
Probabilistic Engineering Mechanics 73 (2023) 103481

A
H
a

b

c

A

K
A
A
M
A
S

1

m
r
a
i
p
n

s
u
s
c
a
a
w
s
s
h
o
D
s

h
R
A
0
(

Contents lists available at ScienceDirect

Probabilistic Engineering Mechanics

journal homepage: www.elsevier.com/locate/probengmech

copula-based quantified airworthiness modelling for civil aircraft engines
ang Zhou a,b,∗, Ajith Kumar Parlikad b, Alexandra Brintrup b, Andrew Harrison c

James Watt School of Engineering, University of Glasgow, UK
Institute for Manufacturing, Department of Engineering, University of Cambridge, UK
Rolls-Royce plc, Derby, UK

R T I C L E I N F O

eywords:
irworthiness
erospace engineering
echanical system reliability
viation industry
tatistical analysis

A B S T R A C T

The aircraft engine serves as the core system of an aircraft and operates under extreme conditions, requiring
high reliability and absolute safety. The design, manufacturing, and after-sales services of aircraft engines
are complex processes. To ensure safety and performance, maintenance checks are performed periodically
and hierarchically throughout the engine’s life-cycle. Among these checks, shop visit (SV) heavy maintenance
checks play a crucial role but are also costly, especially when they occur unexpectedly and unplanned. Analysis
of the maintenance logbook, recording aviation operations, reveals a significant occurrence of unplanned SVs,
which may be attributed to the existing maintenance policy based on a single time-definition. To address this
issue, this paper seeks to establish a novel approach to quantifying airworthiness through copula modelling,
which combines two time-definitions: the flying hour (FH) and the flying cycle (FC). This approach is unique in
the aviation industry. By employing the Gumbel copula with the generalized extreme value (GEV) distribution
as the marginal distribution, and utilizing non-parametric association measurement parameter estimation, the
quantified airworthiness of civil aircraft engine fleets across multiple product lines can be effectively modeled.
This research provides valuable insights into optimizing maintenance policies and enhancing the reliability
and safety of aircraft engines.
. Introduction

The study of reliability on complex engineering systems is funda-
ental to evaluating the general performance of system design. Highly

eliable systems are particularly essential in key industries, including
erospace, infrastructure, energy, defense, etc. The study of reliability
s not only valuable for maintaining the existing systems in peak
erformance but also in providing insights into the improvement of
ext-generation system design iterations.

Traditionally, the reliability study of engineering systems is the
tudy of the probability that the system performs its designed purpose
nder stated conditions. The modelling of the system’s reliability is the
tatistical analysis of both the system’s available life and the system’s
onsumed life, where the Weibull analysis is a classic probabilistic
pproach [1,2]. The available life of an engineering system is studied
s a foundation for health monitoring across engineering disciplines,
here the definition of life differs accordingly. For example, there are

tudies focused on natural time measurement including life in years for
tructural life estimation [3], in days for aircraft cooling systems [4], in
ours and seconds for complex systems [5], as well as studies focusing
n the count of cycles for system usages including studies on railway
-cables [6], and lithium-ion batteries [7]. However, when studying

ystems with multiple failure modes, the definition of life should not

∗ Corresponding author at: James Watt School of Engineering, University of Glasgow, UK.
E-mail address: Hang.Zhou@glasgow.ac.uk (H. Zhou).

isolate the individual failure modes but should consider integrated life
definitions enveloping all failure modes.

This is especially practical when statistically modelling the reli-
ability of a system, such as the civil aircraft engine. The engine is
highly complex in design, manufacturing, and maintenance, and it
operates under extreme and critical conditions while demanding high
reliability and absolute safety. Although failures may occur in any of
the components within the sub-systems, it is crucial to ensure the con-
sequences are understood and controlled. A typical civil aircraft engine
consists of eight main sub-systems (modules): fan/low-pressure com-
pressor (LPC), intermediate pressure compressor (IPC), high-pressure
compressor (HPC), combustor (CBT), high-pressure turbine (HPT), in-
termediate pressure turbine (IPT), low-pressure turbine (LPT), and
external gearbox [8], as shown in Fig. 1. The performance capability of
the engine is determined by the combined performance of all modules
and components. For a three-spool aircraft engine design, the combi-
nation of ‘IPC+HPC+CBT+HPT+IPT’ is referred to as the core sections
or the hot sections. These sections endure the most critical conditions
during aircraft operations. The engine’s performance is monitored using
exhaust gas temperature (EGT) during operations. The periodical shop
visit (SV) involves heavy maintenance of the core sections and is based
on the life limit parts (LLP) in those sections, which are measured
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Fig. 1. Civil aircraft engine module overview.1

using flying cycles (FC). In addition to FC, the life of aircraft engines
for business operations by airlines is also measured in flying hours
(FH), primarily for performance restoration purposes to meet time-on-
wing (TOW) targets. Each SV is highly costly, especially unplanned
SVs. Analyzing real-life SV data reveals that the number of unplanned
SVs exceeds expectations. This paper identifies the shortcomings of the
current periodical maintenance check policy in the aviation industry,
which is primarily based on the FC of the LLPs. It is proposed that
maintenance checks should be planned based on the integrated reli-
ability evaluations of both FH and FC. Considering that civil aircraft
engines experience multiple deterioration mechanisms throughout their
life-cycle, core components under cyclic loading suffer from fatigue-
induced crack propagation. This phenomenon has been examined in
studies on various diesel engines [9], and in the combustor sub-system
of aircraft engines [10]. The cyclic loading-related failure mechanism
determines the system’s life in FC. Meanwhile, solid-material compo-
nents in aircraft engines constantly work under extreme heat and are
exposed to high-intensity stress, making creep an inevitable failure
mechanism that controls the system’s life in FH. Creep-related deteri-
oration has been investigated in components like low-pressure turbine
blade failures [11] and turbine disk failures, particularly in the widely
used nickel-based superalloy material for such components [12]. The
accumulation of dirt and dust on the tips of compressor and turbine
blades also significantly influences the EGT, contributing to a loss of
life in FH [8].

With reliability and safety being top priorities in aviation, this topic
has attracted continuous studies and efforts for improvement from
both academia and the industry. Modern aircraft are equipped with
multiple sensors embedded into the systems to perform continuous
health monitoring. To maximize monitoring effectiveness, methods
such as the sensor performance metric are employed in aircraft fuel
systems [13]. White and Karimoddini proposed the use of discrete
event systems (DES) for detecting, isolating, and identifying fault oc-
currences during aircraft operations [14]. Health monitoring of aircraft
is also important and valuable for fleet maintenance planning, and fleet
simulations based on FCs of individual aircraft are conducted using
agent-based modelling [15]. Much of the research on aircraft engine
monitoring using sensor data focuses on the estimation of remaining
useful life (RUL) [16,17]. These studies often utilize the popular C-
MAPSS simulation dataset. However, these datasets simulate fewer than
five failure modes, only consider failure modes related to FC, and
do not fully reflect the complexity of real-life operations. Apart from
the simulated datasets, there are also studies focusing on key com-
ponents within the engine, such as aircraft engine bearings, based on

1 © Copyright Rolls-Royce plc 2021. All rights reserved.
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FC usage [18]. Furthermore, one study focuses on predicting the long-
term deterioration of a two-shaft commercial turbofan aircraft engine
using real-life operational data. The study employs the Distance Based
Sequential Aggregation with Gaussian Mixture Model (DBSA-GMM)
approach, and the dataset includes 120 intact engine degradation cases
with life consumption measured in FC [19]. Currently, only a few
studies have been conducted on the long-term deterioration of aircraft
engine reliability at the system level, even with a single time-definition.

A main reason for the shortfall in reliability studies in aviation and
broader aerospace engineering is the significant lack of available real-
life operational data, especially complete life-cycle maintenance data
on large and comprehensive aircraft fleets. Recently, a few pioneering
works in dual-time-definition reliability studies have emerged [20,21],
providing valuable quantified data and modelling initiatives on single
aircraft engine design products. This paper aims to extend these studies
to further incorporate the complexity of mixed fleets by proposing dual-
time-definition reliability modelling across multiple civil aircraft engine
design product lines. This will enable the most comprehensive long-
term reliability evaluation for engine fleets. In this study, the copula
approach is considered due to its popularity in the combined evaluation
of multiple variables. Its application in engineering studies has focused
on identifying correlations among variables, including research on
random motion errors in time-dependent motion and loading of a mech-
anism [22], analysis for multi-state parallel systems [23], especially
with the consideration of cold standby [24], and estimation of slope
failure probabilities based on correlations among slope height, slope
angle, and shear strength parameters [25]. Regarding bivariate copula
modelling performance, Tang et al. [26] further discussed the associa-
tion of defined performance functions for reliability analysis when the
marginal distribution and association parameters are known and fixed.
However, none of the current copula studies consider the correlation of
distinctive life definitions, limiting the current reliability modelling to
a single dimension in time. Considering that this research extends the
conventional reliability modelling to a higher dimension and that this
high-dimensional modelling is unique to aviation systems, the proposed
theories provide a comprehensive quantified airworthiness evaluation
encompassing all potential failure modes. The quantified airworthiness
modelling has the potential to redefine aviation operation strategies in
both business and engineering operations.

This paper aims to propose novel approaches and make the follow-
ing contributions:

(1) This research is based on the study of real-life operational data
from three design models of civil aircraft engines with six dif-
ferent thrust ratings, which hold the highest market share. The
study focuses on developing a quantified airworthiness model for
these complex aviation systems, considering a variety of failure
mechanisms in different modules and components that are the
root causes for system removals and overhauls during SV heavy
maintenance checks.

(2) Aircraft engines are designed to power aircraft, and although
different design models share similarities in design and critical
parts, they also differ in certain aspects. For example, engines
designed for long-haul, medium-haul, and short-haul flights have
different performance requirements. The engines can be cat-
egorized into system families, each containing several design
sub-categories differentiated by thrust ratings. In this study, we
consider that there should be statistical similarities in the quan-
tified airworthiness for engine sub-categories within the same
system family. These statistical similarities should be reflected in
the marginal distributions of the quantified airworthiness model.

(3) The quantified airworthiness is fundamentally modeled using the
copula approach. One challenge in developing a well-performed
copula model lies in estimating the correlations between
marginal distributions. Conventional parametric estimation of
the association measurement parameter is not accurate when
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Fig. 2. Procedures of the quantified airworthiness modelling.

the marginal distributions do not exhibit obvious correlations.
In this paper, we propose a non-parametric estimation of the
association measurement parameter for copula modelling based
on Monte Carlo simulation. This approach aims to improve the
model accuracy and mitigate overfitting issues associated with
such models.

This paper is structured as follows: In Section 2, the methodology
f the main approaches and algorithms is presented and explained in
etail. Section 3 provides the results and validation of the proposed
ethodology using modified real maintenance record data for fleets of

ircraft engines. In Section 4, we further discuss the potential improve-
ents of the proposed methodology and introduce our ongoing work,

ocusing on the development of the quantified airworthiness model as
he foundation for building blocks.

. Methodology

The determination of an applicable quantified airworthiness model
equires several steps of optimization, particularly when the industry
ategorizes the system line into system families at a high level and
ach system family is further divided into system models for market
egments and performance variety demands. For the aircraft engines
tudied in this research, a general design of the system represents a
ystem family, such as the Trent 800, the Trent 1000, and the Trent
WB systems from Rolls Royce. Within each system family, there are
ifferent models with varying thrust levels. For example, the Trent
000-E has a take-off thrust of 62264 lbf, the Trent 1000-G has 72066
bf, and the Trent 1000-R has 81028 lbf. While these models share most
f the same system design, the differences in thrust variations result in
istinct operational conditions, failure patterns, and system reliability
stimations. Considering this background, a flowchart illustrating the
rocedures for the development of a quantified airworthiness model is
resented in Fig. 2.

.1. Data processing & structure

Civil aircraft engines, as a specific type of complex aviation sys-
em, typically undergo thorough maintenance during shop visits before
3

entering regular operations, thereby fully restoring their operational
lifespan. The typical maintenance logbook records include the en-
gines’ operational history prior to maintenance, measured in dual-time-
definitions of flying hours (FH) and flying cycles (FC). All maintenance
activities are performed as a result of detecting and identifying at least
one failure, categorized at a severity level requiring heavy maintenance
checks. System 𝑖 has a run-to-failure time record of (𝑡1𝑖, 𝑡2𝑖), where 𝑡1𝑖
(time-definition 1 in FH) and 𝑡2𝑖 (time-definition 2 in FC) represent the
system’s safe operational life before failure. The maintenance record
comprises a population of 𝑛 systems.

2.1.1. Data normalization
Both time-definition 1 and time-definition 2 measurements are

rational numbers. To ensure equal weighting for both measurements
in estimating the system’s life, a normalization step is performed. For
the time-definition 1 measurement with the set 𝐓𝟏 = (𝑡11, 𝑡12,… , 𝑡1𝑛) and
he time-definition 2 measurements with the set 𝐓𝟐 = (𝑡21, 𝑡22,… , 𝑡2𝑛),
he upper boundary of time-definition 1 is determined by finding the
argest sample within the set, denoted as 𝑡1upper = max{𝑡11, 𝑡12,… , 𝑡1𝑛}.
imilarly, the upper boundary of time-definition 2 is obtained by
dentifying the largest sample within its set, given by 𝑡2upper =
ax{𝑡21, 𝑡22,… , 𝑡2𝑛}. These upper boundaries represent the maximum

potential system life according to the system model. The lower bound-
aries for both time-definitions are set to 0. After normalization, both
sets are as follows:

⎧

⎪

⎨

⎪

⎩

𝐓𝟏𝐧𝐨𝐫𝐦 =
(

𝑡11
𝑡1upper

, 𝑡12
𝑡1upper

,… , 𝑡1𝑛
𝑡1upper

)

𝐓𝟐𝐧𝐨𝐫𝐦 =
(

𝑡21
𝑡2upper

, 𝑡22
𝑡2upper

,… , 𝑡2𝑛
𝑡2upper

) (1)

2.1.2. Survival analysis
To conduct survival analysis on a population of bivariate normalized

useful life records, the system capability is defined under bivariate
coordinates as a vector composed of the normalized life by time-
definition 1 and normalized life by time-definition 2. This vector is
represented as ⃖⃖⃖⃗𝐂𝐢 = (𝐓𝟏𝐧𝐨𝐫𝐦𝑖

,𝐓𝟐𝐧𝐨𝐫𝐦𝑖
), 𝑖 = 1, 2,… , 𝑛. The magnitude of

the vector is defined as follows:

𝐶𝑖 = ‖

⃖⃖⃖⃗𝐂𝐢‖ =

√

√

√

√

√

(

𝑡1𝑖
𝑡1upper

)2

+

(

𝑡2𝑖
𝑡2upper

)2

(2)

The calculated 𝐶𝑖 values are then combined with their associated
𝑡1𝑖 and 𝑡2𝑖 values to create the set 𝐂 = (𝐓𝟏𝐧𝐨𝐫𝐦 ,𝐓𝟐𝐧𝐨𝐫𝐦 , 𝐜). This set 𝐂
is rearranged based on the ranking of 𝐶𝑖 in 𝐜, resulting in a mono-
tonic increasing set of values. Let 𝐂′ = (𝐶1

′,… , 𝐶𝑗
′,… , 𝐶𝑛

′) be the
rearranged set, where 𝐂′ = 𝐂 and 𝐶𝑗 ≤ 𝐶𝑗+1. The two normalized
time-definition measurements associated with capability 𝐶𝑗 are denoted
as (𝐓𝟏𝐧𝐨𝐫𝐦 𝑗 ,𝐓𝟐𝐧𝐨𝐫𝐦 𝑗 ). A survival analysis, employing the Kaplan–Meier
estimator [27], is then conducted based on the capability of each
system in the population, as follows:

𝑅(𝐶𝑗
′) = �̂�(𝐶𝑗

′) =
∏

𝑗∶𝐶𝑗
′≤𝐶max

′

(

1 −
𝑑𝑗
𝑛𝑗

)

(3)

In Eq. (3), 𝑑𝑗 represents the number of systems recorded as failures
at 𝐶𝑗

′, and 𝑛𝑗 denotes the remaining number of systems in the popula-
tion. The output of Eq. (3), 𝑅(𝐶𝑗

′), signifies the reliability of the system
at 𝐶𝑗

′. In the aviation industry, this reliability is often considered as a
quantified measure of airworthiness, resulting in a three-dimensional
description for each recorded data point with coordinates (𝑥, 𝑦, 𝑧) =
(𝐓𝟏𝐧𝐨𝐫𝐦𝑗

,𝐓𝟐𝐧𝐨𝐫𝐦𝑗
, 𝑅(𝐶𝑗

′)). This process generates a matrix for the dataset,
where each row represents the normalized safe operational life in both
FH and FC, along with the reliability at that specific time point. Column
1 represents the normalized time-definition 1 in FH for all data points,
column 2 represents the normalized time-definition 2 in FC for all data
points, and column 3 represents the reliability of all data points at
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the respective time point. The values in column 3 are discrete and
monotonically decreasing.

𝐃 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐓𝟏𝐧𝐨𝐫𝐦1
𝐓𝟐𝐧𝐨𝐫𝐦1

𝑅(𝐶1
′)

𝐓𝟏𝐧𝐨𝐫𝐦2
𝐓𝟐𝐧𝐨𝐫𝐦2

𝑅(𝐶2
′)

⋮ ⋮ ⋮
𝐓𝟏𝐧𝐨𝐫𝐦𝑗

𝐓𝟐𝐧𝐨𝐫𝐦𝑗
𝑅(𝐶𝑗

′)
⋮ ⋮ ⋮

𝐓𝟏𝐧𝐨𝐫𝐦𝑛
𝐓𝟐𝐧𝐨𝐫𝐦𝑛

𝑅(𝐶𝑛
′)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4)

2.2. Selection of copula models

A copula is a function that joins or ‘couples’ a multivariate distri-
bution function with its one-dimensional marginal distribution func-
tions. Copulas have gained significant popularity in the field of high-
dimensional statistical applications due to their ability to effectively
model and estimate the distribution of random vectors by indepen-
dently estimating the marginals and copulas. Numerous parametric
copula families are available, typically characterized by parameters
that govern the degree of dependence. According to Sklar’s Theo-
rem [28], let 𝐹 be a bivariate joint distribution function of a continuous
random variable 𝑋 and 𝑌 with corresponding marginal distribution
functions 𝐹1 and 𝐹2. There exists a copula 𝒞 such that, for −∞ <
𝑥1 < ∞,−∞ < 𝑥2 < ∞, there is 𝐹 (𝑥1, 𝑥2) = 𝑃 (𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2) =
𝒞 (𝐹1(𝑥1), 𝐹2(𝑥2)). Sklar’s theorem provides a foundation for combining
marginal distributions into a joint copula function, which is particularly
useful for Archimedean copula types [29]. This paper focuses on the
four most commonly used copula models: the Gumbel copula, the
Clayton copula, the Independence copula, and the Frank copula. Brief
descriptions of these copula formats are provided to remind readers of
their characteristics.

Gumbel copula. For a bivariate distribution, the Gumbel copula [30] is
expressed as:

𝐹 (𝑥1, 𝑥2) = 𝑒𝑥𝑝
{

−
[

(

−𝑙𝑜𝑔𝐹1(𝑥1)
)𝜙 +

(

−𝑙𝑜𝑔𝐹2(𝑥2)
)𝜙

]1∕𝜙
}

(5)

The Gumbel copula is a type of copula that exhibits tail dependence
in only one corner. It is worth noting that an important character-
istic of bivariate copula models is the calculation of the association
measurement parameter 𝜙, which describes the association relationship
between the bivariate variables. In the case of the Gumbel copula,
𝜙 ∈ [1,∞).

Clayton copula. The bivariate Clayton copula [31] is with the format
of:

𝐹 (𝑥1, 𝑥2) =
[

𝐹1(𝑥1)−𝜙 + 𝐹2(𝑥2)−𝜙 − 1
]−1∕𝜙 (6)

For the Clayton copula, 𝜙 ∈ [−1,∞) & 𝜙 ≠ 0.

Independence copula. When the association measurement parameter in
the Gumbel copula 𝜙 = 1, or when the parameter in the Clayton copula
𝜙 → 0. A special type of copula is created which is the independent
copula [32]. With the format of:

𝐹 (𝑥1, 𝑥2) = 𝐹1(𝑥1)𝐹2(𝑥2) (7)

It is obvious that the independence copula is free from the control
of 𝜙.

Frank copula. The fourth copula model being considered in this paper
is the Frank copula [33], with the expression of:

𝐹 (𝑥1, 𝑥2) = − 1
𝜙
𝑙𝑜𝑔

[

1 +

(

𝑒−𝜙𝐹1(𝑥1) − 1
) (

𝑒−𝜙𝐹2(𝑥2) − 1
)

𝑒−𝜙 − 1

]

(8)

For the Frank copula, 𝜙 ∈ [−1, 1] & 𝜙 ≠ 0.
It is evident that accurate estimation of the association measurement

arameter 𝜙 is crucial for a reliable copula model. The calculation of
4

Table 1
Relationship between association measurement parameter 𝜙 and
Kendall’s 𝜏 for four copula models.
Copula model Kendall’s 𝜏

Gumbel 𝜏 = 𝜙−1
𝜙

Clayton 𝜏 = 𝜙
𝜙+2

Independence NaN
Frank 𝜏 = 1 − 4

𝜙

(

1 − 1
𝜙
∫ 𝜙
0

𝑡
𝑒𝑡−1

𝑑𝑡
)

Table 2
Association measurement parameter 𝜙 calculation for four copula models.
Copula model Association measurement parameter 𝜙

Gumbel 𝜙 = 1
1−𝜏

Clayton 𝜙 = 2𝜏
1−𝜏

Independence NaN
Frank Numerical solution

the parameter 𝜙 for the four types of copula models is presented in
Table 1.

Two widely used methods for correlation analysis are Spearman’s
rank correlation coefficient [34] (Spearman’s 𝜌) and Kendall’s rank
correlation coefficient [35] (Kendall’s 𝜏). In most cases, both rank
correlation approaches are acceptable. However, this paper focuses on
calculating the correlation using Kendall’s 𝜏 approach. Kendall’s 𝜏 is
defined as follows:

𝜏 =
𝑛𝑐 − 𝑛𝑑

√

(𝑛0 − 𝑛1)(𝑛0 − 𝑛2)
(9)

here
𝑛0 = 𝑛(𝑛−1)

2 , 𝑛1 =
∑

𝑖
𝑡𝑖(𝑡𝑖−1)

2 , 𝑛2 =
∑

𝑗
𝑢𝑗 (𝑢𝑗−1)

2 , 𝑛𝑐 is the number of
concordant pairs, 𝑛𝑑 is the number of discordant pairs, 𝑡𝑖 is the number
f tied values in the 𝑖th group of ties for the first quantity, and 𝑢𝑗 is the

number of tied values in the 𝑗th group of ties for the second quantity.
The value of Kendall’s 𝜏 is determined by the processed data from II.

A is then substituted to the equations of 𝜏 in Table 1, and the values of
the association measurement parameters are therefore obtained. The
equations of the association measurement parameter upon obtaining
Kendall’s 𝜏 are shown in Table 2.

For the Frank copula, the association measurement parameter is typ-
ically calculated using numerical methods, as obtaining an analytical
solution is challenging.

2.3. Parameter estimation

With the selection of the copula models introduced in II.B, the quan-
tified airworthiness model is determined through four optimization
steps, considering two key factors: the marginal distribution parame-
ters and the copula model parameters. The parameter estimation for
the marginal distribution involves two sub-categories: determining the
choice of distribution and optimizing the parameters for the system
family & system model. The estimation of the copula model also in-
cludes several sub-categories: parametric & non-parametric estimation
of the association measurement parameter and the choice of copula
model format. Fig. 3 illustrates these two factors with their respective
sub-categories, and further detailed descriptions are provided.

2.3.1. Marginal distribution parameter estimation
The complexity of estimating marginal distribution parameters

arises from the fact that a system type typically has a general design
that is further developed into sub-design models. These sub-design
models modify several components within the system to accommodate
different usage purposes, as mentioned in the introduction. Therefore,
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Fig. 3. Steps of copula model parameter estimation.

t is reasonable to assume that system models within the same sys-
em family share the same statistical distribution type [36,37]. This
onsideration is justified by design similarities and the need to avoid
verfitting in statistical modelling for practicality. Let us consider a
ystem design with 𝑀 system families, where each system family is
urther divided into 𝑁𝑀 system models. Each system model is denoted
y 𝑃𝑀𝐼𝐽 , where 𝐼 ∈ [1,𝑀], 𝐼 ∈ Z, and 𝐽 ∈ [1, 𝑁𝑀 ], 𝐽 ∈ Z. Each system

model 𝑃𝑀𝐼𝐽 has a maintenance record for a population of 𝑂𝐼𝐽 systems.
y following the steps outlined in II.A, the normalized maintenance
ecord considering bivariate measurements is represented as 𝐃𝐼𝐽 . To
elect the best marginal distribution for both time-definitions, the
hree most commonly used distribution formats in system reliability
odelling are considered as potential candidates for all system families

nd models: the Weibull distribution (with shape and scale parameters),
he Gumbel distribution (with location and scale parameters), and the
eneralized extreme value (GEV) distribution (with shape, location, and
cale parameters). Each system model, on each time-definition, requires
he estimation of either two or three parameters. However, computing
he best choice of distribution based on the combined coefficient of
eterminations ℛ2 for all system models becomes costly and infeasible
hen 𝑀 and 𝑁𝑀 are large. To overcome this challenge, this paper

ntroduces a two-fold algorithm for estimating marginal distribution
arameters.

hoice of marginal distribution. The targeted marginal distribution func-
tions in the form of cumulative distribution functions (CDF) are listed
below:

Marginal function as GEV distribution:

𝑅(𝑡) = 1 − 𝑒−
[

1+𝜉
(

𝑡−𝜇
𝜎

)]−1∕𝜉

(10)

Marginal function as Weibull distribution:

(𝑡) = 𝑒−(𝑡∕𝜎)
𝜉 (11)

Marginal function as Gumbel distribution:

(𝑡) = 1 − 𝑒−𝑒
−(𝑡−𝜇)∕𝜎 (12)

The normal distribution is also included in this research as a bench-
ark for selecting the marginal distribution. Despite being less com-
only used in the reliability evaluation of engineering systems, it is
idely popular in statistics-related research. The cumulative distribu-

ion function (CDF) of the normal distribution can be expressed as:

(𝑡) = 1 − 1
2

[

1 + 2
√

𝜋 ∫

𝑡−𝜇
𝜎
√

2

0
𝑒−𝑙

2
𝑑𝑙

]

(13)

Eqs. (10) to (13) introduce the parameters used in this step. 𝜇 rep-
esents the location parameter, 𝜎 represents the scale parameter, and 𝜉
5

epresents the shape parameter. To perform this step, a representative
ystem model is chosen from its corresponding system family. The
election of the representative model is based on the population size
f maintenance records. For example, the representative model from
amily 𝐼 contains the population of 𝑂𝐼max

= max{𝑂𝐼1 , 𝑂𝐼2 ,… , 𝑂𝐼𝑀 }.
Creating the normalized dataset 𝐃𝐼 = {𝐓1norm𝐼

,𝐓2norm𝐼
,𝐑(𝐶𝐼 )}, 𝐼 =

1, 2,… ,𝑀 . For this initial distribution model selection, all parameters
for a candidate distribution are floated, meaning no value
restriction is added to the fitting. The combined ℛ2 for four po-
tential reliability functions after fitting the most optimized sets of
parameters (𝜇𝐼GEV , 𝜎𝐼GEV , 𝜉𝐼GEV ), (𝜎𝐼Weibull , 𝜉𝐼Weibull ), (𝜇𝐼Gumbel , 𝜎𝐼Gumbel ), and
(𝜇𝐼Normal , 𝜎𝐼Normal ). This calculation is performed on the records popula-
ion of the representative model in family 𝐼 at time-definition 1. The
esulting ℛ2 value is:

𝐼
ℛ𝐼

2 =
𝑀
∑

𝐼=1

⎡

⎢

⎢

⎢

⎣

1 −
∑𝑂𝐼max

𝐼𝑖′=1 (𝐂𝐼𝑖′ − 𝑓𝐼𝑖′ )2

∑𝑂𝐼max
𝐼𝑖′=1 (𝐂𝐼𝑖′ −

1
𝑂𝐼max

∑𝑂𝐼max
𝐼𝑖′=1 𝐶𝐼𝑖′ )

⎤

⎥

⎥

⎥

⎦

(14)

here

𝑓𝐼𝐺𝐸𝑉 (𝜇, 𝜎, 𝜉) = −𝑒
−
[

1+𝜉𝐼𝐺𝐸𝑉

( 𝑇1𝑛𝑜𝑟𝑚𝐼𝑖′
−𝜇𝐼𝐺𝐸𝑉

𝜎𝐼𝐺𝐸𝑉

)]−1∕𝜉𝐼𝐺𝐸𝑉

𝑓𝐼𝑊 𝑒𝑖𝑏𝑢𝑙𝑙(𝜎, 𝜉) = 𝑒−(𝑇1𝑛𝑜𝑟𝑚𝐼𝑖′ ∕𝜎𝑊 𝑒𝑖𝑏𝑢𝑙𝑙 )𝜉𝑊 𝑒𝑖𝑏𝑢𝑙𝑙

𝑓𝐼𝐺𝑢𝑚𝑏𝑒𝑙(𝜇, 𝜉) = 1 − 𝑒−𝑒
−(𝑇1𝑛𝑜𝑟𝑚𝐼𝑖′

−𝜇𝐺𝑢𝑚𝑏𝑒𝑙 )∕𝜎𝐺𝑢𝑚𝑏𝑒𝑙

𝑓𝐼𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) =
1
2

⎡

⎢

⎢

⎢

⎣

1 + 2
√

𝜋
∫

𝑇1𝑛𝑜𝑟𝑚𝐼𝑖′
−𝜇𝑁𝑜𝑟𝑚𝑎𝑙

𝜎𝑁𝑜𝑟𝑚𝑎𝑙
√

2
0 𝑒−𝑙2𝑑𝑙

⎤

⎥

⎥

⎥

⎦

(15)

The footnote 𝑖′ in Eqs. (14) and (15) indicates that it applies to
all data points within the processed dataset 𝐃𝐈. By comparing the
combined coefficient of determination ℛ2 resulting from the fittings
of all system models, the minimum value represents the best-fitting
general distribution that describes one marginal distribution of the
dataset. It is important to note that there is no explicit requirement
for both marginal distributions to be of the same format.

Distribution for distinctive system designs. The second step in selecting
the best fit is to estimate the parameters within each system model.
To account for the fact that models within a system family share
similar design structures and components, one parameter is fixed dur-
ing the parameter optimization process for each individual system
model (for distributions with two parameters) or two parameters are
fixed (for distributions with three parameters). Previous studies on
engineering systems have shown that fixing the scale parameter 𝜎 (for
two-parameter distributions) or both the scale parameter 𝜎 and shape
parameter 𝜉 (for three-parameter distributions) is effective [36]. With
this consideration, the location parameter 𝜇 becomes the key parameter
for distinguishing multiple system models within a system family, while
the scale parameter 𝜎 and shape parameter 𝜉 become key parameters
for distinguishing multiple system families. The fixed shape and scale
parameters for the system family are obtained, and their values are
denoted as 𝜎𝐼 and 𝜉𝐼 for system family 𝐼 . The location parameter for the
distribution chosen for system model 𝐽𝐼 in system family 𝐼 is denoted
as 𝜇𝐼𝐽𝐼 .

Let us take the GEV distribution as an example to illustrate the
optimization of the location parameter for system family 𝐼 with 𝐽𝐼
system models. Consider the systems with properties shown in Table 3:

Further explanations on Table 3 are given here, in the column of
‘Data Format’, the data formats are generically written as,
(𝑡𝐼𝑀−1−𝑂𝐼𝑀

, 𝑡𝐼𝑀−2−𝑂𝐼𝑀
, 𝑅𝐼𝑀−𝑂𝐼𝑀

), the red color notation 𝐼𝑀 represents
the system model, the blue color notation 1 and 2 represent the
two time-definition measurements, and the orange color notation 𝑂𝐼𝑀
represent the label of data population in system model 𝐼 records.
𝑀
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Table 3
Example dataset for marginal distribution parameter optimization.
System model (Family I) Population Data Format

Model 𝐼1 𝑂𝐼1 (𝑡𝐼1−1−1 , 𝑡𝐼1−2−1 , 𝑅𝐼1−1), (𝑡𝐼1−1−2 , 𝑡𝐼1−2−2 , 𝑅𝐼1−2), . . . , (𝑡𝐼1−1−𝑂𝐼1
, 𝑡𝐼1−2−𝑂𝐼1

, 𝑅𝐼1−𝑂𝐼1
)

Model 𝐼2 𝑂𝐼2 (𝑡𝐼2−1−1 , 𝑡𝐼2−2−1 , 𝑅𝐼2−1), (𝑡𝐼2−1−2 , 𝑡𝐼2−2−2 , 𝑅𝐼2−2), . . . , (𝑡𝐼2−1−𝑂𝐼2
, 𝑡𝐼2−2−𝑂𝐼2

, 𝑅𝐼2−𝑂𝐼2
)

... ... ...
Model 𝐼𝐽𝐼 𝑂𝐼𝐽𝐼

(𝑡𝐼𝐽𝐼 −1−1 , 𝑡𝐼𝐽𝐼 −2−1 , 𝑅𝐼𝐽𝐼 −1
), (𝑡𝐼𝐽𝐼 −1−2 , 𝑡𝐼𝐽𝐼 −2−2 , 𝑅𝐼𝐽𝐼 −2

), . . . , (𝑡𝐼𝐽𝐼 −1−𝑂𝐼𝐽𝐼
, 𝑡𝐼𝐽𝐼 −2−𝑂𝐼𝐽𝐼

, 𝑅𝐼𝐽𝐼 −𝑂𝐼𝐽𝐼
)

... ... ...
Model 𝐼𝑀 𝑂𝐼𝑀 (𝑡𝐼𝑀−1−1 , 𝑡𝐼𝑀−2−1 , 𝑅𝐼𝑀−1), (𝑡𝐼𝑀−1−2 , 𝑡𝐼𝑀−2−2 , 𝑅𝐼𝑀−2), . . . , (𝑡𝐼𝑀−1−𝑂𝐼𝑀

, 𝑡𝐼𝑀−2−𝑂𝐼𝑀
, 𝑅𝐼𝑀−𝑂𝐼𝑀

)
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The coefficient of determination for system Model 𝐼𝐽𝐼 where 𝐽𝐼 =
1, 2,… ,𝑀 on time-definition 1 is:

ℛ𝐼𝐽𝐼
2 = 1 −

𝑆𝑆𝑟𝑒𝑠𝐼𝐽𝐼
𝑆𝑆𝑡𝑜𝑡𝐼𝐽𝐼

= 1 −

∑

𝑂𝐼𝐽𝐼
𝜋=1

{

𝑅𝐼𝐽𝐼 −𝜋
− 1 − 𝑒

−[1+𝜉𝐼 (
𝑡𝐼𝐽𝐼 −1−𝜋−𝜇𝐽𝐼

𝜎𝐼
)]1−1∕𝜉𝐼

}

∑

𝑂𝐼𝐽𝐼
𝜋=1

[

𝑅𝐼𝐽𝐼 −𝜋
− 1

𝑂𝐼𝐽𝐼

∑

𝑂𝐼𝐽𝐼
𝜋=1 (𝑅𝐼𝐽𝐼

− 𝜋)
]2

(16)

In Eq. (16), 𝜋 is used as the footnote notation for each data point
within the dataset for system model 𝐼𝐽𝐼 . The objective is to obtain the
optimized location parameter 𝜇𝐽𝐼 for each system model through the
following equation:

𝐌 = 𝑎𝑟𝑔max
𝐽𝐼

(

∑

𝑀
ℛ𝐼𝐽𝐼

2

)

= 𝑎𝑟𝑔max
𝐽𝐼

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

𝑀

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 −

∑

𝑂𝐼𝐽𝐼
𝜋=1

{

𝑅𝐼𝐽𝐼 −𝜋
− 1 − 𝑒−[1+𝜉𝐼 (

𝑡𝐼𝐽𝐼 −1−𝜋−𝜇𝐽𝐼
𝜎𝐼

)]1−1∕𝜉𝐼
}

∑

𝑂𝐼𝐽𝐼
𝜋=1

[

𝑅𝐼𝐽𝐼 −𝜋
− 1

𝑛𝐼𝐽𝐼

∑

𝑂𝐼𝐽𝐼
𝜋=1 (𝑅𝐼𝐽𝐼 −𝜋

)
]2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(17)

In Eq. (17), 𝐌 represents the set that contains all the optimized
location parameters 𝜇𝐽𝐼 . The solution to Eq. (17) is obtained by apply-
ng the multi-dimensional sparse grid search algorithm [38]. Using the
emonstration of the GEV distribution example, it is possible to create
he two marginal distributions for the two time-definitions as follows:

𝐹1𝐼𝐽 (𝑇1𝐼𝐽 ∶ 𝜎𝐼 , 𝜉𝐼𝐽𝐼 , 𝜇𝐼𝐽𝐼 ) = 𝑂𝑝𝑡𝑖𝑚𝑎𝑙{𝑅𝐺𝐸𝑉 (𝑇1𝐼𝐽 ), 𝑅𝑊 𝑒𝑖𝑏𝑢𝑙𝑙(𝑇1𝐼𝐽 ),
𝑅𝐺𝑢𝑚𝑏𝑒𝑙(𝑇1𝐼𝐽 )}

𝐹2𝐼𝐽 (𝑇2𝐼𝐽 ∶ 𝜎𝐼 , 𝜉𝐼𝐽𝐼 , 𝜇𝐼𝐽𝐼 ) = 𝑂𝑝𝑡𝑖𝑚𝑎𝑙{𝑅𝐺𝐸𝑉 (𝑇2𝐼𝐽 ), 𝑅𝑊 𝑒𝑖𝑏𝑢𝑙𝑙(𝑇2𝐼𝐽 ),
𝑅𝐺𝑢𝑚𝑏𝑒𝑙(𝑇2𝐼𝐽 )}

(18)

Eq. (18) provides a description of the choice of the two marginal
distributions, which are selected from the three potential distribution
candidates. The choice of function and its parameters is based on the
computation results of the most optimized coefficient of determination
ℛ2.

2.3.2. Copula model parameter estimation
The procedure following the selection of a marginal distribution for

each variable is the construction of the bivariate copula model, which
describes the joint distribution of the two marginal distributions. The
choice of the copula model is based on two criteria: the format of the
copula and the value of the association measurement parameter of the
Archimedean copula.

Parametric & non-parametric association measurement parameter estima-
tion. As introduced in Section 2.2, a direct method of calculating
the association measurement parameter is through Kendall’s 𝜏. This
parametric approach is used to combine the marginal distributions and
form a bivariate distribution. However, in cases where the two variables
 d

6

defining the marginal distributions are distinct and do not exhibit
obvious correlations, the parametric approach may not yield optimized
results. In this section, a non-parametric approach to estimating the
association measurement parameter is introduced as an alternative to
the parametric approach. Considering that the copula is one approach
to correlate the two marginal distributions, it is not assumed that all
system reliability models require a uniform type of copula model in
engineering applications. This leads to the estimation of the copula
model and association measurement parameter on a case-by-case basis,
depending on the system model. This paper proposes a Monte Carlo
simulation-based algorithm for the non-parametric estimation of the
association measurement parameter 𝜙 for copula models. The algorithm
is presented as a two-step process, demonstrated in Algorithm 1 and
Algorithm 2.

In Algorithm 1, 𝐹 (𝐹1, 𝐹2) represents a copula model with deter-
mined marginal distributions 𝐹1 and 𝐹2. The proposed algorithms are
pplied to estimate the optimized 𝜙 for each of the four copula model
andidates, using the given data.

opula model determination. After obtaining the optimized 𝜙 value for
he copula function, the sum of ℛ2 values from the non-parametric ap-
roach is recalculated and compared with the ℛ2 values directly calcu-
ated from the parametric approach. There are seven values to be com-
ared, which are: Gumbel copula parametric result ℛ2

𝐺𝑢𝑚𝑏𝑒𝑙−𝑝
, Gumbel

opula non-parametric sum of errors ℛ2
𝐺𝑢𝑚𝑏𝑒𝑙−𝑛

, Clayton copula para-
etric sum of errors ℛ2

𝐶𝑙𝑎𝑦𝑡𝑜𝑛−𝑝
, Clayton copula non-parametric sum

r errors ℛ2
𝐶𝑙𝑎𝑦𝑡𝑜𝑛−𝑛

, Frank copula parametric sum of errors ℛ2
𝐹𝑟𝑎𝑛𝑘−𝑝

,
rank copula non-parametric sum of errors ℛ2

𝐹𝑟𝑎𝑛𝑘−𝑛
, and independence

opula sum of errors ℛ2
𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒. The maximum ℛ2 value determines

oth the choice of copula format and the association measurement
arameter associated with the copula format.

.4. Quantified airworthiness models

At the final step, with the choice of copula model 𝐹 , the association
easurement parameter 𝜙opt, the optimized marginal distribution 𝐹1

or time-definition 1, and the optimized marginal distribution 𝐹2 for
ime-definition 2, the quantified airworthiness model for the system
odel is given by:

(𝑇1, 𝑇2) = 𝐹 (𝐹1, 𝐹2 ∶ 𝜙𝑜𝑝𝑡) (19)

To validate the versatility of the quantified airworthiness model,
statistical comparison is carried out across multiple system families
ith a variety of design models to assess the fitting accuracy.

. Results & discussion

To demonstrate the practicality of the proposed algorithms, we
pplied the methodology to historical maintenance logbook records of
hree aircraft engine system families named Family 1, Family 2, and
amily 3 in this study. Family 1 contains two datasets representing two
ystem models, labeled Model 1 A and Model 1B. Similarly, Family 2
ontains three system models: Model 2 A, Model 2B, and Model 2C.
amily 3 consists of one system model labeled Model 3 A. A sample
ataset provided in Table 4 indicates the format of the dataset, which
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Algorithm 1 Monte Carlo Non-parametric 𝜙 estimation for copula
procedure Estimation

for 𝑖 ← 1, 𝑣 do
𝐃 ← (𝐓𝟏𝐧𝐨𝐫𝐦,𝐓𝟐𝐧𝐨𝐫𝐦,𝐂) ⊳ the processed dataset follows equation (4)
𝐍 ← [1, 2, ..., 𝑛] ⊳ Set of dataset labels with size n
𝐍𝐭𝐫 ← roundup(𝑝 × 𝑛) Integer(Random(1, n)) ⊳ p is a percentage separating training set data label
𝐍𝐯𝐚𝐥 ← 𝐍𝐭𝐫

𝐶 ⊳ consider set 𝐍 is Universe and set 𝐍𝐯𝐚𝐥 is the Complement of set 𝐍𝐭𝐫
𝐃𝐭𝐫 ← 𝐃[𝐍𝐭𝐫 ] ⊳ training dataset
𝐃𝐯𝐚𝐥 ← 𝐃[𝐍𝐯𝐚𝐥] ⊳ validation dataset

𝜙𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 ← 𝑎𝑟𝑔max𝑖𝑡𝑟

⎧

⎪

⎨

⎪

⎩

1 −
∑

𝑖𝑡𝑟

{

𝐃𝐭𝐫 [𝑖𝑡𝑟 ,3]−𝐹 (𝐹1 ,𝐹2)|𝑥=𝐃𝐭𝐫 [𝑖𝑡𝑟 ,1],𝑦=𝐃𝐭𝐫 [𝑖𝑡𝑟 ,2]
}2

∑

𝑖𝑡𝑟

{

𝐃𝐭𝐫 [𝑖𝑡𝑟 ,3]−
∑

𝑖𝑡𝑟 𝐃𝐭𝐫 [𝑖𝑡𝑟 ,3]
𝑟𝑜𝑢𝑛𝑑𝑢𝑝(𝑝×𝑛)

}2

⎫

⎪

⎬

⎪

⎭

⊳ obtain optimized 𝜙, by Algorithm 2

𝚽[𝑖] ← 𝜙

𝑅𝑣𝑎𝑙
2 ←

⎧

⎪

⎨

⎪

⎩

1 −
∑

𝑖𝑣𝑎𝑙

{

𝐃𝐯𝐚𝐥[𝑖𝑣𝑎𝑙 ,3]−𝐹 (𝑀1 ,𝑀2)|𝑥=𝐃𝐯𝐚𝐥 [𝑖𝑣𝑎𝑙 ,1],𝑦=𝐃𝐯𝐚𝐥 [𝑖𝑣𝑎𝑙 ,2]
}2

∑

𝑖𝑣𝑎𝑙

{

𝐃𝐯𝐚𝐥[𝑖𝑣𝑎𝑙 ,3]−
∑

𝑖𝑣𝑎𝑙 𝐃𝐯𝐚𝐥 [𝑖𝑣𝑎𝑙 ,3]
𝑛−𝑟𝑜𝑢𝑛𝑑𝑢𝑝(𝑝×𝑛)

}2

⎫

⎪

⎬

⎪

⎭

|

|

|

|

|

|

|

|𝜙

⊳ obtain 𝑅2 for validation dataset by 𝜙

𝐑𝐯𝐚𝐥[𝑖] ← 𝑅𝑣𝑎𝑙
2

end for
𝐔 ← [𝚽,𝐑𝐯𝐚𝐥]
𝐔 ← sort 𝐑𝐯𝐚𝐥 ⊳ rank elements in 𝐔 by 𝑅𝑣𝑎𝑙 small to large
𝐔′ ← 𝐔[𝑣 − 𝑞, 𝑣] ⊳ top q performance copula model

𝜙 ←

∑𝑞
𝑗=1 𝐔

′[1,𝑗]

𝑞
end procedure
Algorithm 2 Sub-algorithm for Algorithm 1 (Optimize 𝜙 in loop step)
procedure Optimize

𝜙1 ← 𝜙𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← 𝜙𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 ⊳ set initial search value of 𝜙
for 𝑙 ← 2,∞ do

for 𝑢 ← 0, 4 do
𝜙𝑙 ← 𝜙𝑙−1 +

1
10𝑢

𝑅[𝑙] ←

⎧

⎪

⎨

⎪

⎩

1 −
∑

𝑖𝑡𝑟

{

𝐃𝐭𝐫 [𝑖𝑡𝑟 ,3]−𝐹 (𝐹1 ,𝐹2)|𝑥=𝐃𝐭𝐫 [𝑖𝑡𝑟 ,1],𝑦=𝐃𝐭𝐫 [𝑖𝑡𝑟 ,2]
}2

∑

𝑖𝑡𝑟

{

𝐃𝐭𝐫 [𝑖𝑡𝑟 ,3]−
∑

𝑖𝑡𝑟 𝐃𝐭𝐫 [𝑖𝑡𝑟 ,3]
𝑟𝑜𝑢𝑛𝑑𝑢𝑝(𝑝×𝑛)

}2

⎫

⎪

⎬

⎪

⎭

|

|

|

|

|

|

|

|𝜙𝑙
𝑙 ← 𝑙 + 1
𝑑 ← 𝑅[𝑙] − 𝑅[𝑙 − 1]
𝑟 ← 𝑅[𝑙]−𝑅[𝑙−1]

𝑅[𝑙−1]
if 𝑑 ≤ 0 then

𝑢 = 𝑢 + 1
else if 𝑟 ≤ 𝜌 then ⊳ 𝜌 is increment threshold

BREAK
end if

end for
end for
𝜙𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 ← 𝜙𝑙

end procedure
includes essential real-life operation data such as FH and FC for each
run-to-failure record. Commonly the FH/FC ratio is to describe the
flight profiles such as long-haul, medium-haul, or short-haul missions.
The column ‘Capability’ indicates the run-to-failure time considering
both time definitions.

The population of the logbook dataset for each distinctive engine
design is as follows: Model 1 A with 327 entries, Model 1B with
101 entries, Model 2 A with 380 entries, Model 2B with 61 entries,
Model 2C with 36 entries, and Model 3 A with 19 entries. By applying
bivariate survival analysis on SV maintenance data to determine the
quantified airworthiness for aviation operations, the deterioration of
system reliability in relation to the operational life in terms of FH and
FC is obtained. This information is presented in Fig. 4 as a scattered
plot, where the example selected is system Family 1, Model 1B.
7

3.1. Marginal distribution format selection

The first key step towards developing the quantified airworthiness
model is to determine the marginal distributions for all system families.
Fig. 5 displays the best-fitted marginal distributions in four potential
formats. In this figure, three representative system models, selected
from three system families, are fitted with GEV, Gumbel, Weibull,
and normal distributions on both time definitions. The navy-colored
scatter plots represent the marginal distribution of reliability values
for FH (system life on time-definition 1), while the green scatter plots
represent the FC (time-definition 2). Table 5 presents the parameters of
the fittings for the eight marginal distributions of the three representa-
tive models. As mentioned in the methodology section, all distribution
formats share the same notation for parameters. In Table 5, 𝜎 represents
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s
p
f

Table 4
Maintenance records after normalization.
System family System model Model number Normalized FH Normalized FC Capability

1 1A 17 0.1331 0.1987 0.2392
... ... ... ... ... ...
1 1B 20 0.3442 0.2518 0.4265
... ... ... ... ... ...
2 2A 23 0.2440 0.4222 0.4876
... ... ... ... ... ...
2 2B 21 0.5571 0.5617 0.7911
... ... ... ... ... ...
2 2C 31 0.6914 0.6259 0.9326
... ... ... ... ... ...
3 3A 6 0.2235 0.2916 0.3674
... ... ... ... ... ...
Fig. 4. Scattered airworthiness deterioration with survival analysis for system family 1 model 1B.
Table 5
Marginal distribution selection on two time-definitions for representative design models.
Distribution Family 1 Model 1A Family 2 Model 2A Family 3 Model 3A

FH FC FH FC FH FC

Weibull 𝜎 = 0.449
𝜉 = 1.756

𝜎 = 0.434
𝜉 = 1.506

𝜎 = 0.377
𝜉 = 1.394

𝜎 = 0.299
𝜉 = 1.464

𝜎 = 0.560
𝜉 = 1.047

𝜎 = 0.656
𝜉 = 1.394

Gumbel 𝜎 = 0.201
𝜇 = 0.289

𝜎 = 0.216
𝜇 = 0.264

𝜎 = 0.197
𝜇 = 0.222

𝜎 = 0.149
𝜇 = 0.180

𝜎 = 0.369
𝜇 = 0.294

𝜎 = 0.359
𝜇 = 0.381

Normal 𝜎 = 0.377
𝜇 = 0.232

𝜎 = 0.360
𝜇 = 0.252

𝜎 = 0.309
𝜇 = 0.232

𝜎 = 0.242
𝜇 = 0.170

𝜎 = 0.463
𝜇 = 0.426

𝜎 = 0.539
𝜇 = 0.408

GEV
𝜎 = 0.203
𝜇 = 0.290
𝜉 = −0.030

𝜎 = 0.216
𝜇 = 0.264
𝜉 = −0.001

𝜎 = 0.185
𝜇 = 0.217
𝜉 = 0.154

𝜎 = 0.154
𝜇 = 0.182
𝜉 = −0.101

𝜎 = 0.407
𝜇 = 0.318
𝜉 = −0.300

𝜎 = 0.386
𝜇 = 0.395
𝜉 = −0.212
ℛ
r
a
i
d
f
d

the scale parameter, 𝜉 represents the shape parameter, and 𝜇 represents
the location parameter.

The evaluation of the marginal distribution is performed by calcu-
lating the sum of ℛ2 values for the three representative models within
each system family. This ℛ2 based evaluation takes into account the
ample size and balances the influence of both large and small sample
opulations. The results of the marginal distribution selection for the
our potential distributions are presented in Table 6.
8

The evaluation domain for ℛ2 is within the range of [0, 1]. A larger
2 value indicates a more accurate function fitting. Based on this crite-

ion, the distribution format that yields the highest values of ∑𝐼 ℛ
2
𝐼 for

ll representative system models on both time-definitions is highlighted
n red, while the second-highest values are highlighted in blue. Table 6
emonstrates that the GEV distribution produces the best-fitting results
or both the FH time-definition marginal distribution and the FC time-
efinition marginal distribution. However, it should be noted that the
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Fig. 5. Distribution fitting for each representative system model from three system families on both time definitions.
1
G

3

p
1
b
a

ℛ

Table 6
Generic marginal distribution selection.

Distribution Format FH (∑𝐼ℛ
2
𝐼𝐹𝐻

) FC (∑𝐼 ℛ
2
𝐼𝐹𝐶

)

Weibull 2.83389 2.75126
Gumbel 2.83950 2.75747
GEV 2.84412 2.75787
Normal 2.82176 2.73797

GEV distribution is a three-parameter distribution, unlike the Weibull,
Gumbel, and normal distributions, which have fewer parameters. The
presence of more parameters in a distribution increases the complexity
of parameter optimization across multiple system families and models
at a geometric growth rate. Comparing the GEV distribution to the
Gumbel distribution, which has ∑

𝐼 ℛ
2
𝐼 values highlighted in blue in

able 6, the Gumbel distribution is 0.16% smaller in FH measurement
nd 0.015% smaller in FC measurement. In this study, both the GEV
nd Gumbel distributions are carried forward to the next step due
o their accuracy and performance as two-parameter distributions. It
s important to note that the normal distribution exhibits the lowest
ccuracy in describing the marginal distribution, confirming that it is
ot a suitable choice for evaluating the airworthiness of the aircraft
ngine.

.2. Marginal distribution parameter estimation

After identifying the GEV distribution and the Gumbel distribution
s potential candidates for the marginal distributions of all system
amilies, this step focuses on optimizing the distribution parameters by
onsidering the similarity of each system model within the system fam-
lies. As explained in the methodology, similar system models within a
ingle system family share fixed distribution parameters. For the GEV
istribution, the parameters that need to be determined are the scale
arameter 𝜎 and the shape parameter 𝜉. In the case of the Gumbel
istribution, only the scale parameter 𝜎 needs to be determined. In both
istributions, the parameter that distinguishes different system models
ithin a system family is the location parameter 𝜇. To illustrate this
rocess, let us consider system Family 1 with system Models 1 A and
9

B in terms of FH. The optimization of the location parameter for the
EV distribution involves the following steps:

.2.1. Step 1
Considering the fixed scale parameter 𝜎 = 0.203 and the fixed shape

arameter 𝜉 = −0.030 for both Family 1 Model 1 A and Family 1 Model
B, the optimization of the location parameter 𝜇 is the sole variable to
e optimized for each system model. The marginal FH for system 1 A
nd system 1B are denoted as 𝑡𝑖1 and 𝑡𝑖2 , respectively.

2
1𝐴 = 1 −

∑327
𝑖1=1

{

𝑅1𝑖1
− 1 − 𝑒−[1−0.418(𝑡𝑖1−𝜇1𝐴)]

1003∕3}

∑327
𝑖1=1

(𝑅1𝑖1
− 1

327
∑327

𝑖1=1
𝑅1𝑖1

)2
(20)

ℛ2
1𝐵 = 1 −

∑101
𝑖2=1

{

𝑅1𝑖2
− 1 − 𝑒−[1−0.418(𝑡𝑖2−𝜇1𝐵 )]

1003∕3}

∑101
𝑖2=1

(𝑅1𝑖2
− 1

101
∑101

𝑖2=1
𝑅1𝑖2

)2
(21)

3.2.2. Step 2
The sum of ℛ2 is considered and the target is to obtain the sum of

𝜇1𝐴 and 𝜇1𝐵 that maximizes ∑

𝑖 ℛ
2.

𝐌𝐅𝐚𝐦𝐢𝐥𝐲𝟏−𝐆𝐄𝐕 = [𝜇1𝐴, 𝜇1𝐵]

= 𝑎𝑟𝑔 max
1𝐴,1𝐵

⎛

⎜

⎜

⎜

⎝

2 −

∑327
𝑖1=1

{

𝑅1𝑖1
− 1 − 𝑒−[1−0.418(𝑡𝑖1−𝜇1𝐴)]

1003∕3}

∑327
𝑖1=1

(𝑅1𝑖1
− 1

327
∑327

𝑖1=1
𝑅1𝑖1

)2

−

∑101
𝑖2=1

{

𝑅1𝑖2
− 1 − 𝑒−[1−0.418(𝑡𝑖2−𝜇1𝐵 )]

1003∕3}

∑101
𝑖2=1

(𝑅1𝑖2
− 1

101
∑101

𝑖2=1
𝑅1𝑖2

)2

⎞

⎟

⎟

⎟

⎠

(22)

3.2.3. Step 3
Both candidate distributions, the GEV distribution and the Gumbel

distribution, have had their location parameters optimized for each
system model within the three system families. Consequently, the opti-
mized distribution parameters for each system model in terms of both
FH and FC, along with the combined 𝑅2 for each design family, are
presented in Table 7.

It can be observed from Table 7 that the GEV distribution exhibits
a slight advantage in terms of ℛ2, albeit marginal, with a difference
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Table 7
Marginal distribution selection for the entire product line.

system Family & system Model GEV Distribution Gumbel Distribution

FH FC FH FC

Family 1 Model 1A
𝜎 = 0.203
𝜇 = 0.290
𝜉 = −0.030

𝜎 = 0.216
𝜇 = 0.287
𝜉 = −0.001

𝜎 = 0.201
𝜇 = 0.289

𝜎 = 0.216
𝜇 = 0.287

Family 1 Model 1B
𝜎 = 0.203
𝜇 = 0.356
𝜉 = −0.030

𝜎 = 0.216
𝜇 = 0.351
𝜉 = −0.001

𝜎 = 0.201
𝜇 = 0.354

𝜎 = 0.216
𝜇 = 0.351

ℛ2 Family 1 1.87140 1.87476 1.87133 1.87474

Family 2 Model 2A
𝜎 = 0.185
𝜇 = 0.217
𝜉 = 0.154

𝜎 = 0.154
𝜇 = 0.220
𝜉 = −0.101

𝜎 = 0.197
𝜇 = 0.222

𝜎 = 0.149
𝜇 = 0.226

Family 2 Model 2B
𝜎 = 0.185
𝜇 = 0.450
𝜉 = 0.154

𝜎 = 0.154
𝜇 = 0.467
𝜉 = −0.101

𝜎 = 0.197
𝜇 = 0.452

𝜎 = 0.149
𝜇 = 0.464

Family 2 Model 2C
𝜎 = 0.185
𝜇 = 0.266
𝜉 = 0.154

𝜎 = 0.154
𝜇 = 0.299
𝜉 = −0.101

𝜎 = 0.197
𝜇 = 0.271

𝜎 = 0.149
𝜇 = 0.281

ℛ2 Family 2 2.74885 2.63326 2.73684 2.62225

Family 3 Model 3A
𝜎 = 0.417
𝜇 = 0.318
𝜉 = −0.3

𝜎 = 0.386
𝜇 = 0.395
𝜉 = −0.212

𝜎 = 0.369
𝜇 = 0.294

𝜎 = 0.359
𝜇 = 0.381

ℛ2 Family 3 0.95766 0.95882 0.95483 0.95514
Table 8
Association measurement parameter 𝜙 and associated ℛ2 evaluation for Family 1.
Copula Model System 𝜙𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 ℛ2

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐

Gumbel Family 1 Model 1A 3.83 0.8981
Family 1 Model 1B 3.33 0.9343

Clayton Family 1 Model 1A 5.65 0.8919
Family 1 Model 1B 4.67 0.9242

Frank Family 1 Model 1A 13.43 0.8995
Family 1 Model 1B 11.42 0.9307

Independence Family 1 Model 1A NaN 0.4950
Family 1 Model 1B NaN 0.6918
l

3

n
m
C
i
d

of less than 0.5%. These results indicate that for the studied aircraft
engines, both the GEV and Gumbel distributions can be considered as
options for marginal distributions, with a preference towards the GEV
distribution.

3.3. Copula-based quantified airworthiness model

As discussed in the methodology section, the determination of the
quantified airworthiness model relies on two stages: the formulation of
the copula model and the estimation of the association measurement
parameter. The estimation of the association measurement parameter
is further divided into two approaches: the parametric approach and
the non-parametric approach. The parametric approach is suitable for
variables with simple and clear connections, while the non-parametric
approach is considered a solution for variables with more complex
connections. Both the parametric and non-parametric approaches are
discussed in this research, with the parametric estimation serving as
the baseline for the model’s accuracy. Subsequently, the non-parametric
approach is applied to compare against the baseline and determine the
level of improvement.

3.3.1. 𝜙 Estimation for copula model — parametric approach
Family 1, consisting of Model 1 A and Model 1B, for example,

contains 327 and 101 pairs of bivariate data points, respectively.
The association measurement parameter 𝜙 for the four copula model
candidates is listed in Table 8.
10
The obtained association measurement parameter determines the
baseline quantified airworthiness model and is evaluated using ℛ2, as
isted in Table 9.

.3.2. 𝜙 Estimation for copula model — non-parametric approach
Applying Algorithm 1 & 2 from the methodology, the purpose of the

on-parametric approach is to improve the performance of the copula
odel through ℛ2 evaluation. The iteration number 𝑣 for the Monte
arlo simulation is set to 20, and the top-ranking performance model

s selected as the top 20%, which gives a value of 𝑞 = 4. The training
ataset is set to be 𝑝 = 80% of the entire dataset. The increment

threshold at which the optimum search for 𝜙 stops is 𝜌 = 0.01%. It
can be observed that for the estimation of the association measurement
parameter 𝜙 using the parametric approach, the Frank copula best fits
the dataset of Family 1 Model 1 A, while the Gumbel copula best
fits Family 1 Model 1B. The non-parametric approach to estimating
𝜙 enhances the overall accuracy of the copula model fitting based
on the determined marginal distributions. A comparison between the
parametric and non-parametric approaches is presented in Table 10.
The results support three observations: 1. The Gumbel copula performs
well for both system models in Family 1 when using the non-parametric
approach for 𝜙 estimation. 2. The non-parametric approach improves
the copula modelling accuracy by 2.8% and 2.4% for Model 1 A,
which has a data population of 327, and by 0.4% and 0.5% for Model
1B, which has a data population of 101. This indicates that as the
dataset size for copula modelling increases, the association relationship
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Table 9
Parametric and non-parametric approach comparison for system Family 1 data.
Copula Model System 𝜙𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 ℛ2

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝜙𝑛𝑜𝑛−𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 ℛ2
𝑛𝑜𝑛−𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 Improvement

Gumbel Family 1 Model 1A 3.83 0.8981 17.49 0.9235 +2.8%
Family 1 Model 1B 3.33 0.9343 5.28 0.9379 +0.4%

Frank Family 1 Model 1A 13.43 0.8995 38.82 0.9214 +2.4%
Family 1 Model 1B 11.42 0.9307 24.25 0.9358 +0.5%
Fig. 6. Quantified airworthiness model and PoF for system Family 1 Model 1B.
Table 10
Validation of copula model performance on system Family 2 and Family 3.

System Best copula model ℛ2
𝑛𝑜𝑛−𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐

Family 2 Model 2A Gumbel 0.7178
Family 2 Model 2B Gumbel 0.8621

Family 2 Model 2C Clayton 0.8906
Gumbel 0.8854

Family 3 Model 3A Gumbel 0.9591

among marginal distributions becomes more complex. Hence, the non-
parametric approach is more suitable for larger datasets, while the
conventional parametric approach performs sufficiently well for smaller
datasets. 3. Both copula models achieve high accuracy, with ℛ2 >
0.9, demonstrating the effectiveness of using copulas to model the
quantified airworthiness of civil aircraft engines.

To visualize the quantified airworthiness model, Fig. 6 presents
the smooth copula surfaces based on the non-parametric 𝜙 estimation
approach using the Gumbel copula. The figure demonstrates both the
quantified airworthiness model and the probability of failure (PoF)
surfaces.

The quantified airworthiness model for the civil aircraft engine
Family 1 Model 1B is therefore given as:

𝐹1𝐵 = 𝑒𝑥𝑝

⎧

⎪

⎨
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(23)

3.4. Validation on all system families

To validate the applicability of the quantified airworthiness model,
the methodology is further applied to two additional system families.
The copula models, along with their corresponding model accuracy, are
provided in Table 10.
11
The results provide evidence of the following: 1. The proposed
algorithms generate ℛ2 > 0.7 for all system families and model designs,
irrespective of the data population. This demonstrates that the copula
approach is highly accurate in modelling the quantified airworthiness
of aircraft engines. 2. It is observed that the Gumbel copula is highly
likely the best choice for modelling the life-cycle airworthiness of civil
aircraft engines.

4. Conclusion & future work

This paper proposes a copula-based approach to evaluate the life-
cycle reliability of civil aircraft engines by considering the joint opera-
tion lives of both FH and FC. This approach addresses the inadequacy of
scheduling after-sales maintenance services for aviation systems when
considering only FH or FC individually, which can lead to insufficient
maintenance, and eventually turns into disastrous consequences. Due
to the unique nature of the aviation industry, where the operation life
is measured in two distinct time definitions, we define the copula-based
bivariate reliability modelling for aviation systems as the quantified
airworthiness model. This model has the potential to reshape the
foundation for life-cycle operation planning in the aviation industry.

To validate the applicability of the quantified airworthiness model
approach, six engine models from three distinctive propulsion system
families were studied. The novel non-parametric estimation of the as-
sociation measurement parameter for copula modelling achieved high
accuracy across the entire product line. Additionally, it was discovered
that the Gumbel copula, with GEV marginal distributions, is highly
likely to serve as the generic quantified airworthiness model for the
off-the-shelf civil aircraft engine product line.

However, despite the current accuracy of copula modelling, there is
still room for improvement. One direction for improvement involves
considering the tail dependence of the marginal distributions. The
accuracy of the copula model in capturing tail correlations becomes
crucial when evaluating situations with low airworthiness/high PoF. It
is planned that future works will explore tail dependence. In addition
to copula modelling, various applications built upon the quantified
airworthiness model are being researched. These applications include
a hierarchical maintenance work package recommender system, fleet
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fast-response strategies, after-sales service pricing, and insurance &
re-insurance for asset-heavy business models in the aviation industry.
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