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A B S T R A C T   

In this study, a hybrid modelling scheme for 3D Printing (3DP) technology is proposed for predicting three 
resource consumption processes: production time, electric energy and material usage. First, the manufacturing 
process is classified into five machine operations: axial moving, material processing, unit heating, material 
feeding and auxiliary. Then, according to the machine behaviours, a Gantt chart and power profile (GP) diagram 
is generated for understanding operation processes and power variations. Based on the GP diagram, physical 
models and data-driven models are created for simulating the resource consumption level of each operation. The 
time and material consumed during part printing are physically modelled based on a computer numerical control 
(CNC) language: G-code. The power of each operation and the time consumed while preheating machine units 
are modelled through experimental measurements under different related process parameter values. The 
collected experimental data are regressed to obtain the functional relationships between the power, preheating 
time and process parameters. With the time and power submodels for all operations, the resource consumption 
models for the 3DP machine are assembled. To verify the effectiveness of this method, hybrid prediction 
modelling is demonstrated for two fused deposition modelling (FDM) machines, and the prediction accuracies 
are tested for real printing tasks. The proposed method can be adopted to other additive manufacturing processes 
by comprehensively considering related factors, including part geometries, process parameters, G-codes and 
machine behaviours.   

1. Introduction 

3D printing (3DP), as a typical additive manufacturing (AM) tech
nology, has laid a milestone foundation for mass customisation due to its 
unlimited restrictions on the construction of complex and lightweight 
structures [1,2]. A typical 3DP process has three phases, as shown in 
Fig. 1: prefabrication, printing and postprocessing [3]. During the pre
fabrication phase, a computer-aided design (CAD) model is processed 
into a standard triangle language (STL) format. Then, based on process 
parameters, computer-aided manufacturing (CAM) slicer software im
plements built-in algorithms to slice the STL model into several layers 
and to plan the machine operations and material deposition toolpaths on 
each layer [1]. After that, the operations and toolpaths are programmed 
as G-codes, which is a general CNC programming language for AM and 
subtractive manufacturing (SM) technologies. Then, the process moves 
to the printing phase. By executing each command line in G-codes, 
machine units are activated to complete specific operations until the 

workpiece is delivered [4]. During the postprocessing phase, the work
piece is fine-finished by manually removing the support structure and by 
surface polishing to achieve the desired geometry [5]. 

Part quality and precision have long been the key evaluation criteria 
of manufacturing devices [6]. Most research is devoted to the evaluation 
of mechanical strength, fatigue limit and surface roughness, aiming at 
the optimisation of process parameters [7–9]. In recent decades, an 
evolution towards sustainable and environmentally friendly 
manufacturing has occurred [10]. As an emerging manufacturing tech
nology replacing traditional processes, such as casting and milling, an 
effective assessment of AM sustainability from an environmental burden 
perspective is a crucial issue [11]. Preliminary studies have confirmed 
the higher resource demands of some AM processes than those of sub
tractive and bulk processes [12,13]. Hence, the resource consumption 
prediction of AM must be considered. 

In the present work, a hybrid modelling method is proposed for 
predicting the time, energy and material consumptions of 3DP process. 
To achieve general prediction, we investigate the mainstream 3DP 
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technologies and classify five machine operations based on functions: 
axial moving, material processing, unit heating, material feeding and 
auxiliary. Correspondingly, the machine units that drive those machine 
operations are classified into five subsystems. Then, a Gantt chart and 
power profile (GP) diagram is formulated, which integrates the power 
profile of the printing process and the Gantt chart of the machine op
erations. Based on the GP diagram, the resource consumption of each 
operation is modelled. The modelling consists of two parts: 1) physical 
modelling based on G-codes; 2) data-driven modelling based on exper
imental data. Physical modelling sufficiently uses the toolpaths, printing 
speeds and material feeds encoded as G-codes to model the material 
usage and time consumed for axial motions. To model the resource 

consumption of the entire printing process, the resources consumed 
during machine preheating and standby should be considered. The 
preheating time and powers of the classified subsystems can be only 
modelled based on experimental data. Thus, during data-driven 
modelling, experiments are conducted to measure the preheating 
times and powers under different related process parameter values. The 
collected data are used for regressing the mathematical models of pre
heating times and powers. Finally, based on the GP diagram, the con
sumption models are assembled. 

To verify the effectiveness of the proposed method, two real-world 
3DP machines are used as test cases in this study: the Anycubic i3 
Mega FDM printer and the Monoprice MP Mini Delta FDM printer. For 

Nomenclature 

Prediction modelling of time consumption 
t Total time consumption 
taxis Time consumption of axial moving 
tw
axis Axial moving time in working state 

ts
axis Axial moving time in standby state 

ΔX,ΔY,ΔZ Axial motion distance for each toolpath on X-, Y-, and Z- 
axes, respectively 

vxy Travelling/printing speeds on each toolpath on XY plane 
vmin

xy Minimum travelling/printing speeds 
vmax

xy Maximum travelling/printing speeds 
vz Layer-switching speed on Z-axis 
vmin

z Minimum layer-switching speed 
vmax

z Maximum layer-switching speed 
tmp Time consumption of material processing 
tp
mp Material processing time in preheating state 

tw
mp Material processing time in working state 

T0
mp Present temperature of material processing 

Tmp Target temperature of material processing 
Tmax

mp Maximum target temperature of material processing 
ΔTmp Temperature difference from present temperature to target 

temperature of material processing 
tuh Time consumption of unit heating 
tp
uh Unit heating time in preheating state 

tw
uh Unit heating time in working state 

T0
uh Present temperature of unit heating 

Tuh Target temperature of unit heating 
Tmax

uh Maximum target temperature of unit heating 
ΔTuh Temperature difference from present temperature to target 

temperature of unit heating 
T0 Room temperature 
tmf Time consumption of material feeding 
tw
mf Material feeding time in working state 

ts
mf Material feeding time in standby state 

tlayer Material feeding time per layer in BJ, PBF or SL 
technologies 

N Layer number 
ta Time consumption of auxiliary operation 
R2 Goodness of fit of a regression model 

Prediction modelling of energy consumption 
E Total energy consumption 
Eaxis Energy consumption of axial moving 
Pw

axis Axial moving power in working state 
Ps

axis Axial moving power in standby state 
Emp Energy consumption of material processing 
Pp

mp Material processing power in preheating state 

Pw
mp Material processing power in working state 

Euh Energy consumption of unit heating 
Pp

uh Unit heating power in preheating state 
Pw

uh Unit heating power in working state 
Emf Energy consumption of material feeding 
Pw

mf Material feeding power in working state 
Ps

mf Material feeding power in standby state 
Ea Energy consumption of auxiliary operation 
Pa Power of auxiliary operation 

Prediction modelling of material consumption 
M Total material consumption 
ΔVpath Volume of material consumption per toolpath 
ρ Quoted material density 
Δℓpath Material feed on each toolpath 
r Diameter of FDM material filament 
G-code calculation for physical modelling. 
CN Number of command lines in a G-code file 
Prediction modelling of Monoprice MP Mini Delta FDM printer. 
tw1
mp Material processing time for the first layer in working state 

twrest
mp Material processing time for the rest layers in working state 

Δl1xy Axial moving distance on XY plane for the first layer 
v1

xy Travelling/printing speed on XY plane for the first layer 
Pw1

mp Material processing power for the first layer in working 
state 

Abbreviations 
AM Additive manufacturing 
ANN Artificial neural network 
BJ Binder jetting 
CAD Computer-aided design 
CAM Computer-aided manufacturing 
CNC Computer numerical control 
DED Direct energy deposition 
EBM Electron beam melting 
FDM Fused deposition modelling 
GP Gantt chart and power profile 
ME Material extrusion 
MJ Material jetting 
PBF Powder bed fusion 
PLA Polylactic acid 
PLM Polymerisation 
SL Sheet lamination 
SLA Stereolithography 
SLS Selective laser sintering 
SM Subtractive manufacturing 
STL Standard triangle language 
3DP 3D Printing  
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each machine, predictive models are developed by following the pro
posed method. Then, each machine is assigned two printing tasks using 
different process parameter values. The resource consumption of each 
printing task is predicted and compared with the actual consumption to 
calculate the prediction accuracy. The percent errors of time, energy, 
and material predictions reach 2.31%, 1.57 % and − 8.05 % for the 
Anycubic machine and − 2.48 %, 1.31% and − 26.14 % for the Monop
rice machine, respectively. The outcome of this research provides gen
eral guidance for manufacturers to model and predict the resource 
consumption of mainstream 3DP technologies and can potentially be 
applied to other AM and CNC manufacturing technologies. 

The rest of this paper is organised as follows. In Section 2, recent 
research into AM resource consumption prediction is reviewed, followed 
by the research gaps and motivation. Section 3 presents a demonstration 
of the classifications of 3DP machine operations and subsystems. Then, 
the framework of the hybrid prediction modelling method is presented 
in Section 4. The mathematical models are developed and displayed in 
Section 5. The implementation of the proposed modelling method on 
two FDM machines is presented in Section 6, followed by the experi
mental validation of prediction accuracy in Section 7. Finally, a 
conclusion and future work are given in Section 8. 

2. Background and motivation 

With increasing public concern about resource scarcity, a compre
hensive evaluation of environmental performance has become a major 
focus for advancing AM technologies. Resource consumption has been 
regarded as a direct measure for evaluating the environmental perfor
mance of AM [14]. In recent years, several research efforts have been 
attributed to predicting time, energy and material usage for various AM 
processes. 

In the existing literature, time consumption models were mostly 
developed on subprocess levels [15]. For instance, the time of selective 
laser sintering (SLS) process modelled by [16] was divided into four 
phases: machine preparation, layer printing by laser beam, material 
feeding by metal powder roller and ending operations. The time of 
machine preparation and ending operations were fixed. The material 
feeding time was modelled as the layer numbers multiplied by the 
average time for feeding one layer’s material. The layer printing time 
was modelled as the part volume divided by the average laser scanning 
rate. The time model of stereolithography (SLA) process was developed 
by [17]. Two time-consuming phases were identified: layer printing by 
ultraviolet light and axial moving for layer switching. The modelling of 
the layer printing time was based on the part volume and average laser 
scanning rate. The modelling of axial moving time was based on layer 
numbers and the time for switching one layer. Some research adopted 
machine learning to simulate the time model of AM processes. For 
instance, artificial neural network (ANN) was applied by [18] to train 
the time model of SLS process. The inputs of the Levenberg Marquardt 
learning algorithm included the build height, part volume and bounding 
box. The output was SLS process time. The prediction accuracy of the 
ANN model ranged from 2 % to 15 % errors. Grey theory was adopted to 
simulate the time model of FDM process in [19]. The method was used as 

a fuzzy mathematical tool to simulate the uncertain relationships be
tween the time consumption and related factors: build height, part 
volume and bounding box. In the grey system, the inputs were the 
related factors, and the output was FDM process time. The prediction 
accuracy was within 10 % error. 

Energy consumption models were generally developed by identi
fying the major energy consumers while printing and characterising the 
relationships between energy consumption and process parameters 
[14]. For instance, the energy of SLS process modelled by [21] was 
divided into three energy-consuming phases: machine warm-up, sin
tering and machine cool-down. The mean power of each phase was 
measured, and the energy was modelled as the mean power multiplied 
by the time consumed in each phase. The sintering time was the part 
volume divided by the average sintering time per unit volume of metal 
powder [20]. Binder jetting (BJ) process energy was modelled as the 
sum of energy for five units: infrared heater, uncap print head, sintering 
tool, curing tool and machine idle tool [22]. For the infrared heater and 
uncap print head, the energy was the product of the layer number, mean 
power and average printing time per layer. For curing and sintering 
tools, the energy was the sum of two states: heating and maintaining. 
The heating energy was the product of the temperature difference, total 
mass of material powder and average heating energy per unit mass for 
increasing the temperature by 1◦C. The maintaining energy was an in
tegral of power over runtime, where the power was a nonlinear function 
of thermal resistance, convection coefficient and temperature differ
ence. For the machine idle tool, the energy was modelled as the machine 
standby power multiplied by the process time. The prediction accuracy 
ranged from 2 % to 7 % errors [22]. FDM process energy was modelled 
based on three energy-consuming units: electric drive, heater, and tur
bomachine. The mean power of each unit was measured and multiplied 
by its runtime to calculate the energy consumption. The prediction ac
curacy ranged from 1.6 % to 9.5 % errors [23]. SLA process energy 
modelled by [14] showed the accumulated energy of laser scanning for 
all layers. The layer number was calculated based on the part height and 
curing depth. The energy consumed on each layer was modelled as the 
laser power multiplied by its runtime. The runtime was estimated based 
on the laser scanning speed, contour lines and infill area on each layer. 
The prediction accuracy ranged from 5.85 % to 7.85 % errors. Electron 
beam melting (EBM) process was divided into seven phases: powder bed 
setup, build chamber cleaning, plate heating, beam alignment, building, 
cooling and vacuum generating [24]. The linear regression model of 
energy and runtime for each phase was obtained through experiments. 
The coefficient of each model (i.e., power of each phase) was found to be 
constant. 

Research on AM material usage prediction is still scarce. In [22], the 
mass of metal powder and binder consumed in BJ process was modelled. 
The binder was used to bond the metal powder during printing, and its 
usage was the product of material density, volume used per layer and 
layer numbers. 

According to the reviewed research, most studies focused on the 
consumption prediction for a single technology type, and the modelling 
methods were mainly based on the part volume and average resource 
demand per unit volume. Some methods adopted machine learning to 

Fig. 1. Workflow of a typical 3DP process.  
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train consumption models; however, they neglected the impacts of 
process parameters on resource consumption. In fact, the part geometry 
and the numerical setting of process parameters determine the layer 
slicing and toolpath planning, thus affecting G-code programming. As 
the output from CAM, G-codes provide detailed commands for the ma
chine operations and therefore decide the resource demands for fabri
cating the workpiece. In addition, machine behaviour is a factor 
affecting resource consumption. For instance, some machine units need 
to be heated to support printing. The preheating time and power are 
determined by the hardware characteristics and related to some process 
parameters, such as the heating temperature. 

To propose a general prediction method with good accuracy, con
sumption modelling is supposed to consider the entire printing pro
cesses, machine behaviours and process parameters. G-code, as the key 
link between the prefabrication process and real-world printing process, 
provide detailed manufacturing information to assist in consumption 
modelling. To fill the above research gaps, we propose a hybrid 
modelling scheme to predict the time, energy and material consump
tions of the 3DP process. The model integrates data-driven modelling 
based on experimental measurements and physical modelling based on 
G-codes, which makes full use of the toolpaths and machine unit 
schedules provided by G-codes and reduces the experimental workload 
on the machine. This method is not limited to only 3DP process but can 
also be applied to other AM and CNC manufacturing technologies. 

3. Resource consumption-oriented and function-based 
classification method for 3DP technologies 

Aiming at the general prediction method, we first investigate the 
mainstream 3DP technologies and find the common features of their 
printing processes. Regardless of which type of technology is adopted, a 
printing process is completed only through cooperative operations 
driven by multiple machine units with specific functions. In general, 
there are five functions: axial moving, material feeding, unit heating, 
material processing and auxiliary. By considering the common features, 
we classify the printing process into five operations based on the func
tions. The machine units are correspondingly classified into five func
tional subsystems. In the following subsections, details of this 
classification method are described, followed by the generation of a GP 
diagram based on the classified operations. 

3.1. Classifications of machine operations and subsystems for mainstream 
3DP technologies 

Mainstream 3DP technologies are classified into seven categories: 
material extrusion (ME), direct energy deposition (DED), powder bed 
fusion (PBF), material jetting (MJ), Binder jetting (BJ), polymerisation 
(PLM) and sheet lamination (SL) [26]. A 3DP machine using any of these 
technologies has multiple machine units to cooperatively complete 

printing. Each unit performs its function to complete a specific opera
tion, which is driven by a certain type of energy transformation. For 
instance, the Cartesian system of an ME machine can move the nozzle to 
a target coordinate. Electrical energy is transformed into mechanical 
energy to complete this operation. 

From the perspective of CNC, there are five typical operations driven 
by the corresponding G-code commands, as shown in Table 1, namely 
axial moving, material feeding, unit heating, material processing and 
auxiliary. A command line consists of two parts: operational commands 
and parameters. The operational commands are used to drive the spe
cific subsystem to begin the operation, followed by the parameters used 
to instruct the expected action. For instance, in command line “M109 
S150”, operational command “M109” drives the material processing 
system to begin the heating operation; “S150” commands the system 
heating to the target temperature 150◦C. 

Based on the five operations, the machine units are classified into 
five subsystems, as shown in Fig. 2. There are three types of energy 
transformations (i.e., electrical to mechanical energy, thermal energy 
and others) and states (i.e., working, preheating and standby) to drive 
the subsystem operations. In details, the axial moving operation has two 
states: working and standby. While working, the axial moving system 
drives the nozzle to a specific coordinate by following G-codes; other
wise, the system stands by. The material feeding operation has two 
states: working and standby. While working, the material feeding system 
deposits material along toolpaths or to feed materials on each layer; 
otherwise, the system stands by. The material processing operation has 
two states: preheating and working. Before depositing material, the 
material processing system is preheated to its target temperature. When 
the deposition begins, the system remains at target temperature to 
continuously process the material. Some 3DP technologies have unit 
heating systems to assist in material deposition. For instance, the heat
ing of the build platform for MJ and ME is to adhere the workpiece base 
to the platform. During the preheating state, the system is preheated to 
its target temperature. During the working state, the platform maintains 
the temperature to continuously aid material deposition. The auxiliary 
operation remains in the working state to monitor and control the 
printing process. This classification method is generally applicable to 
any newly developed 3DP technology. 

3.2. Resource consumption-oriented modelling based on machine 
operations and power profile 

To model the time and energy consumptions of a 3DP process, the 
machine behaviour must be understood from three perspectives: 1) the 
machine operations needed for completing printing; 2) the subsystems 
used for driving the operations; and 3) the operation sequence during 
printing. The operations and corresponding subsystems are identified 
based on the energy-consuming machine units. The operations’ 
sequence is determined by the built-in algorithm provided by the slicer 

Table 1 
G-code commands for machine operations [27,28].  

Operations G-code 
commands 

Operational 
commands 

Definitions Parameters Definitions 

Axial moving G1/G0 F X Y 
G1/G0 F X Y 
G1/G0 F Z 

G1, G0 Start linear axial moving F Printing/travelling speed 
X Endpoint coordinate of present toolpath on X- 

axis 
Y Endpoint coordinate of present toolpath on Y- 

axis 
Z Endpoint coordinate of present toolpath on Z- 

axis 
Material feeding G1 F X Y E G1 Start material feeding E Present cumulative material feed 
Unit heating M190 S M190 Heating from present to target 

temperature 
S Target temperature of unit heating 

Material 
processing 

M109 S M109 Heating from present to target 
temperature 

S Target temperature of material processing 

Auxiliary None Remain on-state during printing  
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software, and the starting time of each operation can be known from G- 
codes. To visually display the machine behaviour, a GP diagram is 
generated, which is used as the first-version model to abstract the ma
chine behaviour. Fig. 3 presents an exemplary GP diagram of an FDM 
machine, which consists of two parts: Gantt chart and power profile. 

In the Gantt chart, the starting time of each operation corresponds to 
its G-code command, and the duration depends on the hardware per
formance. For instance, at 00 m 45 s, the unit heating operation begins 
to preheat the build platform by following the command “M190”. The 
time consumption of this preheating state depends on the temperature 
difference from present temperature to the target temperature, as well as 
the heating performance of the unit heating system. At 03 m 41 s, the 
build platform reaches its target temperature, and the material 

processing operation begins to preheat the nozzle hotend by following 
the command “M109”. After the preheating state, both operations 
switch to the working state to maintain the target temperature until the 
end of printing. At 05 m 58 s, the material feeding and axial moving 
begin to deposit material by following the command “G1” or “G0”. 

The machine power profile is captured by using a power meter. The 
profile step change corresponds to the starting or state-switching of 
operations. For instance, from 00 m 45 s to 03 m 41 s, the power remains 
constant when the unit heating operation remains in the preheating 
state. From 03 m 41 s, the power is in the form of periodic pulses when 
the material processing operation begins. 

The generation of a GP diagram can help to understand the machine 
operations and evaluate which time periods must be modelled to reduce 

Fig. 2. Classifications of operations and subsystems for mainstream 3DP technologies.  

Fig. 3. Example GP diagram of the Anycubic i3 Mega FDM 3D printer [26].  
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the workload of time modelling. For instance, in Fig. 3, the five opera
tions from 05 m 58 s to 11 m 07 s are simultaneous. When the time 
model of any operation in this period is obtained, the time consumption 
levels of other operations can be represented by this model. For non- 
simultaneous operations, the time must be modelled separately. 

4. Framework of hybrid prediction modelling of 3DP resource 
consumption 

In this study, a hybrid modelling method is proposed to predict the 
time, energy and material consumptions of the A3DP process. The 
method begins with the generated GP diagram to conduct prediction 
modelling. The framework of the modelling workflow is presented in, 
which includes three steps: environmental setup, prediction modelling 
and model assembly. Each step is described as follows. 

4.1. Environmental setup for prediction modelling 

The machine operations and subsystems are identified in the previ
ous section. To model the resource consumption of a printing process, 
the G-codes used for commanding the machine operations must be 
identified. At the software level, the CAD design is imported into slicer 
software, where the values of process parameters are set by the machine 
user. Then, the design is sliced into multiple layers, and the toolpaths on 
each layer are planned and programmed as G-codes. The file of G-codes 
is used in the subsequent modelling step. 

In addition, since the machine power and the preheating time of 
some machine units determine the total time and energy consumption 
levels, experiments are unavoidable for measuring those parameters. At 
the hardware level, a power meter connected to the 3DP machine must 
be prepared for the following data-driven model. 

4.2. Hybrid prediction modelling of 3DP resource consumption 

The hybrid prediction modelling transforms the first-version model 
(i.e., GP diagram) to the mathematical models of resource consumption, 
as shown in Fig. 4. The model includes two parts: physical modelling and 
data-driven modelling. Each part is described in the following 
subsections. 

4.2.1. Physical modelling based on G-codes 
G-codes provide toolpaths, speeds and material feeds for material 

deposition. This information is used to predict the time consumed for 
axial motions and the total material consumption, so called physical 
modelling based on G-codes. Here we take FDM technology as an 
example. In the command line “G1 F600 X17.156 Y26.687 E1.265”, the 
operational command “G1” drives the axial moving system to begin 
linear axial motion. “F600 X17.156 Y26.687” commands the axial 
moving from the previous coordinate to the target coordinate (X17.156 
Y26.687) at a speed of 600 mm/min. With the coordinates and speeds, 
the time consumed for this motion can be calculated. “E1.265” com
mands the material feeding system to deposit filament materials during 
this motion. The total length of the deposited material is 1.265 mm. With 
the material feed, the mass of material consumption can be calculated. 
Details of this calculation method are found in Section 5. 

4.2.2. Data-driven modelling based on experimental data 
To predict the time and energy from the warming of the machine to 

the end of printing, the system preheating times and powers must be 
modelled. Since these parameters are not given in G-codes, their 
mathematical models are only developed based on experimental data, so 
called data-driven modelling. Table 2 lists the two types of parameters to 
be measured. According to G-code commands, it is assumed that the 
preheating time and the working powers of axial moving, mateiral 
feeding, unit heating and material processing are dependent to the 

Fig. 4. Framework of the hybrid modelling method for 3DP resource consumption prediction.  
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corresponding process parameters. The functional relationships need to 
be validated through experiments. The independent parameters, i.e., the 
standby powers and the working power of auxiliary operation, are un
related to any process parameter, which can be directly measured as a 
constant. 

For different machines, the preheating times and powers depend on 
the machine characteristics and process parameters. For instance, the 
unit heating system follows the command “M190 STuh” to initiate 
heating from the present temperature to the target temperature Tuh. The 
preheating time is determined by the temperature difference ΔTuh and 
the heating performance of the unit heating system. In this study, we 
assume that the preheating time is functionally related to ΔTuh, and the 
function coefficients are determined by the system heating performance. 
To validate this assumption, experiments are performed to measure the 
preheating time at different values of ΔTuh. By adopting the regression 
analysis method, the collected experimental data are processed to derive 
the function coefficients. Additionally, it is assumed that the preheating 
power is related to both Tuh and the system heating performance. The 
functional relationship is derived in a similar manner. 

With respect to the design of experiments, the corresponding G-code 
commands are manually programmed to command the machine to run 
each subsystem independently. For instance, for measuring the material 
processing power at different target temperatures Tmp, the G-code 
command “M109 STmp” is manually programmed, and the value of Tmp is 
randomly set within the boundary from the present temperature to the 
system’s maximum temperature. During experimentation, each depen
dent parameter is measured by a power meter under different values of 
related process parameters. Note that we use the apparent power to 
estimate the power demand of the 3DP machine. The apparent power is 
a combination of the active power and the reactive power. The active 
power represents the electrical resistance power converted to mechan
ical and thermal energies, while the reactive power represents the 
inductive and capacitive powers used to form the magnetic and electric 
fields [30]. 

After the collection of experimental data, regression analysis is 
adopted to calculate the function coefficients. By using a polynomial 
regression tool, different degrees of polynomial functions are regressed, 
from which the most feasible function is selected as the regression 
model. According to [31], the function degree depends on the confi
dence bound of the coefficients. When the confidence bound of the 
highest order coefficient crosses zero, the polynomial function is over
fitted, indicating that a low degree of polynomial function is more 
feasible. In addition, the statistical measure R-square (R2) is calculated 
to estimate the goodness of fit of each regression model. The closer R2 is 
to 1, the closer the sample points are to the regression curve, and the 
more significant the impact of process parameter on the measured 
dependent parameter [31,32]. 

4.3. Resource consumption model assembly 

With the submodels of powers, preheating time and time consumed 
for axial motions, the time and energy models of each operation are 
formulated. From the GP diagram of the 3DP machine, the simultaneous 
operations and the independent operations are determined. For simul
taneous operations, only one operation’s time model must be formu
lated. This model is used for other operations and for modelling their 
energy consumption levels. For instance, the axial moving operation is 
generally simultaneous with the material feeding operation. Thus, the 
time consumed for axial motions is equal to the time consumed for 
material feeding, and their time models are the same. For independent 
operations, such as the preheating of the material processing system, the 
submodels of preheating time and energy can only be obtained through 
data-driven modelling. 

With the time and energy models of all operations, the mathematical 
models of the total time and energy consumption levels are finally 
assembled according to the GP diagram. In terms of the material con
sumption, the model is formulated based on the submodel of the ma
terial feed per toolpath. Details of the above consumption models are 
presented in the next section. The notations used in prediction modelling 
are listed below. 

5. Hybrid prediction modelling of resource consumption in the 
3DP process 

According to the framework in Section 4, this section defines the 
prediction models of time, energy and material consumptions. As shown 
in Eqs. (1)–(3), the total time consumption of a printing process t equals 
the Boolean union of four operations’ time consumption levels. The 
model is nonlinear due to the simultaneous operations during printing, 
including axial motion time taxis, material processing time tmp, unit 
heating time tuh and material feeding time tmf . Note that the time of 
auxiliary operation ta equals the total time consumption t because the 
auxiliary system remains on-state throughout the printing process. The 
total energy consumption E equals the linear accumulation of energy 
consumed by all operations. The model includes the energy consump
tion levels of axial moving Eaxis, material processing Emp, unit heating 
Euh, material feeding Emf and auxiliary Ea. The total material con
sumption M equals the accumulative mass of material deposited on each 
toolpath. ρ denotes the material density. ΔVpath denotes the material 
volume per toolpath. 

t = taxis ∪ tmp ∪ tuh ∪ tmf (1)  

E = Eaxis +Emp +Euh +Emf +Ea (2)  

M = ρ •
∑

ΔVpath (3) 

The submodels of each operation’s consumption are defined in the 
following subsections. 

Table 2 
Experimental measurements for data-driven modelling [27,28].  

Operations Parameters Related process parameter G-code commands Meanings 

Axial moving Dependent Working power vxy,vZ G1 Fvxy X Y 
G1 Fvz Z 

Command axial moving on X- Y-axes at speed vxy; 
Command axial moving on Z-axis at speed vz. 

Independent Standby power None 
Material feeding Dependent Working power vxy G1 Fvxy E Command material feeding at speed vxy. 

Independent Standby power None 
Unit heating Dependent Preheating time ΔTuh M190 STuh Command system heating to target temperature Tuh. 

Preheating power Tuh 
Working power 

Material processing Dependent Preheating time ΔTmp M109 STmp Command system heating to target temperature Tmp. 
Preheating power Tmp 

Working power 
Auxiliary Independent Working power None  
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5.1. Prediction modelling of time consumption 

5.1.1. Time consumption of axial moving operation 
The axial moving operation has two states: working and standby. The 

time consumption of this operation taxis is the sum of the time consumed 
by two states: 

taxis = tw
axis + ts

axis (4)  

where twaxis denotes the working time and ts
axis denotes the standby time. 

For the commonly used three-axis 3DP system, there are three types of 
axial motion: printing motion on the XY plane, travelling motion on the 
XY plane and layer-switching motion on the Z-axis. Fig. 5 shows the 
three axial motions used to calculate tw

axis. Each motion is described as 
follows. 

For the first layer-switching motion, the nozzle starts from A (x1, y1, 
z1) on Layer1 and then moves to B (x2, y2, z2) on Layer2 at a layer- 
switching speed of vz, where x1 = x2, y1= y2, z1∕=z2. The displacement 
of this motion on the Z-axis is z2 − z1. The time consumption is calcu
lated as z2 − z1

vz
. 

For the second printing motion on Layer2, the nozzle moves from B 
(x2, y2, z2) to C (x3, y3, z3), with a material feed e at a printing speed v1

xy, 
where z2= z3. The displacement of this motion is 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x3 − x2)
2
+
(
y3 − y2

)2
√

. The time consumption is calculated as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x3 − x2)
2
+(y3 − y2)

2
√

v1
xy

. 

For the final travelling motion on Layer2, the nozzle moves from C 
(x3, y3, z3) to D (x4, y4, z4) without material feed at a travelling speed v2

xy, 
where z3= z4. The displacement of this motion is 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x4 − x3)
2
+
(
y4 − y3

)2
√

. The time consumption is calculated as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x4 − x3)
2
+(y4 − y3)

2
√

v2
xy

. 

Based on the calculation above, the working time tw
axis is the accu

mulation of time consumed for all toolpaths from the first layer to the 
final layer: 

tw
axis =

∑
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔX2 + ΔY2

√

vxy
+

∑ΔZ
vz

(5)  

where ΔX, ΔY, and ΔZ denote the distance from the present coordinate 
to the next coordinate on the X-, Y-, and Z-axes, respectively; vxy denotes 
the printing/travelling speed of each toolpath on the XY plane; and vz 
denotes the layer-switching speed on the Z-axis. The coordinate and 
speed values of each axial motion are extracted from G-codes. 

In the standby state, the axial moving system is time- and energy- 
consuming without axial motion. During printing, this state is gener
ally simultaneous with other operations, such as the preheating of the 
material processing and unit heating systems. Thus, the standby time 
ts
axis depends on the time consumed by other operations. The standby 

time mathematical model is represented by the time models of other 
simultaneous operations according to the GP diagram. 

5.1.2. Time consumption of material processing operation 
The material processing operation has two states: preheating and 

working. The total time consumption of this operation tmp is the sum of 
the time consumed by two states: 

tmp = tp
mp + tw

mp (6)  

where tp
mp and tw

mp denote the preheating time and working time, 
respectively. In the preheating state, the material processing system is 
heated from the present temperature T0

mp to the target temperature Tmp. 
The preheating time tp

mp is determined by the temperature difference Δ 
Tmp and the heating performance of the material processing system. 
Therefore, we assume tpmp as a function of ΔTmp: 

tp
mp = f

(
ΔTmp

)
(7)  

ΔTmp = Tmp − T0
mp (8) 

The function coefficients can be regressed based on the experimental 
data collected from the material processing system. In the working state, 
the heating remains at Tmp until the end of printing. This state is 
simultaneous with the states of other operations, such as axial moving 
and material feeding. Thus, according to the GP diagram, the model of 
working time tw

mp is represented by the time models of other simulta
neous operations. 

5.1.3. Time consumption of unit heating operation 
The unit heating operation has two states: preheating and working. 

The total time consumption of this operation tuh is the sum of the time 
consumed by two states: 

tuh = tp
uh + tw

uh (9)  

where tpuh and tw
uh denote the preheating time and working time, 

respectively. In a similar way, tp
uh is determined by the temperature 

difference ΔTuh and the heating performance of the unit heating system. 
Therefore, we assume tpuh as a function of ΔTuh: 

tp
uh = f (ΔTuh) (10)  

ΔTuh = Tuh − T0
uh (11)  

where T0
uh and Tuh denotes the present temperature and target temper

ature, respectively. The function coefficients can be regressed based on 
the experimental data collected from the unit heating subsystem. In the 
working state, the heating remains at Tuh. The working time twuh depends 
on the time of other simultaneous operations. 

Fig. 5. Typical toolpaths for the general three-axial moving system.  
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5.1.4. Time consumption of material feeding operation 
The material feeding operation has two states: working and standby. 

The time consumption of this operation tmf is the sum of the time 
consumed by two states: 

tmf = tw
mf + ts

mf (12)  

where tw
mf denotes the working time and tsmf denotes the standby time. 

For ME, DED, and PLM technologies, the operation is in the working 
state during the material deposition process and runs simultaneously 
with axial moving to extrude thermoplastic filaments or spray metal 
powders along the specified toolpaths. In this case, tw

mf equals the 
working time of axial moving twaxis: 

tw
mf = tw

axis (13) 

For BJ, PBF and SL technologies, the material feeding operation is 
driven by the powder roller or sheet roller to supply material for a new 
layer; simultaneously, the axial moving operation is in the standby state. 
In this case, tw

mf is modelled as follows: 

tw
mf = tlayer • N (14)  

where tlayer denotes the time for one layer’s material feeding and N de
notes the layer numbers, and its value is determined by the part height 
and layer thickness. The standby time tsmf depends on the times of other 
simultaneous operations. 

5.1.5. Time consumption of auxiliary operation 
The auxiliary operation is always in a working state to monitor and 

control printing progression. The time consumption ta of this operation 
is represented by the Boolean union of other operations’ time con
sumption levels: 

ta = taxis ∪ tmp ∪ tuh ∪ tmf (15)  

5.2. Prediction modelling of energy consumption 

Energy consumption is modelled as the integral of power over the 
runtime of each machine subsystem. The energy model is built based on 
the time models. 

5.2.1. Energy consumption of axial moving operation 
The energy of axial moving operation Eaxis is the sum of the energy 

levels consumed by the working and standby states: 

Eaxis =

∫ twaxis

0
Pw

axisdt+
∫ tsaxis

0
Ps

axisdt (16)  

where Ps
axis denotes the standby power; Pw

axis denotes the working power 
assumed as a function of the travelling speed vxy on the XY plane and the 
layer-switching speed vz on the Z-axis: 

Pw
axis = f

(
vxy, vz

)
(17)  

5.2.2. Energy consumption of material processing operation 
The energy of the material processing operation Emp is the sum of the 

energy levels consumed by the preheating and working states: 

Emp =

∫ tpmp

0
Pp

mpdt +
∫ twmp

0
Pw

mpdt (18)  

where Pp
mp and Pw

mp denote the preheating power and working power, 
respectively, and are assumed as functions of the target temperature Tmp: 

Pp
mp = f

(
Tmp

)
(19)  

Pw
mp = f

(
Tmp

)
(20)  

5.2.3. Energy consumption of unit heating operation 
The energy of unit heating operation Euh is the sum of the energy 

levels consumed by the preheating and working states: 

Euh =

∫ tpuh

0
Pp

uhdt+
∫ twuh

0
Pw

uhdt (21)  

where Pp
uh and Pw

uh denote the preheating power and working power, 
respectively, and are assumed as functions of the target temperature Tuh: 

Pp
uh = f (Tuh) (22)  

Pw
uh = f (Tuh) (23)  

5.2.4. Energy consumption of material feeding operation 
The energy of material feeding operation Emf is the sum of the energy 

levels consumed by the working and standby states: 

Emf =

∫ tw
mf

0
Pw

mf dt+
∫ tsmf

0
Ps

mf dt (24)  

where Ps
mf denotes the standby power and Pw

mf denotes the working 
power assumed as a function of the printing speed vxy: 

Pw
mf = f

(
vxy

)
(25)  

5.2.5. Energy consumption of auxiliary operation 
The auxiliary operation remains a constant power Pa during printing. 

The energy consumption Ea of the auxiliary operation is modelled as 
follows: 

Ea = Pa • ta (26)  

5.3. Prediction modelling of material consumption 

The material feed on each toolpath follows G-code commands. The 
total mass M of material consumption is modelled as follows: 

M = ρ •
∑

ΔVpath (27)  

where ρ denotes the material density and e denotes the deposited ma
terial volume on each toolpath, which is calculated according to the 
material properties. For example, a commonly used material for FDM is 
polylactic acid (PLA) filaments. In this case, ΔVpath represents the vol
ume of material filament extruded on each toolpath: 

ΔVpath = Δℓpathπ r2

4
(28)  

where r and Δℓpath denote the cross-sectional diameter and the extruded 
length of the thermoplastic filament, respectively. Δℓpath can be ob
tained through physical modelling based on G-codes. For example, in a 
command line “G1 F600 X17.156 Y26.687 E1.265”, the command 
“E1.265” indicates that the accumulative length of deposited material is 
1.265 mm, thus 

∑
Δℓpath = 1.265. 

5.4. Summary of time and power for resource consumption model 
assembly 

The submodels of time and power defined in the previous sections 
are used to assemble the final consumption models of time and energy, 
as shown in Fig. 6. It can be seen that there are four types of parameters 
to be modelled: parameters calculated from G-codes, parameters 
modelled based on GP diagram, independent parameters and dependent 
parameters modelled through experiments. 

Regarding time consumption, the submodels of preheating time for 
material processing tpmp and unit heating tp

uh are obtained through data- 
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driven modelling. During experiments, tpmp and tpuh are measured under 
different temperature differences ΔTmp and ΔTuh, respectively. Experi
mental data are collected to regress the mathematical models of tpmp and 
tp
uh. For the axial moving and material feeding operations, the working 

times tw
axis and tw

mf are modelled physically based on G-codes. With the 
assist of GP diagram, other time consumptions tsaxis, tsmf , t

w
mp, tw

uh and ta are 
modelled based on tpmp, tp

uh, twaxis and twmf due to their simultaneous oper
ations during printing. 

Regarding energy consumption, the submodels of powers in different 
operation states are obtained through data-driven modelling. The 
dependent parameters Pw

axis, Pw
mf , Pp

mp, Pw
mp, Pp

uh, Pw
uh are measured at 

different values of related process parameters. Then, the mathematical 
model of each power is derived from experimental data by using a 
regression tool. The independent parameters Pw

axis and Pa are measured 
as constants. 

Fig. 6. Tree diagrams of parameters for assembling time and energy consumption models.  
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6. Hybrid prediction modelling for real-world 3DP machines 

The hybrid prediction modelling method proposed in the previous 
sections is applied to two real 3DP machines. First, the hardware and 
software environments are assembled to support the modelling. The 
generation of the GP diagram and the identification of operation states 
are presented. Then, the methods of G-code calculation for physical 
modelling and experimental measurements for data-driven modelling 
are described. After the preparation work, the consumption modelling 
for each machine is demonstrated. The details of the modelling process 
are as follows. 

6.1. Hardware and software environment 

For the hardware, two FDM machines, Anycubic i3 Mega FDM 3D 
printer and Monoprice MP Mini Delta FDM printer, are used as test cases 
in the ME category. The raw material is a 1.75-mm-diameter PLA fila
ment, which is deposited through wire extrusion. The power meter is a 
Yokogawa CW500 power quality analyser, which is used to record the 
times and powers of machine subsystems. The circuit connection of the 
CW500 and FDM machine is shown in Fig. 7. For the software, Solid
Works and Cura are used at the CAD and CAM stages. The polynomial 
regression tool used in data-driven modelling is provided by MATLAB. 

Fig. 8 presents the consumption-related machine units of two ma
chines, which are classified into five subsystems, as listed in Table 3. The 
machine specifications are listed in Table 4. For both machines, the 
material feeding system is a wire extruder driven by a stepper motor to 
load PLA filaments. The material processing system is the nozzle hotend 
used to melt the filament. The unit heating system is the build platform, 
which is heated to fix the platform workpiece base. The auxiliary system 
includes temperature sensors, a display unit, cooling fans, a user inter
face and connectivity tools, which are used to monitor and control the 
printing progression. 

The difference between the two machines is the axial moving system. 
The Anycubic machine uses the Cartesian system consisting of three 
independent stepper motors. Each motor drives nozzle motion on one 
axis. The Monoprice machine uses a Delta system consisting of three 
parallel stepper motors. The axial motion is driven through the linkage 
motion of three stepper motors. 

6.2. Generation of GP diagram and identification of operation states 

To understand the workflow of machine operations, a GP diagram is 
generated by three steps, as demonstrated in Fig. 9.  

• First, the machine is assigned to print a random geometry using 
default process parameters. The power profile of the printing process 
is captured by CW500.  

• Second, using the same process parameters, the power profiles of the 
independently running subsystems are captured.  

• Finally, the obtained power profiles are integrated to formulate the 
GP diagram, where the starting time of each operation corresponds 
to its G-code command and the step change in the power profile. 

In the GP diagram, the operation states are identified based on G- 
codes. For example, the unit heating operation begins first by following 
the command “M190”. When reaching the target temperature, the ma
terial processing operation starts by following the command “M109”. 
Meanwhile, the unit heating operation switches to the working state and 
maintain the target temperature. For unit heating, the period from 
“M190” to “M109” denotes the preheating state, and the period from 
“M109” to the end of printing denotes the working state. 

6.3. Implementation of the hybrid prediction modelling method for real- 
world 3DP machines 

The hybrid prediction modelling method is implemented on the 
Anycubic and Monoprice machines. The calculation of G-codes for 
physical modelling and the experimental measurements for data-driven 
modelling are demonstrated. 

6.3.1. G-code calculation for physical modelling 
G-codes are used to predict the working time of axial moving oper

ation tw
axis and material feed Δℓpath per toolpath. To automate the G-code 

calculations, the corresponding computing program is compiled by 
using Python 3.10. The workflow is shown in Fig. 10. For a newly 
generated G-code file, the commands are read from the first line. When 
meeting a command starting with “G1” or “G0”, the coordinates, speeds 
and material feeds are extracted and used to calculate 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔX2+ΔY2

√

vxy
, ΔZ

vz 
and 

ΔVpath. Then, the calculation continues to the next command line until 
all lines are read (i.e., k = CN, where CN denotes the total number of 
command lines). The working time twaxis is the accumulation of time 
consumed for all motions. The material consumption M is the accumu
lation of material feed for all toolpaths. 

6.3.2. Experimental measurements for data-driven modelling 
Regarding the experimental measurements for data-driven model

ling, the parameters to be measured are listed in Table 5. According to 
[29], the recommended sample size for a polynomial regression is at 
least 25. In this study, experiments are designed to measure each 
parameter under 25 different values of related process parameter. 

For FDM technology, the axial moving and material feeding work 
simultaneously to deposit the melted PLA on specified toolpaths. In this 
case, the powers of two operations are measured simultaneously. First, a 
G-code file is created, in which three types of G-code commands are 
manually programmed. “G1 Fvxy X Y″ commands axial moving on the XY 
plane at a travelling speed vxy. “G1 Fvxy X Y E" commands axial moving 
with material feed on the XY plane at a printing speed vxy. “G1 Fvz Z" 
commands axial moving on the Z-axis at a layer-switching speed vz. The 
coordinate values are set within the build space of the FDM machine. 
The values of vxy are set within the boundary from the minimum vmin

xy to 
the maximum travelling/printing speeds vmax

xy . The values of vz are set 
within the boundary from the minimum vmin

z to the maximum layer- 
switching speeds vmax

z . During experiments, the axial moving and ma
terial feeding systems are activated to execute predefined commands, 
meanwhile, their working power Pw

axis + Pw
mf is measured by CW500. 

When all motions are complete, the two operations switch to the standby 
state, meanwhile, their standby power Ps

axis + Ps
mf is measured. 

To drive the unit heating operation, “M190 STuh” is manually pro
grammed. The values of the target temperature Tuh are set within the 
boundary from room temperature T0 to the maximum temperature Tmax

uh 
of the unit heating system. Then, the values of temperature difference Δ Fig. 7. Circuit connection of the 3DP machine and power meter.  
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(a)

(b)

Fig. 8. Consumption-related machine units of two FDM machines [33,34].  

Table 3 
Classification of machine units for the Anycubic and Monoprice machines.  

3DP subsystems Anycubic Monoprice 

Axial moving ① Cartesian system ① Delta system 
Material feeding ② Wire extruder ② Wire extruder 
Material 

processing 
③ Nozzle hotend ③ Nozzle hotend 

Unit heating ④ Build platform ④ Build platform 
Auxiliary ⑤ Temperature sensors 

⑥ Display unit 
⑦ User interface and 
connectivity 
⑧ Cooling fans 

⑤ Temperature sensors 
⑥ Display unit 
⑦ User interface and 
connectivity 
⑧ Cooling fans  

Table 4 
Specifications for the Anycubic and Monoprice machines.   

Anycubic Monoprice 

Layer thickness 0.04–0.3 mm 0.05–0.2 mm 
Infill density 0–100 % 0–100 % 
Maximum material processing temperature 250 ◦C 260 ◦C 
Maximum unit heating temperature 80◦C 60◦C 
PLA melting point 180 ◦C 180 ◦C 
Filament diameter 1.75 mm 1.75 mm 
Printing speed 10–150 mm/s 10–150 mm/s 
Travelling speed 10–300 mm/s 10–150 mm/s 
Layer-switching speed 5 mm/s 10–150 mm/s  

J. Yang and Y. Liu                                                                                                                                                                                                                             



Journal of Manufacturing Processes 101 (2023) 1275–1300

1287

Fig. 9. Generation of GP diagram for the Anycubic machine.  
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Tuh are set within the boundary from zero to Tuh − T0. The present 
temperature of the system To

uh equals Tuh − ΔTuh. During experiments, 
the system is preheated for a temperature difference ΔTuh from To

uh to 
Tuh, and then remains at the target temperature Tuh. The preheating time 
tp
uh, preheating power Pp

uh and working power Pw
uh are measured by 

CW500. 
To drive the material processing operation, “M109 STmp” is pro

grammed. The values of the target temperature Tmp are set within the 
boundary from room temperature T0 to the maximum temperature Tmax

mp 

of the material processing system. The values of ΔTuh are set within the 

Fig. 10. Computational workflow of the G-code calculation.  

Table 5 
Experimental measurements for data-driven modelling.  

Operations State Parameters Related process parameter Boundaries of process parameters G-code commands 

Axial moving and material feeding Working Pw
axis + Pw

mf vxy,vZ vxy ∈
[
vmin

xy , vmax
xy

]

vz ∈
[
vmin

z , vmax
z

]

G1 Fvxy X Y 
G1 Fvxy X Y E 
G1 Fvz Z 

Standby Ps
axis + Ps

mf None 
Unit heating Preheating tpuh 

ΔTuh Tuh ∈
[
T0 ,Tmax

uh
]

ΔTuh ∈ [0,Tuh − T0]

M190 STuh 

Pp
uh 

Tuh 

Working Pw
uh Tuh 

Material processing Preheating tpmp ΔTmp Tmp ∈
[
T0,Tmax

mp

]

ΔTuh ∈
[
0,Tmp − T0

]

M109 STmp 

Pp
mp Tmp 

Working Pw
mp Tmp 

Auxiliary Working Pa None  
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boundary from zero to Tmp − T0. The present temperature To
mp is Tmp −

ΔTmp. During experiments, the system preheats from T0
mp to Tmp and 

remains at Tmp. The preheating time tp
mp, preheating power Pp

mp and 
working power Pw

mp are measured. 
The auxiliary operation begins when the machine is booted. The 

working power Pa is measured at the machine idle state. 

6.4. Predictive models of the Anycubic i3 Mega FDM printer 

The consumption models for the Anycubic machine are developed in 
this section. First, the GP diagram for the machine is generated by 
following the method in Section 6.2 and shown in Fig. 11. 

6.4.1. Predictive models of time consumption 
The time consumption t is the Boolean union of time consumed for 

five operations. According to Fig. 11, t is the sum of the preheating time 
for material processing tp

mp, preheating time for unit heating tpuh and 
working time for axial moving twaxis: 

t = tp
uh + tp

mp + tw
axis (29)  

where tpuh and tp
mp are functions related to ΔTuh and ΔTmp, respectively. 

By following the experimental measurement method in Section 6.3.2, 
the regression models of tpuh and tpmp are shown in Table 6. The regression 
curve of tp

mp, for example, is shown in Fig. 12, where ΔTmp ∈[49, 198] 
and the goodness of fit R2 = 0.9975. In the working state, the working 
time of unit heating twuh overlaps tp

mp and tw
axis (see Fig. 11); thus, tw

uh =

tp
mp + twaxis. The working time of material processing tpmp overlaps tw

axis; 
thus, tw

mp = twaxis. 
In this case, the axial moving operation begins after the machine unit 

preheating. In the material deposition process, the axial moving oper
ation remains in the working state without standby (i.e., tsaxis = 0). By 
following the method of G-code calculation in Section 6.3.1, the working 
time tw

axis is calculated from G-codes. The material feeding operation 
remains in the working state and is simultaneous with axial moving 
without standby (i.e., tm

mf = tw
axis, ts

mf = 0). The auxiliary time ta equals 

Fig. 11. GP diagram for the Anycubic machine.  

Table 6 
Time consumption models for the Anycubic machine.  

Total time consumption t = tpuh + tpmp + twaxis 

Operations States Predictive models Regression 
results 

Axial moving 
taxis 

Working 
twaxis =

∑
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔX2 + ΔY2

√

vxy
+

∑ΔZ
vz  

Material 
feeding 
tmf 

Working twmf = twaxis  

Material 
processing 
tmp 

Preheating tpmp=0.000515ΔTmp
2 + 0.2395Δ 

Tmp + 11.7 
Appendix A.1 

Working twmp = twaxis  

Unit heating 
tuh 

Preheating tpuh = 0.05759ΔTuh
2 + 2.98Δ 

Tuh − 2.098 
Appendix A.2 

Working twuh = tpmp + twaxis  
Auxiliary 

ta 

Working ta = t   
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the total time consumption (i.e., ta = t). Table 6 shows a summary of the 
time consumption modelling results. 

6.4.2. Predictive models of energy consumption 
In terms of energy models, the preheating power of material pro

cessing Pp
mp remains at 85.73614 VA. The working power Pw

mp is gradu
ally stabilised to a constant, and its value is functionally related to the 
target temperature Tmp. The preheating power Pp

uh of unit heating re
mains at 307.96224 VA. The average working power Pw

uh is functionally 
related to the target temperature Tuh. The working powers of material 
feeding and axial moving Pw

axis + Pw
mf remain at 42.47047 VA. The 

auxiliary power Pa remains at 28.06063 VA. Table 7 shows a summary of 
the energy consumption modelling results. 

6.4.3. Predictive models of material consumption 
Table 8 presents the material consumption model. By following the 

physical modelling method in Section 6.3.1, the extruded length of PLA 
filament per toolpath Δℓpath is extracted from G-codes. 

6.5. Predictive models of the Monoprice MP Mini Delta FDM printer 

The GP diagram of the Monoprice machine is shown in Fig. 13. In this 
case, there is a preparatory phase before the printing to zero the material 
feed, then calibrate and return the nozzle position to home. Thus, the 

axial moving and material feeding systems are activated from the 
beginning of the printing process. Since the last nozzle coordinate and 
material feed in the previous 3DP task are unknown, the resource con
sumption in the preparatory phase is not considered in this case. 

6.5.1. Predictive models of time consumption 
According to Fig. 13, the time consumption t is the sum of the pre

heating time of material processing tp
mp and the working time of axial 

moving twaxis: 

t = tp
mp + tw

axis (30) 

In this case, due to the built-in algorithm of Cura for this machine, 
the material processing operation is commanded to preheat the nozzle 
hotend to a temperature 5 ◦C higher than the target temperature (i.e., 
Tmp + 5). In the working state, the operation remains at the temperature 
Tmp + 5 during the printing of the first layer. When the first layer is 
printed, the temperature decreases to Tmp. Thus, the material processing 
time is the sum of time consumed by the three parts: 

tmp = tp
mp + tw1

mp + tw2
mp (31)  

where the preheating time tp
mp is functionally related to ΔTmp and tw1

mp 

denotes the working time at temperature Tmp + 5, which overlaps the 

axial moving time for the first layer 
∑ Δl1xy

v1
xy

; thus, tw1
mp =

∑ Δl1xy
v1

xy
. The value 

of 
∑ Δl1xy

v1
xy 

is calculated from G-codes. tw2
mp denotes the working time at 

temperature Tmp, which overlaps the axial moving time for the 
remaining layers; thus, tw2

mp = tw
axis − tw1

mp. 
The unit heating starts from the completion of the first layer. The 

preheating time tw
uh is functionally related to the temperature difference 

ΔTuh. The working time twuh overlaps tw2
mp excluding tp

uh; thus, twuh = tw2
mp −

tpuh. 
The axial moving operation has two states: standby and working. The 

standby time tsaxis overlaps tpmp; thus, tsaxis = tp
mp. The working time twaxis is 

calculated from G-codes. 
The material feeding operation is simultaneous with axial moving, 

which has two states: standby and working. The standby time ts
mf 

overlaps tpmp; thus, ts
mf = tp

mp. The working time overlaps twaxis; thus, tw
mf =

twaxis. 
The auxiliary time ta equals the total time consumption (i.e., ta = t). 

Table 9 shows a summary of the time consumption modelling results. 

6.5.2. Predictive models of energy consumption 
In energy models, the preheating power of material processing Pp

mp 

remains at 61.12736 VA. The working power Pw
mp is functionally related 

to the target temperature Tmp. In this case, since the system is heated to 
temperature Tmp + 5 until the completion of the first layer, the total 
energy consumption is the sum of three parts: 1) Pp

mptpmp is the energy 
consumed in the preheating state at temperature Tmp + 5; 2) Pw1

mptw1
mp is the 

energy consumed in the working state at temperature Tmp + 5; 3) Pw2
mptw2

mp 

is the energy consumed in the working state at target temperature Tmp. 
The preheating power Pp

uh and working power Pw
uh of unit heating are 

functionally related to the target temperature Tuh. The working power 

Fig. 12. Regression curve for preheating time tp
mp.  

Table 7 
Energy consumption models of five operations for the Anycubic machine.  

Total energy consumption E = Eaxis + Emp + Euh + Emf + Ea 

Operations States Predictive models Regression 
results 

Axial moving and 
material feeding 
Eaxis + Emf 

Working Pw
axis + Pw

mf = 42.47047(VA)
Energy consumption: Eaxis + Emf =
(

Pw
axis + Pw

mf

)
twaxis  

Material processing 
Emp 

Preheating Pp
mp = 85.73614(VA) Appendix A.1 

Working Pw
mp = − 0.0002833Tmp

2 +

0.3428Tmp − 13.44 
Energy consumption: Emp = Pp

mptp
mp +

Pw
mptw

mp 

Unit heating 
Euh 

Preheating Pp
uh = 307.96224(VA) Appendix A.2 

Working Pw
uh = 2.252Tuh − 48.64 

Energy consumption: Euh = Pp
uhtpuh + Pw

uhtwuh 
Auxiliary 

Ea 

Working Pa = 28.06063(VA)
Energy consumption: Ea = Pa • ta   

Table 8 
Material consumption models for the Anycubic machine.  

Total material consumption M = ρ •
∑

ΔVpath 

Operation States Predictive models 

Material feeding Working ρ = 1.24g/cm3 

r = 1.75mm 

ΔVpath = Δℓpathπ r2

4   
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Pw
axis + Pw

mf and standby power Ps
axis + Ps

mf of material feeding and axial 
moving remain at 28.25414 VA. The auxiliary power Pa remains at 
14.34479 VA. 

Table 10 shows a summary of the energy consumption modelling 
results. 

6.5.3. Predictive models of material consumption 
In this study, two FDM machines use the same PLA filament. Thus, 

the material consumption model is the same as the model in Table 8. 

7. Experimental validations 

We validate the prediction accuracies of the consumption models 
defined in Section 6. The experimental methodology and case studies are 
presented in the following subsections. 

7.1. Methodology of experimental validations 

The workflow of experimental validation is demonstrated in Fig. 14, 
which includes two parts: consumption prediction and measurement. 
Regarding the consumption prediction, there are three inputs into the 
predictive models: G-code data, present temperatures and process 

Fig. 13. GP diagram for the Monoprice machine.  

Table 9 
Time consumption models for the Monoprice machine.  

Total time consumption t = tpmp + twaxis 

Operations States Predictive models Regression 
results 

Axial moving 
taxis 

Working 
twaxis =

∑
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔX2 + ΔY2

√

vxy
+

∑ΔZ
vz  

Standby tsaxis = tpmp  

Material 
processing 
tmp 

Preheating tpmp = 0.0007332
(
ΔTmp + 5

)2
+

0.2994
(
ΔTmp + 5

)
+ 14.31 

Appendix B.1 

Working 
tw1
mp =

∑
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔX1

2 + ΔY1
2

√

v1
xy 

tw2
mp = twaxis − tw1

mp  

Unit heating 
tuh 

Preheating tpuh = − 0.06427ΔTuh
2 + 6.832Δ 

Tuh + 58.1 
Appendix B.2 

Working twuh = tw2
mp − tpuh  

Material 
feeding 
tmf 

Working twmf = twaxis  

Standby tsmf = tpmp  

Auxiliary 
ta 

Working ta = t   
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parameters. The outputs are the predicted consumption levels. Each 
input is introduced as follows: 

G-code data: In Cura, five major process parameters (as listed in 
Table 11) are randomly set within their boundaries according to the 
machine specifications. Other process parameters are defaults. Then, the 
file of G-codes is generated, from which the data of toolpaths and 
printing speeds are extracted and input into the time and energy models. 
The material feed data are input into the material consumption model. 

Present temperatures: At the beginning of the printing process, the 
present temperatures of unit heating and material processing systems 
are recorded from the machine display unit and input into the time and 
energy models. 

Process parameters: The five process parameters in Table 11 are 
functionally related to the preheating time and system powers. Thus, the 
values of those parameters must be input into the time and energy 
models. 

By inputting the above three into the predictive models, the resource 
consumption is predicted. To validate the prediction accuracy, the 
present printing task is printed by the machine. The actual resource 
consumption measured by the power meter is finally compared to the 
predicted consumption to calculate the prediction accuracy. 

7.2. Case studies 

By following the experimental methodology in Section 7.1, each 
machine is assigned two printing tasks. The prediction and actual results 
of each task are presented, and the prediction accuracies are calculated. 

7.2.1. Resource consumption model accuracy of the Anycubic machine 
The three-view drawings of the two parts printed by the Anycubic 

machine are presented in Fig. 15. The values of the input parameters are 
listed in Table 12. The prediction and actual results are listed in Ta
bles 13 and 14. 

7.2.2. Resource consumption model accuracy of the Monoprice machine 
Three-view drawings of the two parts printed by the Monoprice 

machine are presented in Fig. 16. To compare the accuracies of the 
predictive models of the two machines, Task III uses the same part ge
ometry as Task I. The values of the input parameters are listed in 
Table 15. The results are listed in Tables 16 and 17. 

Table 10 
Energy consumption models for the Monoprice machine.  

Total energy consumption E = Eaxis + Emp + Euh + Emf + Ea 

Operations States Predictive models Regression 
results 

Axial moving; and 
material feeding 
Eaxis + Emf 

Working Pw
axis + Pw

mf = 28.25414(VA)
Standby Ps

axis + Ps
mf = 28.25414(VA)

Energy consumption: Eaxis + Emf =
(

Pw
axis + Pw

mf

)(
tsaxis + twaxis

)

Material processing 
Emp 

Preheating Pp
mp = 61.12736(VA) Appendix B.1 

Working Pw
mp = 0.1369Tmp − 5.599 

Pw1
mp = 0.1369

(
Tmp + 5

)
−

5.599 
Energy consumption: Emp = Pp

mptpmp +

Pw1
mptw1

mp + Pw
mptw2

mp 

Unit heating 
Euh 

Preheating Pp
uh = 0.6203Tuh − 1.402 Appendix B.2 

Working Pw
uh = 0.005856Tuh

2 −

0.02571Tuh + 6.41 
Energy consumption: Euh = Pp

uhtpuh + Pw
uhtwuh 

Auxiliary 
Ea 

Working Pa = 14.34479(VA)
Energy consumption: Ea = Pa • ta   

Fig. 14. Workflow of experimental validation.  

Table 11 
Five major process parameters used for validating the prediction accuracy.  

Process parameters Notations Boundaries Units 

Target temperature of unit heating Tuh Tuh ∈
[
T0,Tmax

uh
] ◦C 

Target temperature of material 
processing 

Tmp Tmp ∈
[
T0,Tmax

mp

] ◦C 

Travelling speed vxy vxy ∈
[
vmin

xy , vmax
xy

]
mm/ 
s 

Printing speed vxy vxy ∈
[
vmin

xy , vmax
xy

]
mm/ 
s 

Layer-switching speed vz vz ∈
[
vmin

z , vmax
z

]
mm/ 
s  

J. Yang and Y. Liu                                                                                                                                                                                                                             



Journal of Manufacturing Processes 101 (2023) 1275–1300

1293

7.2.3. Discussion 
In the above cases, Task I printed by the Anycubic machine and Task 

III printed by the Monoprice machine use the same geometries with 
different process parameters. The different consumption levels of the 
two tasks indicate that machine characteristics and process parameters 
are the major factors affecting resource consumption. This finding 
further verifies the necessity of considering the above factors in pre
diction modelling. 

According to the prediction accuracy results, the reasons for the 
deviations between actual and predicted consumption levels are dis
cussed. In the actual printing process, some machine units cannot 
perfectly achieve the expected operations. For instance, the occurrence 
of stepper motor losing steps is a common problem in FDM machines. 
This phenomenon results from the insufficient torques and excessive 
loads of stepper motors, especially at a high travelling/printing speed. 
Thus, the actual axial moving speed is not equal to the expected speeds. 
In addition, according to G-codes, the expected axial motion is a uniform 
motion at a constant speed. In fact, there are acceleration and deceler
ation in each axial motion. Those machine performance levels that fall 
below expectations will lead to a deviation between the predicted and 

Task I Task II

Fig. 15. Three views of printed parts in Task I and Task II.  

Table 12 
Parameter inputs of Task I and Task II.  

Input parameters Notations Units Boundaries Values 

Task I Task II 

Present temperatures Present temperature of unit heating T0
uh 

◦C T0
uh ≤ Tuh  19  41 

Present temperature of material processing T0
mp 

◦C T0
mp ≤ Tmp  19  44 

Process parameters Target temperature of unit heating Tuh 
◦C [23, 80]  60  53 

Target temperature of material processing Tmp 
◦C [180, 250]  200  180 

Travelling speed vxy mm/s [10,300]  120  130 
Printing speed vxy mm/s [10, 150]  60  72 
Layer-switching speed vz mm/s 5  5  5  

Table 13 
Experimental and predicted resource consumptions with percentage errors for 
Task I.  

Resource 
consumption 

Experimental 
results 

Predicted 
results 

Percentage 
errors 

Time t (s) 3171.00 3097.69 2.31 % 
Energy E (VAS) 676,928.23 651,303.61 3.79 % 
Material M (g) 2.42 2.62 − 8.05 %  

Table 14 
Experimental and predicted resource consumptions with percentage errors for 
Task II.  

Resource 
consumption 

Experimental 
results 

Predicted 
results 

Percentage 
errors 

Time t (s) 2191.00 2020.28 7.79 % 
Energy E (VAS) 398,996.29 371,078.38 7.00 % 
Material M (g) 1.99 2.21 − 10.65 %  

Task III
Task IV

Fig. 16. Three views of the printed parts in Task III and Task IV.  
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actual axial moving times. The above phenomenon is a major reason for 
the percent errors of time and energy predictions. Due to the different 
process parameters and part geometries, the toolpaths in the four tasks 
are different; therefore, the impacts of stepper motor losing steps on the 
prediction accuracies are different. 

The stepper motor losing steps affect the prediction accuracy of 
material consumption due to the insufficient material feeding. On one 
hand, the high load and insufficient torque of high-speed printing cause 
the motor to lose steps; on the other hand, the insufficient melting of 
thermoplastic filaments at high printing speeds causes material blockage 
at nozzle, and the material is unable to extrude smoothly. By comparing 
the results, the material consumption accuracy of the Anycubic machine 
is better than that of the Monoprice machine. This is due to the different 
heating performance levels of the material processing systems (i.e., 
nozzle hotends). The nozzle heating efficiency of the Anycubic machine 
is better than that of the Monoprice machine. 

The proposed modelling method can be adapted to other mainstream 
AM or CNC manufacturing technologies. Regardless of the type of pro
cess or material used, the manufacturing is completed through cooper
ative operations driven by multiple machine units with specific 
functions, and G-code is the commonly-used numerical control language 
for those manufacturing technologies. Therefore, the physical modelling 
based on G-codes can be generally applied to predict the time consumed 
for axial motions and the material consumption. The data-driven 
modelling requires collecting machine power and heating time, which 
is inevitable for predicting the energy consumption. To simplify this 
modelling process to the greatest extent possible, the generation of GP 
diagram based on G-code is necessary, which provides guidance to 
identify the machine operations and design experiments for the data 
collection. Once the predictive models for the current machine are ob
tained, the recourse consumption of any 3DP task to be executed can be 
predicted only based on the G-code file without any additional 
experiment. 

8. Conclusion 

The objective of this study is to propose a hybrid modelling scheme 
to predict the resource consumption of the 3DP process. The machine 
operations are classified into five parts: axial moving, material feeding, 
unit heating, material processing and auxiliary. The machine units are 
correspondingly classified into five subsystems. A GP diagram is 
generated to help understand machine behaviours. Then, the physical 
modelling method sufficiently utilises the manufacturing information in 
G-codes to model the times of axial motion and material usage. The data- 
driven modelling method performs experiments to measure the powers 
and preheating times of subsystems under different values of related 
process parameters and then applies the regression analysis method to 
regress the mathematical models. To demonstrate the prediction 
modelling of real-world 3DP machines, the proposed method is applied 
to two FDM machines. Predictive models are developed. To validate the 
prediction accuracy, each machine completes two printing tasks using 
different process parameters. The actual consumption is compared to the 
predicted consumption; finally, the prediction accuracies are calculated. 

The outcomes of this research have the following highlights: 

• The function-based classifications of machine operations and ma
chine units are generally applicable to mainstream 3DP technologies. 
The model simplifies the complex and diverse machine units into five 
subsystems to facilitate the implementation of the proposed model
ling method to any other 3DP technology.  

• The generation of a GP diagram helps the understanding of machine 
behaviours, including the starting time of each operation, the oper
ation sequence, and the power profiles of the 3DP machine and 
subsystems. This diagram provides guidance for resource consump
tion modelling. 

• The physical modelling method based on G-codes considers the in
fluences of process parameters on material deposition toolpaths, 
which is closer to the real printing process and reduces the workload 
of experimental measurements. The corresponding computing pro
gram can automate the G-code calculation process. 

• The data-driven modelling based on experiments considers the ma
chine characteristics and the impacts of process parameters on sys
tem power and preheating time, which is closer to the real printing 
process.  

• In addition to 3DP, the proposed hybrid modelling method can be 
further expanded to other AM and CNC manufacturing technologies. 

The proposed prediction modelling method is foundational. To 
further optimise the predictive models, additional works will be un
dertaken to model the actual printing/travelling speed, actual material 
feed, and the acceleration and deceleration of axial moving. Moreover, 
the prediction process will be integrated with the metaheuristic opti
misation technique to guide the numerical setting of process parameters 
and to minimise resource consumption. 

Table 15 
Parameter inputs of Task III and Task IV printed by the Monoprice machine.  

Input parameters Notations Units Boundaries Values 

Task III Task IV 

Present temperatures Present temperature of unit heating T0
uh 

◦C T0
uh ≤ Tuh  21  26 

Present temperature of material processing T0
mp 

◦C T0
mp ≤ Tmp  34  111 

Process parameters Target temperature of unit heating Tuh 
◦C [23, 60]  60  47 

Target temperature of material processing Tmp 
◦C [180, 260]  200  182 

Travelling speed vxy mm/s [10, 150]  150  98 
Printing speed vxy mm/s [10, 150]  50  63 
Layer-switching speed vz mm/s [10, 150]  150  98  

Table 16 
Experimental and predicted resource consumptions with percentage errors for 
Task III.  

Resource 
consumption 

Experimental 
results 

Predicted 
results 

Percentage 
errors 

Time t (s) 1146.00 1246.03 − 8.73 % 
Energy E (VAS) 97,279.55 99,869.78 − 2.66 % 
Material M (g) 2.24 2.82 − 26.14 %  

Table 17 
Experimental and predicted resource consumptions with percentage errors for 
Task IV.  

Resource 
consumption 

Experimental 
results 

Predicted 
results 

Percentage 
errors 

Time t (s) 358.00 366.87 − 2.48 % 
Energy E (VAS) 33,847.61 33,685.28 0.48 % 
Material M (g) 0.51 0.65 − 28.29 %  
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Appendix A. Experimental results of Anycubic i3 Mega FDM printer 

A.1. Material processing operation  

Table A.1 
Experimental results of the material processing operation.  

Test no. Target temperature Temperature difference Present temperature Preheating time Preheating power Working power 

Tmp 

(◦C) 
ΔTmp 

(◦C) 
T0

mp 

(◦C) 
tpmp 

(s) 
Pp

mp 

(VA) 
Pw

mp 

(VA) 

1 170 63 107 30  85.87238  36.28409 
2 180 49 131 24  85.88146  38.77141 
3 172 54 118 25  87.02961  37.31019 
4 173 69 104 31  85.10377  37.22275 
5 175 81 94 35  85.69948  38.05415 
6 178 83 95 36  83.20823  38.55360 
7 178 86 92 36  83.49366  38.96611 
8 184 92 92 38  84.04563  40.35102 
9 185 94 91 39  85.40957  40.36066 
10 189 96 93 40  85.68639  41.09041 
11 191 114 77 45  85.48266  41.70230 
12 205 121 84 49  85.61391  44.80734 
13 200 128 72 50  85.97969  43.67242 
14 207 137 70 53  85.84082  45.34073 
15 210 142 68 54  86.94465  45.67440 
16 214 149 65 59  86.81009  47.50530 
17 220 152 68 60  86.41892  48.32648 
18 227 160 67 64  85.17483  49.47431 
19 230 163 67 65  86.27192  50.19925 
20 235 174 61 69  86.93204  51.70714 
21 237 177 60 71  85.76800  51.98806 
22 243 183 60 73  86.76045  53.24891 
23 245 186 59 75  85.79808  53.43232 
24 248 190 58 76  86.37302  53.80842 
25 250 198 52 78  85.80436  54.79185 
Avg.  85.73614   

Fig. A.1. Regression curve of the working power Pw
mp and the target temperature Tmp for material processing  
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A.2. Unit heating operation  

Table A.2 
Experimental results of the unit heating operation.  

Test 
No. 

Target temperature Temperature difference Present temperature Preheating time Preheating power Working power 

Tuh 
(◦C) 

ΔTuh 
(◦C) 

T0
uh 

(◦C) 
tpuh 
(s) 

Pp
uh 

(VA) 
Pw

uh 
(VA) 

1 29 3 26 11  304.61130  17.66945 
2 30 4 26 11  305.60578  20.73979 
3 31 7 24 21  317.60169  24.14278 
4 32 5 27 16  307.15310  21.76370 
5 37 8 29 27  301.99721  32.95911 
6 38 9 29 26  320.41987  37.96336 
7 39 10 29 31  317.31704  36.68883 
8 42 12 30 42  307.83719  46.53277 
9 45 13 32 46  318.47888  48.92556 
10 47 14 33 52  312.41806  57.52883 
11 51 18 33 67  311.24535  63.56841 
12 53 20 33 83  309.65465  69.87500 
13 54 23 31 92  312.70946  74.24864 
14 55 25 30 103  313.00640  84.13934 
15 57 26 31 108  310.11336  80.26311 
16 61 28 33 123  307.94265  86.65053 
17 67 29 38 139  300.54805  99.06604 
18 68 30 38 143  303.95910  104.15679 
19 69 33 36 174  296.25775  104.49482 
20 70 36 34 175  307.61322  108.22310 
21 73 37 36 185  306.45782  112.47472 
22 74 38 36 189  304.80010  117.41137 
23 77 39 38 210  301.66221  123.94941 
24 79 40 39 216  297.45052  133.42520 
25 80 46 34 248  302.19541  135.45679 
Avg.  307.96224   

Fig. A.2. Regression curve of the preheating time tp
uh and the temperature difference ΔTuh for unit heating.   
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Fig. A.3. Regression curve of the working power Pw
uh and the target temperature Tuh for unit heating  

Appendix B. Experimental results of the Monoprice MP Mini Delta FDM printer 

B.1. Material processing operation  

Table B.1 
Experimental results of the material processing operations.  

Test no. Target temperature Temperature difference Present temperature Preheating time Standby time Preheating power Working power 

Tmp 

(◦C) 
ΔTmp 

(◦C) 
T0

mp 

(◦C) 
tpmp 

(s) 
t0mp 

(s) 
Pp

mp 

(VA) 
Pw

mp 

(VA) 

1 150 120 30 55 27  59.82630  15.11995 
2 152 40 112 27 27  58.25839  15.04325 
3 159 45 114 29 26  61.85862  16.23574 
4 162 52 110 32 25  62.16680  16.53417 
5 169 74 95 41 24  61.28040  17.50407 
6 170 96 74 50 23  61.34017  17.65508 
7 174 76 98 42 22  60.44671  18.34907 
8 177 86 91 46 23  60.25701  18.74738 
9 190 136 54 66 19  62.06424  20.36132 
10 185 94 91 50 20  60.37932  19.65971 
11 187 100 87 52 20  62.20181  19.97322 
12 193 109 84 56 19  61.36935  20.78699 
13 197 117 80 60 18  60.37456  21.10100 
14 201 119 82 61 17  60.84534  22.19950 
15 205 128 77 65 17  60.56651  22.34866 
16 209 137 72 69 17  60.70359  22.80714 
17 210 160 50 76 15  62.31859  23.16485 
18 218 138 80 70 14  60.70939  24.24879 
19 224 149 75 76 12  60.63197  24.92717 
20 236 156 80 81 10  60.83663  26.70383 
21 241 164 77 84 9  61.35182  27.44286 
22 247 167 80 87 7  60.83855  28.05785 
23 252 172 80 90 6  62.03977  29.69533 
24 258 180 78 94 3  64.16866  28.74100 
25 260 203 57 103 0  61.34960  30.47362 
Avg.  61.12736    
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Fig. B.1. Regression curve of the preheating time tp
mp and the temperature difference ΔTmp for material processing.  

Fig. B.2. Regression curve of the working power Pw
mp and the target temperature Tmp for material processing  

B.2. Unit heating operation  Table B.2 
Experimental results of the unit heating operation.  

Test 
no. 

Target temperature Temperature difference Present temperature Preheating time Preheating power Working power 

Tuh 
(◦C) 

ΔTuh 
(◦C) 

T0
uh 

(◦C) 
tpuh 
(s) 

Pp
uh 

(VA) 
Pw

uh 
(VA)  

1  25  2  23  69  14.10278  8.12858  
2  26  3  23  75  14.82010  9.40975  
3  28  5  23  96  16.43614  13.11803  
4  30  6  24  105  17.26146  10.44747  
5  31  7  24  100  17.52529  10.87826  
6  33  7  26  116  18.41851  11.37769  
7  35  8  27  114  20.93038  11.80378  
8  38  9  29  107  24.44937  13.91109  
9  39  9  30  105  23.41795  16.25311  
10  40  10  30  112  24.75183  13.52668  
11  41  11  30  116  24.29871  17.12859  
12  44  12  32  139  24.25617  15.92876  
13  45  14  31  140  24.64510  16.72144  
14  47  15  32  153  26.77658  17.91362  
15  48  18  30  150  27.66501  18.62048  
16  50  20  30  169  28.35524  19.40375 

(continued on next page) 
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Table B.2 (continued ) 

Test 
no. 

Target temperature Temperature difference Present temperature Preheating time Preheating power Working power 

Tuh 
(◦C) 

ΔTuh 
(◦C) 

T0
uh 

(◦C) 
tpuh 
(s) 

Pp
uh 

(VA) 
Pw

uh 
(VA)  

17  51  23  28  180  28.53120  20.05380  
18  53  24  29  184  31.94140  21.61581  
19  54  26  28  196  30.76732  22.12246  
20  55  28  27  204  32.38990  22.66014  
21  56  30  26  206  33.30020  22.81804  
22  57  32  25  211  34.28504  23.69356  
23  58  34  24  222  35.04665  24.15118  
24  59  38  21  222  38.05697  27.45379  
25  60  40  20  225  36.66811  25.27205  

Fig. B.3. Regression curve of the preheating time tp
uh and the temperature difference ΔTuh for unit heating.  

Fig. B.4. Regression curve of the preheating power Pp
uh and the target temperature Tuh for unit heating.   
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Fig. B.5. Regression curve of the working power Pw
uh and the target temperature Tuh for unit heating.  
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