper
level, the lower level is used to minimize the operation cost by determining the optimal
ship speed and hourly output power of the FC and battery. Then, the joint optimization of
energy management and voyage scheduling is achieved for the AES. Finally, the optimal
results are sent to the upper level to determine the optimal sizes of the components. In
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addition, the optimization problems of the upper and lower level are solved by the particle
swarm optimization (PSO) algorithm and mixed-integer linear programming (MILP) solver.

Figure 2. Framework of proposed optimal sizing method based on bilevel optimization model.

3. Mathematical Modeling
3.1. AES Voyage Model

In order to investigate the optimal voyage scheduling, the AES voyage model is
established, which follows a specific voyage pattern, as illustrated in Figure 3. The ship
departs from port 1 to visit intermediate ports 2 and 3 and returns to port 1. The voyage
for the AES lasts for T time intervals, and the duration of each interval is ∆t. The state of
the ship during the voyage can be divided into three types based on the ship speed: the
ship cruises at full speed in the period Tc; the ship cruises with a lower speed in the period
Tp; the ship berths at the port in the period Tb. The periods Tc, Tp, and Tb are denoted as
full-speed cruising, partial-speed cruising, and berthing periods, respectively. It is noted
that there are three different ship speed constraints according to the three different periods.
The voyage distance at the t-th time interval can be updated using Equation (1). The
propulsion load is calculated according to the exponential relationship between propulsion
load and cruising speed, as shown in Equation (2) [20,35].

Distt =

{
Distt−1 + vt∆t t ∈ T\{1}
vt∆t t = 1

(1)

Ppl
t = c1 · (vt)

c2 (2)

where Distt is the voyage distance at the t-th time interval; vt is the ship cruising speed
in the t-th time interval; ∆t is the voyage time at the t-th time interval; Ppl

t is the power
demand of propulsion load; c1 and c2 are the proportional and exponential coefficients of
the propulsion–speed relationship, respectively; t is the t-th time interval; T is the number
of time intervals.

3.2. Hydrogen Fuel Cell Operation Model

In this section, the relationship between the output power of the FC and the consumed
mass of hydrogen is analyzed. During the voyage, the hydrogen stored in the tank will be
consumed by the FC to output electric power. In this paper, a coefficient is used to convert
the mass of hydrogen into the FC’s generated power. Moreover, the FC’s generated power
is not equal to the FC’s output power, as there is conversion efficiency between them. The
efficiency curve is illustrated in Figure 4, where the efficiency of the FC changes with the
variation in its output power. As a result, a nonlinear relationship exists between the FC’s
generated and output power.
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Figure 3. Voyage pattern of an all-electric ship (AES).

Figure 4. Efficiency curve of FC.

In this paper, a linear fitting function is employed to describe this relationship, as
shown in Equation (3) [27]. Ultimately, with the given output power of the FC, the con-
sumed mass of hydrogen can be calculated.

MH2
t = KE−mPFC,gen

t = KE−m
(

αFCPFC
t + oFC

t βFC
)

, ∀t ∈ T (3)

where MH2
t is the consumed mass of hydrogen at the t-th time interval; PFC,gen

t and PFC
t are

the generated power and output power of fuel cell, respectively; KE−m is the coefficient
used to convert the generated power of the fuel cell into the mass of hydrogen; αFC and βFC

are the fitting coefficients of the relationship between PFC,gen
t and PFC

t ; oFC
t is the on/off

state at the t-th time interval, oFC
t ∈ {0, 1}, ∀t ∈ T.

4. Problem Formulation
4.1. Upper Level

In this section, the bilevel optimal sizing and operation model is established for the
fuel cell/battery hybrid AES.

4.1.1. Objective Function

The objective of the upper level is to minimize the total cost of the fuel cell/battery
hybrid AES by determining the optimal sizing of the FC and battery, which is given
as follows:

min C = CINV + COP (4)
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where C is the total cost of a single voyage, which includes the investment cost CINV and
operation cost COP. In this paper, the investments of the FC and battery are unified into a
single voyage, which can be calculated by Equations (5) and (11), respectively.

CINV = CFC
INV + Cbat

INV =
PFC

maxλFC
INV TFC

op

TFC
op,li f etime

+

(
λbat,E

INV Ebat
max + λbat,P

INV Pbat
max

)
Nbat,cycle

Nbat,cycle
li f etime

(5)

where CFC
INV and Cbat

INV are the total investment cost of the fuel cell and battery, respec-
tively; λFC

INV , λbat,E
INV , and λbat,P

INV are the price of the fuel cell power ($/kW), battery capacity
($/kWh), and battery power ($/kW), respectively; TFC

op and TFC
op,li f etime are the operation

times of the fuel cell for a single voyage and its lifetime, respectively; Nbat,cycle and Nbat,cycle
li f etime

are the battery charging/discharging cycle numbers for a single voyage and its lifetime,
respectively. TFC

op and Nbat,cycle can be calculated using Equations (6) and (7).

TFC
op = ∑

t∈T
oFC

t (6)

Nbat,cycle = min

(
∑
t∈T

(
Xch

t

)
, ∑

t∈T

(
1− Xch

t

))
(7)

where Xch
t is battery charging/discharging state at the t-th time interval, Xch

t ∈ {0, 1}, ∀t ∈ T.

4.1.2. Constraints

The constraints in the upper level are mainly related to the capacity, which is deter-
mined by the limited onboard space, as shown in Equations (8)–(10).

0 ≤ Pbat
max ≤ Pbat

sizing (8)

0 ≤ Ebat
max ≤ Ebat

sizing (9)

0 ≤ PFC
max ≤ PFC

sizing (10)

where Pbat
max and Ebat

max are the maximum power and capacity of the battery, respectively;
PFC

max is the maximum power of the fuel cell; Pbat
sizing and Ebat

sizing are the maximum sizing

power and capacity of the battery, respectively; PFC
sizing is the maximum sizing power of the

fuel cell.

4.2. Lower Level
4.2.1. Objective Function

The objective function of the lower level is to minimize the operation cost, COP:

min COP = CH2 + CCI = ∑
t∈T

(
λH2 MH2

t + λCI
t PCI

t

)
(11)

where CH2 and CCI are the operation costs of hydrogen and cold ironing, respectively; λH2

is the hydrogen price ($/kg); λCI
t is the cold ironing price at the t-th time interval ($/kWh);

MH2
t is consumed mass of hydrogen at the t-th time interval (kg); PCI

t is the output power
of cold ironing at the t-th time interval.
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4.2.2. Constraints

1. Power Balance Constraint

In the AES, the output powers of the FC, battery, and cold ironing need to meet the
demand of the propulsion and service loads at any time interval, as shown in Equation (12)

ηT

(
PFC

t + Pbat,dc
t + PCI

t

)
= Pser

t + Ppl
t + Pbat,ch

t , ∀t ∈ T (12)

where ηT is the transmission efficiency of shipboard microgrid; PFC
t is the fuel cell output

power at the t-th time interval; Pbat,ch and Pbat,dc
t are the battery charging power and

discharging power, respectively, at the t-th time interval; Ppl
t and Pser

t are the power
demands of propulsion load and service load at the t-th time interval, respectively.

2. Fuel Cell Output Power Constraint

The output power of the FC is determined by the on/off states and the loading factor

PFC
t = oFC

t lFC
t PFC

max, ∀t ∈ T (13)

where lFC
t is the loading factor of the FC at the t-th time interval. In order to avoid the over-

loading of the FC and to prolong its life, the loading factor is limited using Equation (14).

lFC
min ≤ lFC

t ≤ lFC
max, ∀t ∈ T (14)

where lFC
min and lFC

max are the minimum and maximum loading factors of the FC, respectively.

3. Fuel Cell Ramp Rate Constraint

Considering the characteristics of the low dynamic reaction of the FC, the variation in
the FCs’ output power is limited, as illustrated by Equation (15).

rFC
minPFC

max ≤ PFC
t − PFC

t−1 ≤ rFC
maxPFC

max, ∀t ∈ T (15)

where rFC
min and rFC

max are the minimum and maximum ramp rates of the FC, respectively.

4. H2 Tank Capacity Constraint

The hydrogen tank will be fully charged in the departure port and will not be charged
during the voyage. The total mass of the hydrogen consumed during the voyage cannot
surpass the maximum allowable mass of the hydrogen tank, as shown in Equation (16).

0 ≤ ∑
t∈T

MH2
t ≤ (1− ηtank)MH2

max (16)

where MH2
max is the maximum hydrogen tank capacity; ηtank is the hydrogen tank mass

reserve coefficient.

5. Battery Charging and Discharging Power Constraint

The charging and discharging powers of the battery are limited to its corresponding
lower and upper bound

0 ≤ Pbat,ch
t ≤ Xch

t Pbat
t,max, ∀t ∈ T (17)

0 ≤ Pbat,dc
t ≤

(
1− Xch

t

)
Pbat

t,max, ∀t ∈ T (18)

6. Battery Capacity Constraint

The battery capacity at any time intervals is obtained by calculating Equations (19) and (20)

Ebat
t = Ebat

t−1 + ηchPbat,ch
t − Pbat,dc

t
ηdc

, ∀t\{1} (19)

Ebat
t = Ebat · SOC0 + ηchPbat,ch

t − Pbat,dc
t
ηdc

, t = 1 (20)
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where Ebat
t is the stored energy of the battery at the t-th time interval; ηch and ηdc are

the battery charging and discharging efficiencies of the battery at the t-th time interval,
respectively; SOC0 is the initial state of charge (SOC) of the battery before the voyage,
SOC0 = 0.5.

7. SOC Constraint

Equation (21) is used to limit the SOC of the battery within a reasonable range.

(SOCmax − DoDmax) ≤ SOCt =
Ebat

t
Ebat

max
≤ SOCmax, ∀t ∈ T (21)

where SOCmax is the maximum allowable SOC; DoDmax is the maximum allowable depth
of discharge (DoD).

At the end of the voyage, the capacity of the battery should be no less than its initial capacity:

SOC0 ≤ SOCt ≤
(

1 + δSOC
)

SOC0, t = T (22)

where δSOC is the maximum allowable SOC mismatch.

8. System Reserve Constraint

In order to cope with the sudden changes in the load or outage of the FC, the reserve
constraint is considered in this paper, as described in Equations (23)–(25).

RFC
t = PFC

max − PFC
t , ∀t ∈ T (23)

Rbat
t = Xch

t Pbat
max +

(
1− Xch

t

)(
Pbat

max − Pbat
t

)
, ∀t ∈ T (24)

RFC
t + Rbat

t ≥ ηRPFC
t , ∀t ∈ T (25)

where RFC
t and Rbat

t are the power reserves of the FC and battery at the t-th time interval,
respectively; ηR is the power reserve coefficient.

9. Cold Ironing Power Constraint

The cold ironing can be used to meet the power demand of the loads on board and to
charge the battery when the ship arrives at the port, as shown in Equation (26).{

0 ≤ PCI
t ≤ PCI

max, t ∈ Tb

PCI
t = 0, otherwise

(26)

where PCI
max is the maximum power of cold ironing.

10. AES sailing Speed Constraint

The AES sailing speed constraints during the full-speed period Tc, the partial-speed
period Tp, and the berthing period Tb are given in Equation (27).

(1− δv
max) · vn ≤ vt ≤ (1 + δv

max) · vn, ∀t ∈ Tc

ηp(1− δv
max) · vn ≤ vt ≤ ηp(1 + δv

max) · vn, ∀t ∈ Tp

vt = 0, ∀t ∈ Tb

(27)

where vn is the nominal sailing speed; ηp is the partial ratio; δv
max is the maximum allowable

sailing speed mismatch.

11. Voyage Constraint

The ferry investigated in this paper should arrive at each port punctually. Of course,
a small quantity of mismatch with time is allowed. Thus, when the ship arrives at the



Mathematics 2023, 11, 2728 9 of 16

intermediate and terminal port, the voyage constraints in Equations (28) and (29) should
be satisfied: (

1− δD
max

)
Distn

t ≤ Distt ≤
(

1 + δD
max

)
Distn

t , ∀t ∈ Tb\{T} (28)

Distn
T ≤ DistT ≤

(
1 + δD

max

)
Distn

T (29)

where δD
max is the maximum allowable voyage distance inaccuracy; Distn

t is the nominal
voyage distance at the t-th time interval.

5. Solution Algorithm

The flow chart of the proposed method is shown in Figure 5. As illustrated in Figure 5,
the PSO algorithm is used in the upper level to determine the fuel cell and battery size, and
the MILP is used in the lower level to determine the optimal ship speed and hourly output
of the FC and battery. PSO, developed by Kennedy and Eberhart in 1995 [36,37], is a heuris-
tic optimization technique that is easy to implement compared with other optimization
algorithms, and has been widely used in many areas [38–40]. The optimization model in the
lower level is a mixed-integer nonlinear programming (MINLP) model due to the nonlinear
function of Equation (2). In this paper, the piecewise linear model used in [17] is adopted
to turn the nonlinear function into a linear function. Correspondingly, the MINLP model
is transformed into a MILP model. MILP has many advantages over other optimization
techniques, such as its ability to achieve globally optimal solutions based on the convexity
of linear problems. Additionally, MILP can be solved very quickly and effectively by
commercial solvers [33], especially when dealing with small-scale optimization problems.
The solution algorithm is detailed as follows.

Step 1: Initialization. The initialization of PSO is implemented by randomly generating
M particles with the position with N dimensions and velocity.

Step 2: Update the position and velocity of each particle. The position and velocity of
each particle are updated using Equation (30).{

Vk+1
i = wVk

i + c1r1

(
pk

best,i − Xk
i

)
+ c2r2

(
gk

best − Xk
i

)
Xk+1

i = Xk
i + Vk+1

i

(30)

where Xk
i and Vk

i are the position and velocity of the i-th particle in the k-th iteration,

Xk
i =

[
xk

i1, xk
i2, . . . , xk

iN

]
; i is the i-th particle; k is the number of current iteration; w is the

inertia weight; c1 and c2 are two positive constants; r1 and r2 are two random numbers
within range [0,1]; pk

best,i is the previous best particle position of the i-th particle in the k-th

iteration, pk
best,i =

[
xpbest

i1 , xpbest
i2 , . . . , xpbest

iN

]
; gk

best is the global best particle position in the k-th

iteration, gk
best =

[
xgbest

1 , xgbest
2 , . . . , xgbest

N

]
.

In order to enhance the performance of the algorithm, a dynamic update method of
inertia weight is adopted, as shown in Equation (31). This approach ensures the strong
global search ability of the algorithm at the beginning of the iteration with a larger inertia
weight, and the accurate local search ability in later iterations with a smaller inertia weight.

w = wmax −
(wmax − wmin)

kmax
· k (31)

where wmax and wmin are the maximum and minimum inertia weights, respectively; kmax
is the maximum iteration number.

Step 3: Fitness calculation. Based on the given capacity of the FC and battery delivered
from the upper level, the model in the lower level is optimized to minimize the operation
cost of the AES. Once this optimization of the lower level is complete, the fitness of the
upper level can be calculated using Equation (5) based on its corresponding fitness of the
lower level.
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Step 4: Update the global best particle gk
best and current best particle pk

best,i. After the
fitness of all particles is calculated, the global and present best particle position is updated.

Step 5: Repeat Steps 2–5 until the stopping criterion of the algorithm is satisfied.

Figure 5. Flow chart of the proposed method.

6. Case Study
6.1. System Configuration

In this paper, a fuel cell/battery passenger ferry is applied in the case study. The
navigation route is shown in Figure 6. The system parameters for the case study are
detailed in Table 1. The service loads during the voyage are demonstrated in Figure 7.
These parameters were obtained from refs. [17,18].

Figure 6. Navigation route for case study.

Figure 7. Service load profile.
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Table 1. System parameters for case study.

Item Parameter of Upper level

λFC
INV = 40 $/kW, λbat,E

INV = 17.8 $/kWh, λbat,P
INV = 17.8 $/kW

TFC
op,li f etime = 40,000 h, Nbat,cycle

li f etime = 1460 times
Pbat

sizing = 300 kW, Ebat
sizing = 800 kWh, PFC

sizing = 800 kW

Voyage
∆T =1 h, T = 24 h

vn = 11 knots, c1 = 0.346, c2 = 3, ηP = 0.7, δv
max = 18%, δD

max = 1%
Tc = {2, . . ., 6, 10, . . ., 14, 18, . . ., 22}, Tp = {1, 7, 9, 15, 17, 23}, Tb = {8, 16, 24}

Fuel cell and
Hydrogen tank

αFC = 1.776, βFC = −41.44, MH2
max = 450 kg, KE−m = 0.03 kg/kWh, λH2 = 5 $/kg

lFC
max = 0.9, lFC

min = 0.1,rFC
max = 50%, rFC

min = −50%, ηR = 15%, ηtank = 10%

Battery SOCmax = 0.9, DoDmax = 0.8, ηch = 85%, ηdc = 100%, δSOC = 1%, SOC0 = 0.5

Cold ironing PCI
max = 150 kW, λCI

t =


0.32$/kWh t ∈ {2, 3, 4, 13, 14}
0.16$/kWh t ∈ {1, 5, . . . , 12, 15, 16}
0.07$/kWh t ∈ {17, . . . , 24}

6.2. Optimization Results

In this section, three cases are designed to verify the effectiveness of the proposed
method, and their results are compared with each other.

Case 1: Optimal result analysis under optimal energy management but without
voyage scheduling.

Case 2: Optimal result analysis by proposed method considering FC only.
Case 3: Optimal result analysis by proposed method considering FC and battery.
The results of the optimal sizing scheme, investment cost, and operation cost for each

case are listed in Table 2. The ship speed at each time interval for different cases is shown in
Figure 8. The results of generation scheduling and the ship electric load for Cases 1–3 are
shown in Figures 9–11, respectively.

Table 2. Optimization results summary.

Item Case 1 Case 2 Case 3

Maximum power of FC PFC
max (kW) 591 683 501

Maximum capacity of battery Ebat
max (kWh) 243 - 243

Maximum power of battery Pbat
max (kW) 161 - 152

Investment cost of FC($) 23,640 27,320 20,040
Investment cost of battery ($) 7191.2 - 7031

Total investment cost ($) 30,831.2 27,320 27,071
Daily investment cost of FC ($) 13.59 14.34 11.52

Daily investment cost of battery ($) 14.78 - 14.45
Total daily investment cost ($) 28.37 14.34 25.97

Daily consumed mass of H2 (L) 455.01 446.11 430.90
Daily operation cost of H2 ($) 2275.04 2230.57 2154.50

Daily operation cost of cold ironing ($) 58.50 20.97 58.47
Total daily operation cost ($) 2333.54 2251.54 2212.98

Total daily cost ($) 2361.91 2265.88 2238.95

Case 1: In this case, energy management is introduced to achieve optimal energy
dispatch, and voyage scheduling is not considered, which means that the ship is assumed
to sail at the nominal speed at each time interval. By observing Table 2, the planning
FC capacity is 591 kW, and the planning battery capacity and power are 243 kWh and
161 kW. The investment costs for the FC and battery are $23,640 and $7191.2. Among the
three cases, Case 1 has the highest total investment cost of $30,831.2 and total daily cost of
$2361.91, primarily due to its high ship speed in the full-speed cruising period, as shown
in Figure 8, which will require the huge installed capacity of the components and high
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fuel consumption. In Figure 9, the power of the FC and the battery is utilized to meet the
demands of shiploads in the full- and partial-speed cruising periods. During the berthing
period, the power of the FC and cold ironing is used to meet the demands of shiploads and
charge the battery.

Figure 8. Ship speed at each time interval for different cases.

Figure 9. Generation scheduling and the ship electric load in Case 1.

Case 2: The FC is adopted as the sole energy source in this case. In Table 2, despite
having the largest FC capacity of 683 kW among the three cases, Case 2 has the lowest daily
investment cost of $14.34. The reason for this is that the battery’s daily investment cost is
zero, which makes a considerable difference. In Figure 10, the demands of shiploads during
the full-speed and partial-speed cruising periods are satisfied by the power of FC. This
leads to the higher consumed mass of hydrogen and daily operational cost of hydrogen
compared to Case 3. Therefore, ESS integration is essential and unignorable. Since the price
of cold ironing is lower than that of hydrogen, the power of cold ironing is used to meet
the demands of shiploads, and the FC is turned off during the berthing period.

Figure 10. Generation scheduling and the ship electric load in Case 2.

Case 3: The proposed method is used in this case to investigate the impact of ESS
integration and joint optimal energy management and voyage scheduling. In Table 2, Case 3
has the lowest planning FC power of 501 kW and the lowest planning battery capacity and
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power of 243 kWh and 152 kW. Correspondingly, the total investment cost of Case 3 also is
the lowest, with the investment cost of $20,040 for the FC and $7031 for the battery. Under
optimal voyage scheduling, the ship speed is reduced in the partial-speed cruising period
and increased in the full-speed cruising period, as shown in Figure 8. This led to a decrease
in shiploads of Case 1 in the full-speed cruising period and an increase in the partial-speed
cruising period. On this basis, the power demand in Figure 11 is decreased in the full-speed
cruising period and increased in the partial-speed cruising period, resulting in decreased
total fuel consumption. In Table 2, the daily consumed mass of H2 decreases from 455.01 L
to 430.90 L, a reduction of 5.3%. Then, the daily operation cost of H2 is reduced from
$2333.54 in Case 1 to $2212.98 in Case 3, while the cost of cold ironing remains similar for
both cases. So, the total daily cost is reduced from $2361.91 in Case 1 to $2238.95 in Case 3,
a reduction of 5.2%. In addition, although the ship speed at each time interval of Case 2 and
Case 3 are similar, the ESS integration in Case 3 allows for a portion of the fuel consumption
to be shared by the battery, which is charged at a lower price in the port. Thus, the daily
operation cost of Case 1 is lower than that of Case 2. Ultimately, Case 3 is demonstrated to
be the most economical sizing scheme, with the lowest total investment cost and total daily
cost among the three cases.

Figure 11. Generation scheduling and the ship electric load in Case 3.

The SOC profiles of the three cases are illustrated in Figure 12. In Figure 12, the battery
in Cases 1 and 3 is mainly discharged in the cruising period and charged in the berthing
period. However, the maximum depths of discharge (DoDs) during the voyage of Case 1
and Case 3 are 0.79 and 0.66, respectively. The smaller maximum DoD in Case 3 is more
beneficial to the health of the battery. The reason behind this is that the heavier load in
Case 1 requires a larger DoD to maintain a balance between the energy source and loads.
Thus, the proposed optimal sizing method could help improve the performance of ESS and
the overall system efficiency.

Figure 12. SOC profile for each case.

In order to illustrate the computation efficiency of the algorithm of the improved PSO
used in this paper, its result is compared to that of the proposed method solved by other
famous metaheuristic algorithms, such as the genetic algorithm (GA) [41], Archimedes
optimization algorithm (AOA) [42], and the original PSO. These algorithms have been set
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with the same population size and iteration number and tested under Intel Core i7 and
GPU 3.69 GHz. The iteration figures of these algorithms are described in Figure 13. As can
be seen from the figure, the improved PSO algorithm converges at a higher descending
speed and has a superior optimal fitness value compared to other algorithms. Therefore,
the computation efficiency of adopting the improved PSO to solve the proposed method
is confirmed.

Figure 13. Iteration figure.

7. Conclusions

In this paper, the method to optimize the size of ferry components while considering
joint optimal energy management and voyage scheduling is explored. First, the topology
of the shipboard microgrid is analyzed, and a bilevel optimization framework is proposed
to optimize the components’ size and operation for the fuel cell/battery AES. Second, the
mathematical model of AES voyage and hydrogen fuel cell operation is established. Third,
considering the multiple operational and technical constraints, the bilevel optimal sizing
and operation method is proposed. The upper level optimizes the FC and battery size by
minimizing the total cost comprised of the investment and operation costs, while the lower
level is used to optimize the generation and voyage scheduling of AES. Then, the PSO
algorithm and MILP solver are applied to solve the upper- and lower-level optimization
model, respectively. Finally, a case study is performed on a passenger ferry, demonstrating
the proposed method’s validity and superiority. The results show that the proposed
method can reduce the total consumed mass of hydrogen by 5.3% and total daily cost
by 5.2% compared with the AES using fixed voyage scheduling. The necessity of ESS
integration on board is also proved in this paper.

In our future study, the MPC strategy will be introduced to improve the robustness of
the model, and the environment parameters of the wave, wind, shallow water, and current
will be considered in the ship voyage to improve the precision of the study. In addition,
the famous simulation software entitled the Hybrid Optimization Model for Multiple
Energy Resources (HOMER) will also be explored on the components sizing problem of
the hybrid-powered ship.
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