
Acquavia, A., Tonellotto, N. and Macdonald, C. (2023) Static Pruning for

Multi-Representation Dense Retrieval. In: 23rd ACM Symposium on

Document Engineering (DocEng'23), Limerick, Ireland, 22-25 Aug 2023,

ISBN 9798400700279

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

© The Authors 2023. This is the author's version of the work. It is posted

here for your personal use. Not for redistribution. The definitive Version of

Record was published in the Proceedings of the 23rd ACM Symposium on

Document Engineering (DocEng'23), Limerick, Ireland, 22-25 Aug 2023,

ISBN 9798400700279 (doi: 10.1145/3573128.3604896)

https://eprints.gla.ac.uk/300119/

Deposited on: 30 June 2023

Enlighten – Research publications by members of the University of

Glasgow

http://eprints.gla.ac.uk

https://doi.org/10.1145/3573128.3604896
https://eprints.gla.ac.uk/300119/
https://eprints.gla.ac.uk/300119/
http://eprints.gla.ac.uk/

Static Pruning for Multi-Representation Dense Retrieval
Antonio Acquavia
University of Pisa, Italy

Craig Macdonald
University of Glasgow, UK

Nicola Tonellotto∗
University of Pisa, Italy

ABSTRACT
Dense retrieval approaches are challenging the prevalence of in-
verted index-based sparse representation approaches for informa-
tion retrieval systems. Different families have arisen: single repre-
sentations for each query or passage (such as ANCE or DPR), or
multiple representations (usually one per token) as exemplified by
the ColBERT model. While ColBERT is effective, it requires signifi-
cant storage space for each token’s embedding. In this work, we
aim to prune the embeddings for tokens that are not important for
effectiveness. Indeed, we show that, by adapting standard uniform
and document-centric static pruning methods to embedding-based
indexes, but retaining their focus on low-IDF tokens, we can attain
large improvements in space efficiency while maintaining high
effectiveness. Indeed, on experiments conducted on the MSMARCO
passage ranking task, by removing all embeddings corresponding
to the 100 most frequent BERT tokens, the index size is reduced
by 45%, with limited impact on effectiveness (e.g. no statistically
significant degradation of NDCG@10 or MAP on the TREC 2020
queryset). Similarly, on TREC Covid, we observed a 1.3% reduction
in nDCG@10 for a 38% reduction in total index size.
ACM Reference Format:
Antonio Acquavia, Craig Macdonald, and Nicola Tonellotto. 2023. Static
Pruning for Multi-Representation Dense Retrieval. In ACM Symposium
on Document Engineering 2023 (DocEng ’23), August 22–25, 2023, Limerick,
Ireland.ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3573128.
3604896

1 INTRODUCTION
Pre-trained contextualised language models such as BERT have
been shown to greatly improve retrieval effectiveness over the
previous state-of-the-art methods inmany information retrieval (IR)
tasks [16]. These contextualised language models are able to learn
semantic representations called embeddings from the contexts of
words and, therefore, better capture the relevance of a document
w.r.t. a query, with substantial improvements over the classical
approach in the ranking and re-ranking of documents [25]. Most
BERT-based models are computationally expensive for estimating
query-document similarities in ranking, due to the complexity of the
underlying transformer neural network [17, 21, 46]. As such, BERT-
based ranking models have been used as second-stage rankers in
retrieval cascades, in particular to re-rank candidate documents
generated by classical relevance models such as BM25 [27–29].
Recently, several works have proposed investigating whether BERT-
based systems are able to identify the relevant passages among all

∗ Alphabetical Ordering

DocEng ’23, August 22–25, 2023, Limerick, Ireland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM Symposium
on Document Engineering 2023 (DocEng ’23), August 22–25, 2023, Limerick, Ireland,
https://doi.org/10.1145/3573128.3604896.

passages in a collection, rather than just among a query-dependent
sample; these systems represent a new type of retrieval approach
called dense retrieval. In dense retrieval, passages are represented
by real-valued vectors, while the query-document similarity is
computed by deploying efficient nearest neighbour techniques over
specialised indexes, such as those provided by the FAISS toolkit [19].

Recently, two different families of dense retrieval approaches
have emerged, based on single representation and multiple represen-
tation. In particular, DPR [20] and ANCE [45] use a single represen-
tation, assumed to represent the meaning of an entire document
within a single embedding. In contrast, ColBERT [21], which uses
multiple representation, indexes an embedding for each token in
each document. This causes ColBERT to form a large index of em-
beddings, which can providemore effective results than single repre-
sentations, but at the cost of higher mean response times and mem-
ory occupancy [31]. While dense retrieval systems leveraging single
representations are able to store all the embeddings in few tens of
gigabytes and perform exact nearest neighbour search to identify
the top document for a query, the dense retrieval systems using
multiple representations leverage quantised indexing techniques
to generate highly compressed representations of the embeddings,
searchable with approximate nearest neighbour algorithms. This
approach produces candidate documents that must be re-ranked
in a second stage in order to maximise the effectiveness of the re-
turned documents. These second stage rankers leverage the original
uncompressed document embeddings to compute the final query-
document similarity. To do so, it is necessary to maintain an uncom-
pressed embeddings index together with the quantised index, at the
cost of hundreds of gigabytes, and longer query processing times.

A natural solution to address the aforementioned space problem
is to try to remove from the embedding index those components
that, on average, do not contribute to or do not impact on the
effectiveness of the final results. A similar approach has been inves-
tigated in the past for sparse retrieval based on inverted index data
structures. In this approach, named static pruning [9], the space oc-
cupancy of an inverted index was reduced by removing documents,
terms or document-term pairs from the collection or the inverted
index. Among the many alternatives, the removal of very frequent
terms in the collection, i.e., with a low inverse document frequency
(IDF) has been shown to be one of the most successful [6, 7], as it
was able to remove a large portion of terms from documents with
limited impact on the average effectiveness. Furthermore, IDF-based
static pruning does not require additional information derived from
query logs or other user data [2].

In this paper we focus on adapting the IDF-based static pruning
strategies to embedding indexes in multi-representation dense re-
trieval. In doing so, we aim to reduce the space occupancy of the
embedding indexes in multi-representation dense retrieval. Since
terms are now replaced by embeddings in a continuous vector
space, we firstly need to bridge the gap between semantic represen-
tations, i.e., embeddings, and lexical tokens, i.e., terms, and then

https://doi.org/10.1145/3573128.3604896
https://doi.org/10.1145/3573128.3604896
https://doi.org/10.1145/3573128.3604896

we cast the term-based static pruning over inverted indexes into
an embedding-based static pruning over embedding indexes.

As a result, this paper takes a new perspective on static pruning,
showing how simple adaptations of well-understood techniques can
be generalised and applied to multi-representation dense retrieval.
This modern take shows that even for contextualised embeddings,
stopwords and low IDF terms are still unimportant for retrieval, and
can be safely removed without significant degradation of retrieval
effectiveness. Our experiments on the MSMARCO v1 passage rank-
ing corpus show that by removing all embeddings corresponding
to the 100 most frequent BERT tokens, index size is reduced by 45%,
without significant degradation of NDCG@10 or MAP on the TREC
2019 or TREC 2020 querysets, and only 3% reduction in MRR on the
MSMARCO Dev queryset. Moreover, we validate the generalisation
of our results on the TREC Covid test collection. On this collection,
we observed a 1.3% reduction in nDCG@10 for a 38% reduction
in total index size. Hence, these simple static pruning approaches
demonstrate that the space usage of ColBERT dense retrieval can
be reduced by almost half, but can also form baselines for more
advanced pruning strategies that consider the exact contextualised
embeddings. Furthermore, we provide our GitHub repository for
this paper containing the Jupyter notebooks to reproduce all of the
experiments in this paper.

The remainder of the paper is structured as follows: Section 2
discusses related work in static pruning and provides a background
in neural re-ranking and dense retrieval; Section 3 discusses the
pruning of multi-representation dense retrieval configurations and
elicits our research questions; Experimental setup is discussed in
Section 4; Results on MSMARCO are discussed in Section 5; Valida-
tion of our main results on TREC Covid are provided in Section 6;
Concluding remarks follow in Section 7.

2 RELATEDWORK
We first discuss the pruning of classical, i.e. sparse, inverted index
data structures. Then we introduce the neural re-ranking and dense
retrieval approaches.

2.1 Static Pruning
The static pruning of inverted indexes deals with removing infor-
mation stored in the inverted index to improve the efficiency of top
𝑘 query processing with negligible or minimal negative impact on
the effectiveness. The most simple and widely applied pruning ap-
proach is the removal of stopwords from the inverted index, which
rarely contribute to the final document retrieval scores.

Static pruning approaches in the literature can be classified ac-
cording to the different components of an inverted index that they
prune. An inverted index is composed by posting lists, one for each
unique term in the collection; each posting list contains postings,
one for each document in which the corresponding term appears
at least once. Uniform strategies focus on completely removing
terms [6, 9, 10, 34] or documents [34] from the inverted index. The
usefulness of a term or a document is measured through its im-
portance, i.e., a quantification of its contribution to the relevance
scores. Carmel et al. [9] measured term importance through the
𝑘-th relevance score in the term’s posting list and removed the
terms with an importance below a global threshold, while Blanco

and Barreiro [6] proposed to completely remove posting lists corre-
sponding to stopword terms, identified through their IDF scores.
Ntoulas et al. [34] proposed to remove documents whose global
scores, e.g., PageRank, fall below a given threshold.

While uniform strategies consider global importance thresholds
only to make their pruning decisions, it is also possible to select
thresholds on a term/document basis, hence selecting to prune only
a portion of the posting lists, depending on the usefulness of each
posting. In term-centric methods, the pruning decision is taken on a
posting’s rank w.r.t. the other postings in the corresponding posting
list. Carmel et al. [9] proposed to prune postings with relevance
scores below the𝑘-th score of all scores in the posting list. DeMoura
et al. [15] further refined this strategy to take into account co-
occurring terms. Ntoulas et al. [34] proposed to take into account
jointly a global score and a term-centric score when taking pruning
decisions. To select the postings to prune, Blanco and Barreiro [7]
exploited the probabilistic ranking principle as a decision criterion
over which postings should to be pruned. However, all of these
term-centric methods rely on posting lists and posting scores, and
hence cannot be easily adapted to a dense retrieval scenario where
terms and/or documents are represented with embeddings and
stored in a metric index, such as FAISS [19].

On the other hand, in document-centric methods, the pruning
decision is taken on a posting’s rank within the document it refers
to. Büttcher and Clarke [8] proposed to prune a posting according
to the Kullback-Leibler divergence between the document language
model and the language model of the whole collection. For ev-
ery document, they perform a pseudo-relevance feedback step
at indexing time, and only keep postings for the top feedback
terms extracted from that document in the index, discarding ev-
erything else. Totha and Carterette [39] statistically compared the
in-document term frequency to the in-collection term frequency to
decide whether to prune the given term. Altingovde et al. [2] pro-
posed to combine both term-centric and document-centric pruning
strategies with popularity, and proposed several advanced prun-
ing strategies where the pruning decision is taken according to the
number of times a posting is used in processing a training query log.
While all pruning strategies discussed so far assume the availability
of the inverted index, Altin et al. [1] discuss some pre-indexing
pruning strategies to remove partially or completely documents
from the document collection before the inverted index construc-
tion process, for example by discarding long documents or terms
appearing in a stopwords list.

It is worth noting that static pruning of indexes permits informa-
tion retrieval systems to create more aggressively pruned indexes
for fast retrieval of more common queries, while keeping larger un-
pruned indexes for infrequent/more difficult queries [3, 34, 35, 37].
For example, Skobeltsyn et al. [37] showed that a combination term-
centric and document-centric pruning in multi-layered tiering was
able to handle up to 85% of queries with one quarter of the resources
of the search engine’s full index.

In contrast, the pruning of indexes applicable for dense retrieval
is comparatively understudied. We discuss neural re-ranking ap-
proaches and dense retrieval approaches next.

2.2 Neural Re-ranking and Dense Retrieval
Various works study and show the superior effectiveness of pre-
trained transformer networks, e.g., BERT, on ranking tasks. BERT
is shown effective at passage re-ranking [33] and document re-
ranking [29], by fine-tuning the transformer network to classify the
query and passage/document1 pairs as relevant or non-relevant, as
measured using the embeddings of a special [CLS] (classification)
token. The performance of BERT is also investigated in different
retrieval-related tasks, such as keyword-based and natural language
question answering [14, 44].

Most transformer-based neural ranking approaches are evalu-
ated by re-ranking the documents identified by a classical inverted
index and using relevance models such as BM25, in a multi-stage
ranking architecture [24, 32]. However, by relying solely on an
inverted index, there is the possibility that relevant documents
that would have been highly scored by an effective neural ranking
model are not included in the initial candidate set, for instance
due to vocabulary mismatch. Instead, by utilising documents en-
coded as vectors at indexing time and queries encoded as vectors
at query processing time, dense retrieval approaches [21, 45] are
of growing interest. In dense retrieval, the top-ranked documents
for a given query are computed by identifying the most similar
document embeddings to a given query embedding, employing
a nearest neighbour search procedure. Nearest neighbour search
with single representations is efficient, but can be less effective than
nearest neighbour search on multiple representations [25, 31], and
leads to significant efforts to improve the performance of single
representations, such as deploying hard negatives [47] and distil-
lation of knowledge from more expensive cross-encoders [18] or
ColBERT models [26].

On the other hand, when multiple representations are exploited,
as pioneered by Khattab and Zaharia [21], a multi-stage dense re-
trieval approach can be executed, where the first stage conducts an
approximate but highly efficient nearest neighbour search, retriev-
ing a candidate set of documents to be exactly scored by the second
stage. The use of multiple representations in dense retrieval poses
several challenges. The time taken to score all retrieved documents
can be expensive, and the space required to store the embeddings
of the tokens in the documents can exceed the available memory,
hence requiring a great number of time-consuming disk accesses.
A straightforward approach to deal with this issue is to reduce
the dimension of the embeddings, as done by ColBERT [21] and
miniLM [42]. Tonellotto and Macdonald [40] investigated some
efficiency improvement by pruning query term embeddings that
are estimated not to be useful for retrieving relevant documents.
They showed that a subset of the original query embeddings can be
used for effective retrieval while reducing the number of documents
requiring to be exactly scored. This subset of query embeddings
contains only the embeddings corresponding to tokens with a high
inverse collection frequency, i.e., query embeddings of common
tokens in the document collection are ignored. Lassance et. al [23]
studied the impact of token pruning in ColBERT during model
training, obtaining a space reduction of 30% at the cost of a new

1 In the remainder of this paper, we focus on passage ranking, and use pas-
sages/document nomenclature interchangably. In general, document ranking can be
effectively achieved by scoring documents based on their highest scoring passage [14].

Learned document
representation

Document
Collection

Document
Embeddings

Quantisation
&

Compression

Quantised
Document

Embeddings

First Stage
ANN Search

Second Stage
Reranker

Query

Top
documents

Offline Online

Learned query
representation

<latexit sha1_base64="l9eadgOlC9NX1jtFM+UupQJOeHM=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrJRBJSRaCgTQUKkxIrWl0045fzQ3RoUWfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60Siura+sb5c3K1vbO7l51/6BrwlgL7IhQhbrngUElA+yQJIW9SCP4nsI7b3qV+XcPqI0Mg1uaRej6MAnkWAqgVLoZD9vDas2u2zn4MnEKUmMFWsPq12AUitjHgIQCY/qOHZGbgCYpFM4rg9hgBGIKE+ynNAAfjZvkUef8JDZAIY9Qc6l4LuLvjQR8Y2a+l076QPdm0cvE/7x+TONLN5FBFBMGIjtEUmF+yAgt0w6Qj6RGIsiSI5cBF6CBCLXkIEQqxmkplbQPZ/H7ZdI9qzvn9Ua7UWvyopkyO2LH7JQ57II12TVrsQ4TbMKe2DN7sR6tV+vNev8ZLVnFziH7A+vjG8CZkho=</latexit>

fQ

<latexit sha1_base64="9Zglgy6hqzGcJRyzxPeTEYBRvPM=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIRAspIUFAGQR5SYkXryyaccn7obg2KrHwCLVR0iJbvoeBfsI0LSJhqNLOrnR0vUtKQbX9apaXlldW18nplY3Nre6e6u9c2YawFtkSoQt31wKCSAbZIksJupBF8T2HHm1xmfucBtZFhcEfTCF0fxoEcSQGUSrejwdWgWrPrdg6+SJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhbNKPzYYgZjAGHspDcBH4yZ51Bk/ig1QyCPUXCqei/h7IwHfmKnvpZM+0L2Z9zLxP68X0+jCTWQQxYSByA6RVJgfMkLLtAPkQ6mRCLLkyGXABWggQi05CJGKcVpKJe3Dmf9+kbRP6s5Z/fTmtNbgRTNldsAO2TFz2DlrsGvWZC0m2Jg9sWf2Yj1ar9ab9f4zWrKKnX32B9bHN6xWkg0=</latexit>

fD

Figure 1: Dense retrieval architecture.

neural model training phase. Differently from [23], in this work we
experiment with static pruning strategies that do not require any
further training of the ColBERT model, but remove embeddings
once they have been computed.

On the other hand, in [36], the original ColBERT authors de-
scribed how to quantize the embeddings index, resulting in reduced
space usage. In this work we take a different viewpoint – instead of
quantizing the embeddings of each token, we aim to remove some
embeddings entirely. These two directions are entirely orthogo-
nal, and could be later combined. In short, in this work, we aim at
adapting static pruning approaches to work on embedding-based
document representations. In particular, leveraging the statistical
information on lexical tokens in a collection, namely inverse docu-
ment frequency, we propose to remove the corresponding embed-
dings at collection level or document level, as we discuss in detail
in the following section.

3 PRUNING MULTIPLE REPRESENTATIONS
We now describe the general architecture of ColBERT multiple
representation dense retrieval (Section 3.1), how to apply static
pruning upon its embeddings (Section 3.2), how to compute the
importance of tokens for pruning (Section 3.3). We then summarise
our research questions (Section 3.4).

3.1 Multi-representation Dense Retrieval
The general architecture for dense retrieval follows the representation-
focused model for neural ranking, i.e., queries and documents are
represented by a set of fixed-length real-valued vectors, and a sim-
ilarity score is computed from the query representations and the
document representations, as depicted in Figure 1.

In particular, queries and documents are sequences of tokens
from a given vocabulary 𝑉 . Any token is represented by a real-
valued vector of dimension 𝑘 , called an embedding. More formally,
let 𝑓𝑄 : 𝑉𝑛 → R𝑛×𝑘 be a learned function mapping a given query
token 𝑡𝑖 in a query of 𝑛 tokens to the query embedding 𝜙𝑖 , i.e.,
{𝜙1, . . . , 𝜙𝑛} = 𝑓𝑄 (𝑡1, . . . , 𝑡𝑛). Similarly, let 𝑓𝐷 : 𝑉𝑛 → R𝑛×𝑘 be a
(potentially different) learned function mapping a given document
token 𝑡 𝑗 in a document of 𝑛 tokens to the document embedding𝜓 𝑗 ,
i.e., {𝜓1, . . . ,𝜓𝑛} = 𝑓𝐷 (𝑡1, . . . , 𝑡𝑛).

For a query𝑞 and a document𝑑 , their final similarity score 𝑠 (𝑞, 𝑑)
is obtained by summing up the maximum similarity between the

query token embeddings and document token embeddings:

𝑠 (𝑞, 𝑑) =
|𝑞 |∑︁
𝑖=1

max
𝑗=1,..., |𝑑 |

𝜙𝑇𝑖 𝜓 𝑗 . (1)

In dense retrieval, the document token embeddings from all
documents in the collection are pre-computed offline through the
application of the 𝑓𝐷 learned function and stored into a document
embeddings index data structure for vectors supporting similarity
searches (left side of Fig. 1). In a multi-stage architecture, these
embeddings are further processed offline by specialised techniques,
such as those provided by the FAISS toolkit [19]. These techniques
produce quantised and compressed embeddings, amenable to be
efficiently searched using an approximate nearest neighbour (ANN)
search technique (top left of Fig. 1). At query processing time, i.e.,
online, a user query is processed by the 𝑓𝑄 learned function, and
may also be augmented with additional masked tokens to provide a
query expansion-like role [21]. The resulting embeddings are used
in the first stage ANN search, to identify a candidate set of docu-
ments to be passed to a second stage reranker. The reranker exploits
the query token embeddings and the uncompressed document to-
ken embeddings for the documents in the sample to compute the
final top documents to return (right side of Fig. 1).

3.2 Static Pruning
Static pruning strategies focus on two building components, namely
tokens and documents. These components represent a lexical source
of information, and their statistical properties, e.g., number of oc-
currences and frequency counts, both within documents and in the
whole collection, are the main ingredients for query-document scor-
ing functions, such as TF-IDF and BM25 [41]. In particular, these
scoring functions can be expressed as sum of score contributions,
one per query token:

𝑠 (𝑞, 𝑑) =
|𝑞 |∑︁
𝑖=1

𝑠 (𝑡𝑖 , 𝑑) (2)

The impact 𝑠 (𝑡𝑖 , 𝑑) of a query token 𝑡𝑖 to the overall score 𝑠 (𝑞, 𝑑)
depends entirely on the query token and its statistical properties in
the document and the whole collection.

In dense retrieval we must take into account embeddings, which
carry semantic information about tokens, derived from their con-
texts in documents. In fact, in multi-representation dense retrieval
systems such as ColBERT [21], the scoring function in Eq. (1) de-
pends on the metric properties, i.e., dot product, of the query token
embeddings w.r.t. all the document token embeddings, due to the
max operator. Hence, it is not clear how the static pruning strate-
gies proposed for sparse inverted indexes perform when adapted to
dense embedding indexes, since the query token-document score
depends on the embeddings of all the tokens appearing in a docu-
ment. In order to investigate the impact, in terms of space reduction
and effectiveness, of static pruning strategies in the context of dense
retrieval, we resort to map back document token embeddings to
the corresponding tokens, arguing that this simplification is appro-
priate, as we will discuss in Section 3.3. Moreover, we propose the
following adaptations of static pruning strategies for embedding
indexes:

• uniform pruning: remove all embeddings in any document
corresponding to the tokens ranked by their global impor-
tance, up to a threshold number of globally removed tokens;

• document-centric pruning: remove a number of embeddings
in each document corresponding to the tokens ranked by
their global importance, up to a threshold number of tokens
removed per document.

Due to the fact that a query token-document score depends on
the embeddings of all the tokens appearing in a document, it is not
immediately obvious how to derive an adaptation for term-centric
pruning – indeed term-centric pruning relies on pruning of terms
in the same posting list, but there are no obvious ways to organise
multi-representations into posting lists. We leave this as future
work.

Finally, instead of pruning the documents before the application
of the learned function 𝑓𝐷 , we first compute the document token
embeddings, to preserve the contextualised information captured
by the pretrained transformer network, then we apply document
embedding pruning to remove unimportant embeddings, i.e., those
with almost no impact on the computation of the final results, as
we discuss next.

3.3 Token Importance
In order to compute the token importance, Tonellotto and Mac-
donald [40] experimentally showed almost 90% of query token
embeddings (3 vs. 32) do not contribute significantly to the recall
of relevant documents by the first stage ANN search of a multi-
representation dense retrieval system. By sorting the query token
embeddings by IDF, it was shown to be sufficient to process only
the top 3 embeddings with the highest IDF score, on average. More-
over, Lassance et al. [23] showed that ColBERT implicitly captures
the notion of IDF to measure query-document token importance.
Hence, it looks reasonable to exploit IDF as a proxy for token im-
portance in document token embedding pruning as well. To further
support this assumption, Figure 2 shows the ColBERT interaction
between the query and document embeddings for the query “what
are the social determinants of health” and a relevant document.

In the figure, the darker shading in the matrix is indicative of
higher similarity between document embeddings and query em-
beddings; the document embedding with the highest similarity
is selected for a given query embedding by the max operator in
Eq. (1), and is indicated by the × symbols; the histogram at the
top of the figure indicates the contribution of each query embed-
ding to the final document score. Indeed, on inspection of the max
similarities for this query-document pair shows that the highest
contributions to the document’s score comes from the ‘social’ ‘deter’
‘##mina’ ‘##nts’ document tokens, which are exact matches with
the query tokens – indeed, it is well known that ColBERT prefers
exact matches [23]. On the other hand, document tokens including
‘as’, ‘the’, and ‘in’ (which have low IDF) are not maximally similar
to any query embedding. Hence, these document embeddings are
not contributing to the final score of the document for the query,
and their removal will cause no difference.

Furthermore, it appears that the low IDF query tokens match
with low IDF tokens in the document, but contribute less to the
overall score of the document (as illustrated in the histogram at

0

1
[C

LS
]

[Q
]

wh
at

ar
e

th
e

so
cia

l
de

te
r

##
m

in
a

##
nt

s
of he

al
th

[S
EP

]
[M

AS
K]

[M
AS

K]
[M

AS
K]

[M
AS

K]
[M

AS
K]

[M
AS

K]
[M

AS
K]

[M
AS

K]
[M

AS
K]

[M
AS

K]
[M

AS
K]

[M
AS

K]
[M

AS
K]

[M
AS

K]
[M

AS
K]

[M
AS

K]
[M

AS
K]

[M
AS

K]
[M

AS
K]

[M
AS

K]

[CLS]
[D]
the

world
health

organisation
who

defines
the

social
deter

##mina
##nts

of
health

as
the

conditions
in

which
people

are
born
grow

live
work
and
age

[SEP]

X

X X X X
X

X
X

X
X

X

X

X X X X

X
X X

X
X

X
X

X X X X

X X
X X

X

Figure 2: Visualisation of ColBERT interaction between
query and document embeddings; the query includes
additional embeddings for masked tokens, which have
an expansion-like role; the selected maximally similar
document embedding for each query embedding are denoted
with ×.

the top of the figure). In particular, ‘of’ is an exact match, but there
are also several inexact matches - e.g. query tokens ‘what’, ‘are’
and ‘the’ are matched with the document token ‘the’ – hence, these
semantic matches are still between low IDF query tokens and low
IDF document tokens. This gives support to simply measuring the
global importance of a token in terms of its inverse document fre-
quency: the more a token appears in different documents, the less
a token is important, as proposed in [40] and supported by Fig. 2.
However, as mentioned above, we apply pruning of embeddings
after application of the learned model, to preserve the contextuali-
sation of the embeddings.

Finally, while the corpus itself is a natural and easy source of
token statistics, we also recognise that words that are frequent in
queries may not be useful to keep. Indeed, some past work used
query logs as a driver for pruning. This is motivated in conven-
tional pruning in that words that do not occur in the queries need
not be kept in the index. However, in ColBERT-based dense re-
trieval, query words can match to differing document words (a
semantic match [43], rather than a lexical one). Hence, in this work,
we also investigate using two large querysets to determine token
importance [22].

3.4 Research Questions
The most space consuming data structure in Fig. 1 is the document
embeddings index, used in the second stage reranker; our proposed
static pruning adaptations target mainly this index. In the following
experiments, we will investigate the following research questions:

• RQ1: What is the impact, in terms of effectiveness and space
reduction, of document-centric pruning in dense retrieval,
where we remove in each document a given number of em-
beddings, corresponding to low IDF terms?

• RQ2: What is the impact, in terms of effectiveness and space
reduction, of uniform pruning in dense retrieval, where we
remove globally a given number of embeddings, correspond-
ing to low IDF terms?

However, in the first stage ANN search, we can exploit the orig-
inal quantised document embeddings, or learn a new quantised
data structure from the document embeddings after static pruning
is deployed. We further investigate this approach, addressing the
following additional research question.

• RQ3: What is the impact, in term of effectiveness, of learning
a new quantised document embeddings index for first stage
ANN search after static pruning?

4 EXPERIMENTAL SETUP
We now discuss the dataset (Section 4.1), evaluation methodology
(Section 4.2) and pruning configurations (Section 4.3) applied in
our experiments.

4.1 Dataset
We experiment using the MSMARCO (v1) passage ranking corpus,
which consists of 8.8M passages [4].We apply a ColBERTmodel [21]
using the default settings proposed by Khattab & Zaharia. Our Col-
BERT model is trained for 200k steps. In particular, queries and pas-
sages are tokenised by the BERT WordPiece tokeniser. Thereafter,
queries are encoded into 32 embeddings, one for each WordPiece
token, and unused tokens being used as ‘[MASK]’ query embed-
dings, which permit query augmentation [21]. Tokens in passages
are encoded into 180 or less embeddings. The average number of
embeddings (a.k.a. tokens) per passage in the entire corpus is 77.8,
resulting in 185GB of index space (of which the embeddings index is
165GB). All index embeddings are stored as half-precision floating
point numbers, i.e., using 16 bits per embedding component.

For retrieval, we use an ANN stage to identify the 𝑘 = 1000most
similar passages, which are then re-ranked by an exact re-scoring
stage. Indeed, the heavily-compressed ANN stage used by ColBERT
results in scores that are not sufficiently accurate to be used for
high-precision ranking, but reranking 𝑘 = 1000 passages results in
no loss in effectiveness [30].

For evaluating effectiveness, we use the TREC 2019 queryset,
which contains 43 queries with an average of 215.3 relevance judge-
ments per query, and the TREC 2020 queryset, which contains 54
topics with an average of 66.8 relevance judgements per query.

4.2 Experimental Methodology
Our overall aim is to determine which ColBERT dense retrieval
configurations result in markedly smaller indexes (a.k.a. space ef-
ficiency) without (statistically significant) loss in ranking effec-
tiveness. To aid in conducting experiments efficiently, we initially
evaluate pruning effectiveness in a re-ranking setting, whereby a
candidate set of documents is identified using an unpruned FAISS
ANN stage of ColBERT, and then pruned, before being re-ranked.

Wemeasure both effectiveness and space efficiency on the re-ranked
documents.

In particular, for measuring effectiveness, we report NDCG@10
and MAP.2 For significance testing, we apply a paired t-test, to de-
termine statistical significance compared to the unpruned baseline.
We do not apply multiple testing correction, as this would reduce
the chances of observing significant degradations in effectiveness.3

For space efficiency, we measure the average length of the top
𝑘 documents, in terms of number of embeddings, after pruning
(denoted AvgDocLen@k). Indeed, we observe that the AvgDo-
cLen@100 for the TREC 2019 and TREC 2020 querysets are re-
spectively 79.2 and 78.2, which are both very close to the average
of 77.8 observed in the corpus as a whole (sample sizes of 4300 and
5400 documents). Moreover, as we show in Section 5.2, these are
sufficiently representative of the average document lengths of the
pruned indexes.

4.3 Pruning Implementation and Settings
In the following re-ranking experiments, we apply seven families
of ColBERT dense retrieval configuration:

• Original: This is the default ColBERT dense retrieval config-
uration, using all document embeddings.

• Stopwords (Uniform): This uniform pruning removes the doc-
ument embeddings for tokens matching a pre-determined
list of stopwords. In particular, we apply Terrier’s stopword
list of 733 tokens, but only apply the 403 tokens that have an
exact match with a token in the BERT tokenizer4. This can be
interpreted as a uniform setting, as embeddings are removed
from the index regardless of which documents they occur in.

• Random doc-centric: In this document-centric pruning ap-
proach, we remove 𝜏𝑑 random tokens from each document.
Tokens are sampled without replacement.

• IDF doc-centric: In this document-centric pruning approach,
we remove embeddings that correspond to the 𝜏𝑑 tokens in
the document with lowest IDF. In this way, all passages are
cut down.

• IDF uniform: This uniform pruning approach removes the
embeddings corresponding to the 𝜏𝑢 tokens with lowest IDF
from the entire corpus. This treatment is applied across the
entire index – some passages could be untouched. In practice,
the lowest IDF tokens are very similar to tokens that occur
in a typical stopwords list (the five lowest IDF BERT tokens
in the corpus are: ‘the’, ‘of’, ‘and’, ‘a’ and ‘it’).

• MSMARCO uniform: While IDF uniform computes the IDF on
the MSMARCO corpus, this uniform pruning approach com-
putes the IDF using the MSMARCO train queryset, and then
removes the embeddings corresponding to the 𝜏𝑢 tokens
with lowest IDF from the entire corpus.

• MSN uniform: This uniform pruning approach computes the
IDF using the MSN query log [11], and then removes the
embeddings corresponding to the 𝜏𝑢 tokens with lowest IDF
from the entire corpus.

2 ForMAP, we set the relevance label threshold as 2 [12]. 3 We also considered use of
Two-One-Sided Test (TOST), however, setting appropriate thresholds, particularly for
non-linear measures such as MAP, make them non-trivial to apply. 4 Tackling this
would involve extending the work to n-grams of BERT tokens, an added complication.
We leave the pruning of such n-grams to future work.

For the latter five approaches, we vary the number of tokens
being pruned, i.e.𝜏𝑑 = {1, 3, 5, 8, 10, 15, 20, 25, 30}, and𝜏𝑢 = {1, 10, 25, 50,
100, 250, 500, 750, 1000, 2000, 3000}, We also implemented two ad-
ditional doc-centric baselines based on IDF computed on the MS-
MARCO train query set and the MSN query log. In both cases, the
resulting curves overlapped with the IDF doc-centric approach,
hence, for space constraints, we do not report them. Moreover, we
consider another baseline ColBERT configuration, based onminiLM.
This configuration consists of a dense retrieval baseline that uses
a distilled version of BERT called miniLM (which uses less layers
and less parameters [42]). In particular, we use a checkpoint of the
model fine-tuned for ColBERT-like retrieval in the exact same man-
ner as ColBERT. The miniLM approach reduces the index size not
by pruning embeddings, but by reducing their dimensions, from 768
to 32. For more details, see [5]. Hence, this approach is orthogonal
to our proposed approach, and we leave to future works an in-depth
investigation of the impact of both approaches deployed jointly.

All source code to reproduce these experiments is available from
https://github.com/cmacdonald/colbert_static_pruning.

5 RESULTS
Firstly, Section 5.1 discusses the re-ranking results for document-
centric and uniform pruning, evaluated for space usage and effec-
tiveness in a re-ranking setting (c.f. RQ1 & 2). Later, in Section 5.2,
we discuss the results based on full indexes (c.f. RQ3).

5.1 RQ1 & RQ2 - ReRanking Evaluation
Figures 3 and 4 respectively present our re-ranking performances
on the TREC 2019 and TREC 2020 querysets. Graphs are shown for
both nDCG@10 and Mean Average Precision (MAP), following [12,
13]. In each graph, effectiveness is shown on the y-axis, while
the relative space consumed compared to the Original ColBERT
index (in terms of AvgDocLen@100) on the x-axis. Effectiveness
values significantly different from Original are denoted with blue +
symbols, according to a paired t-test (𝑝 < 0.05).

We first focus on RQ1, analysing the results of document-centric
pruning strategies, namely random (black dotted line in the figures)
and IDF doc-centric (red dashed line in the figures), while varying
the number of tokens to drop from each document 𝜏𝑑 . As expected,
for all querysets and metrics, the random approach causes a loss
of effectiveness w.r.t. the baseline (red star in the figures), even
for small values of 𝜏𝑑 , and the loss is generally statistically signifi-
cant, with the only exception being observed for NDCG@10 on the
TREC 2020 queryset. The IDF doc-centric approach shows superior
effectiveness performance w.r.t. random, but the effectiveness degra-
dation for MAP on TREC querysets becomes statistically significant
for sufficiently values of 𝜏𝑑 , e.g., once 20-25% of embeddings are
being removed.

To conclude on RQ1, the IDF doc-centric pruning approach can
provide only a very limited benefit in space reduction (around
∼20%) without exhibiting statistically significant degradations in
effectiveness.

We now turn to RQ2, analysing the results of uniform pruning
strategies, namely stopwords (green star in the figures), IDF uniform
(red line in the figures),MSN uniform (purple line in the figures), and
MSMARCO uniform (grey line in the figures). For both querysets and

https://github.com/cmacdonald/colbert_static_pruning

20% 30% 40% 50% 60% 70% 80% 90% 100%

Space consumed w.r.t. Original AvgDocLen@100

0.60

0.62

0.64

0.66

0.68

0.70

0.72

τu = 100

IDF uniform

MSN uniform

MSMARCO uniform

IDF doc-centric

Random doc-centric

Original

Stopwords

(a) nDCG@10

20% 30% 40% 50% 60% 70% 80% 90% 100%

Space consumed w.r.t. Original AvgDocLen@100

0.32

0.34

0.36

0.38

0.40

0.42
τu = 100

IDF uniform

MSN uniform

MSMARCO uniform

IDF doc-centric

Random doc-centric

Original

Stopwords

(b) MAP

Figure 3: NDCG@10 (left) and MAP (right) vs. space consumed w.r.t. the average document length of the first 100 retrieved
documents of the baselines (no pruning, stopwords and random) and the IDF-based strategies (uniform and doc-centric) on
TREC 2019, as the number of pruned tokens 𝜏 varies. Crosses denote a statistically significant difference in effectiveness
compared to Original, according to a paired t-test (p-value < 0.05).

20% 30% 40% 50% 60% 70% 80% 90% 100%

Space consumed w.r.t. Original AvgDocLen@100

0.58

0.60

0.62

0.64

0.66

0.68

τu = 100

IDF uniform

MSN uniform

MSMARCO uniform

IDF doc-centric

Random doc-centric

Original

Stopwords

(a) nDCG@10

20% 30% 40% 50% 60% 70% 80% 90% 100%

Space consumed w.r.t. Original AvgDocLen@100

0.36

0.38

0.40

0.42

0.44

0.46

τu = 100

IDF uniform

MSN uniform

MSMARCO uniform

IDF doc-centric

Random doc-centric

Original

Stopwords

(b) MAP

Figure 4: NDCG@10 (left) and MAP (right) vs. space consumed w.r.t. the average document length of the first 100 retrieved
documents of the baselines (no pruning, stopwords and random) and the IDF-based strategies (uniform and doc-centric) on
TREC 2020, as the number of pruned tokens 𝜏 varies. Crosses denote a statistically significant difference in effectiveness
compared to Original, according to a paired t-test (p-value < 0.05).

effectiveness metrics, the stopwords approach is able to prune ∼32%
of the embeddings of the top 100 re-ranked documents with little
change in effectiveness, particularly on the TREC 2019 queryset. On
the other hand, instead of removing the embeddings corresponding
to 403 tokens in the stopwords list, IDF uniform is able to reach
better results in terms of space occupancy by just removing the
𝜏𝑢 = 100 tokens with the lowest IDF value in the corpus with no
statistically significant difference in MAP and NDCG@10 (except
NDCG@10 for TREC 2019, and the surrounding values are not
significant) resulting in a pruning of ∼45% of the embeddings of the
top 100 re-ranked documents. On inspection, the pruned tokens for
IDF 𝜏𝑢 = 100 contains sub-word tokens not included in the classical
stopword list, such as ‘##e’ and ‘##ing’, as well as the digits 1 - 5.
This illustrates the appropriateness of IDF pruning based on the
corpus itself over manually curated stopword list.

On the same querysets, both MSN uniform and MSMARCO uni-
form approaches are only able to prune ∼35% of the embeddings
of the top 100 re-ranked documents without causing statistically
significant damage to effectiveness. Indeed, they are not competi-
tive with the pruning results for IDF uniform. This can be explained
by noting that frequent terms in the querylog (say ‘google‘), when
pruned from the corpus could prevent relevant documents from
being retrieved (thus impacting effectiveness); moreover, as they do
not occur frequently in the corpus, they do not allow much pruning
to actually occur.

To conclude on RQ2, the IDF uniform pruning approach allows to
reduce the space occupancy of the embeddings index by almost 45%,
often with no statistically significant differences in effectiveness.

5.2 RQ3 - Pruned Index Evaluation
To verify that space occupancy measured in a re-ranking setting
correlates well to actual space savings for the entire index, and to
ascertain whether the ANN index should be constructed based on
the full index or the ANN index, we next construct two indexes
for comparison with the Original index. In particular, we choose
IDF uniform pruning, dropping the 𝜏𝑢 = 100 tokens with lowest
IDF from the index (which resulted in documents with an AvgDo-
cLen@100 55% that of Original, and no significant degradations on
the TREC querysets), and also the stopwords-based pruning (67%).

Table 1 reports the total index size and effectiveness of the Orig-
inal unpruned ColBERT dense retrieval index on the two querysets,
as well as the relative index size of the pruned indexes, and their
effectiveness. For each pruned index, we report two rows: one using
the original FAISS ANN index from the unpruned index, and a new
FAISS index computed on the pruned index. Finally, for the two
TREC querysets, we also report Recall@1000 (denoted R@1000).

Our first observation on analysis of Table 1 is that the relative de-
creases in the size of both the embeddings indexes and the FAISS in-
dexes are very similar to the relative decreases in AvgDocLen@100
reported for these indexes in Section 5.1. This supports our use of
AvgDocLen@100 as a proxy for the space usage of the entire index,
which has marked benefits for testing different pruning settings
compared to creating a new index.

Next, the index created by the distilled miniLMmodel (and which
uses highly compressed embeddings), is, as expected, substantially

smaller than all other indices (Original or pruned), but at the cost
of the lowest effectiveness across all measures and querysets.

Next, we note the effectiveness results using the original FAISS
are exactly inline with those reported in Figures 3 & 4. Interestingly,
when using the new pruned FAISS index, we observe that apply-
ing the pruned FAISS ANN index produces slight degradations in
effectiveness for most metrics (exception: stopwords index, TREC
2019). This suggests that some pruned embeddings with low IDF
have a small role in retrieving relevant documents in the ANN
phase, suggesting that their embeddings may be slightly contex-
tualised. Hence, to answer RQ3, we conclude that learning a new
quantised document embeddings index for first stage ANN search
after static pruning can cause some small degradations in terms of
effectiveness, but it reduces the ANN index size by ∼45%. Should
this reduction in effectiveness be undesirable, the original FAISS
index can be reused with the pruned index, with a small (3-5%)
overhead on space.

Finally, while not a goal of this study, we also empirically in-
vestigated the benefit of pruning on response time efficiency. We
observed that while FAISS index size is reduced by 55% there is no
corresponding efficiency benefit. This is because the ANN settings
(number of partitions, set as a rounded function of the number of
embeddings) used by ColBERT is unchanged by the reduction in em-
beddings. Reducing the number of partitions by 50% produced a 13%
benefit in response times, but at the cost of very small decreases in
effectiveness. We leave further refinement of the automatic tuning
of the FAISS index partitions to future work.

Overall, the results in Table 1 demonstrate the overall efficacy of
both stopword and IDF uniform pruning – embeddings that corre-
spond to tokens with low IDF are not useful for multiple representa-
tion dense retrieval (even if they have a role in contextualising the
embeddings for more important terms). Comparing stopwords and
IDF uniform pruning, the latter results in smaller indices with effec-
tiveness that is generally statistically indistinguishable in 9/12 cases.

6 VERIFICATION ON TREC-COVID
To validate the generalisation of our results, we further demon-
strate the efficacy of IDF uniform pruning on the TREC-Covid test
collection. The underlying CORD19 corpus contains the title &
abstracts of 171k papers collected during 2020. In particular, we
apply the BEIR [38] variant of the corpus, and test effectiveness
using the 50 topics with relevance assessments.

In our experiments, we use the IDF values computed on MS-
MARCO. Indeed, initial experiments found that due to the domain-
specific nature of the corpus (i.e. all documents included in the
corpus were concerned with Covid-19), effectiveness when pruned
using IDF computed on the corpus itself was lower, as tokens such
as ‘co’, ‘19’ and ‘corona’ were pruned, while these are important for
effectiveness. Indeed, its well known that adding ‘covid’ or ‘corona’
to TREC Covid query formulations could actually improve effec-
tiveness. We directly apply 𝜏 = 100 following the results in Table 1.

Table 2 reports the resulting index sizes and effectiveness on
the TREC Covid queries, using identical notation to Table 1. From
the table, we make the following observations: IDF uniform prun-
ing reduces index size more than Stopwords, but at the cost of a
little more effectiveness (although no effectiveness changes are

Table 1: Index sizes and effectiveness on the TREC 2019 and TREC 2020 querysets. Pruned index sizes are expressed as a
percentage of the Original index. In each column, the highest effectiveness across the pruned indexes is boldfaced. * denotes
significant degradations compared to Original (𝑝 < 0.05).

Setting Index Size TREC 2019 TREC 2020

Total ANN Embeddings nDCG@10 MAP R@1000 nDCG@10 MAP R@1000

Original 185 GB 16 GB 165 GB 0.706 0.419 0.671 0.687 0.459 0.733

miniLM 30% 100% 25% 0.632* 0.368* 0.625* 0.664 0.423* 0.695

Stopwords (orig. FAISS) 70% 100% 67% 0.708 0.416 0.671 0.678 0.452 0.733
Stopwords (new FAISS) 67% 69% 67% 0.709 0.416 0.681 0.674 0.449 0.713*

IDF uniform 𝜏 = 100 (orig. FAISS) 60% 100% 55% 0.691* 0.407 0.680 0.674 0.455 0.733
IDF uniform 𝜏 = 100 (new FAISS) 55% 54% 55% 0.690* 0.398* 0.678 0.667 0.442 0.709

Table 2: Index sizes, efficiency, effectiveness on TREC Covid.
Notation as per Table 1. There are no significant differences
in effectiveness compared to the Original (𝑝 < 0.05).

Setting Index Size Effectiveness

Total ANN Embeddings nDCG@10 MAP

Original 6.5GB 5.5GB 526MB 0.680 0.154

Stopwords (orig. FAISS) 72% 100% 72% 0.685 0.151
Stopwords (new FAISS) 69% 73% 72% 0.689 0.143

IDF uniform 𝜏 = 100 (orig. FAISS) 65% 100% 65% 0.671 0.154
IDF uniform 𝜏 = 100 (new FAISS) 62% 64% 65% 0.672 0.147

significant at 𝑝 < 0.05); replacing the unpruned FAISS index with a
pruned index results in slight drops in MAP, but nDCG@10 remains
stable - this drop mirrors the observation for the TREC 2020 MS-
MARCO passage ranking dataset. Overall, we conclude that the IDF
uniform pruning (with 𝜏 = 100) is again useful for reducing index
sizes (achieving a 38% reduction of the index), at least providing
statistically indistinguishable effectiveness to an unpruned index
(e.g. 1.3% reduction in nDCG@10: 0.680→0.672), and more pruning
of the index compared to Stopwords removal.

7 CONCLUSIONS

In this paper, we re-examined classical static pruning approaches,
and demonstrated how they could be generalised to consider embedding-
based dense retrieval indexes. In particular, we proposed both
document-centric and uniform pruning methods, based on the IDF
of the corresponding BERT WordPiece tokens. By removing the
embeddings associated with the terms with the lowest IDF, we can
markedly reduce the index size, while minimising degradation in ef-
fectiveness. Indeed, our experiments on the MSMARCO v1 passage
ranking corpus show that by removing embeddings corresponding
to the 100most frequent BERT tokens, the total index size is reduced
by 45%, and effectiveness is only marginally reduced (e.g. without
significant degradation of NDCG@10 or MAP on the TREC 2020
queryset; 4% reduction in NDCG@10 on TREC 2019 queryset). Sim-
ilarly, on TREC Covid, we observed a statistically indistinguishable
1.3% reduction in nDCG@10 for a 38% reduction in total index size.

We believe that this adaptation of classical pruning techniques
to the dense retrieval domain shows promise, and can be used

as a strong baseline for further investigations of more advanced
pruning techniques for dense retrieval. Indeed, we recognise that
token-level pruning may be counter-intuitive for some frequent but
polysemous words (which will have contextualised embeddings)
such as ‘us’, which can be either a country or a pronoun. We leave
such advanced pruning techniques to future work.

ACKNOWLEDGEMENTS
Thiswork is supported, in part, by the spoke “FutureHPC&BigData”
of the ICSC – Centro Nazionale di Ricerca in High-Performance
Computing, Big Data andQuantumComputing funded by European
Union – NextGenerationEU, and the FoReLab project (Departments
of Excellence).

REFERENCES
[1] Soner Altin, Ricardo Baeza-Yates, and B. Barla Cambazoglu. 2020. Pre-indexing

Pruning Strategies. In Proc. SPIRE. 177–193.
[2] Ismail S. Altingovde, Rifat Ozcan, and Özgür Ulusoy. 2012. Static Index Pruning

in Web Search Engines: Combining Term and Document Popularities with Query
Views. ACM TOIS 30, 1 (2012), 1–28.

[3] Ricardo Baeza-Yates, Aristides Gionis, Flavio P. Junqueira, Vanessa Murdock,
Vassilis Plachouras, and Fabrizio Silvestri. 2008. Design trade-offs for search
engine caching. ACM TWEB 2 (2008), 20:1–20:28. Issue 4.

[4] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong
Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2016. MS
MARCO: A Human Generated MAchine Reading COmprehension Dataset. In
Proc. InCoCo@NIPS.

[5] Jo Kristian Bergum. 2021. Pretrained Transformer Language Models for Search
- part 4. https://blog.vespa.ai/pretrained-transformer-language-models-for-
search-part-4/

[6] Roi Blanco and Alvaro Barreiro. 2007. Static Pruning of Terms in Inverted Files.
In Proc. ECIR. 64–75.

[7] Roi Blanco and Alvaro Barreiro. 2010. Probabilistic Static Pruning of Inverted
Files. ACM TOIS 28, 1 (2010), 1–33.

[8] Stefan Büttcher and Charles L. A. Clarke. 2006. A Document-Centric Approach
to Static Index Pruning in Text Retrieval Systems. In Proc. CIKM. 182–189.

[9] David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi, Michael Herscovici,
Yoelle S. Maarek, and Aya Soffer. 2001. Static Index Pruning for Information
Retrieval Systems. In Proc. SIGIR. 43–50.

[10] Ruey-Cheng Chen and Chia-Jung Lee. 2013. An Information-Theoretic Account
of Static Index Pruning. In Proc. SIGIR. 163–172.

[11] Nick Craswell, Rosie Jones, Georges Dupret, and Evelyne Viegas. 2009. Proceed-
ings of the 2009 Workshop on Web Search Click Data.

[12] Nick Craswell, Bhaskar Mitra, Daniel Campos, and Emine Yilmaz. 2020. Overview
of the TREC 2019 Deep Learning Track. In Proc. TREC 2019.

[13] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021. Overview
of the TREC 2020 Deep Learning Track. In Proc. TREC 2020.

[14] Zhuyun Dai and Jamie Callan. 2019. Deeper text understanding for IR with
contextual neural language modeling. In Proc. SIGIR. 985–988.

https://blog.vespa.ai/pretrained-transformer-language-models-for-search-part-4/
https://blog.vespa.ai/pretrained-transformer-language-models-for-search-part-4/

[15] Edleno S. de Moura, Célia F. dos Santos, Daniel R. Fernandes, Altigran S. Silva,
Pavel Calado, and Mario A. Nascimento. 2005. Improving Web Search Efficiency
via a Locality Based Static Pruning Method. In Proc. WWW. 235–244.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proc. NAACL.

[17] Sebastian Hofstätter and Allan Hanbury. 2019. Let’s measure run time! Ex-
tending the IR replicability infrastructure to include performance aspects. In
OSIRRC@SIGIR.

[18] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. 2021. Efficiently Teaching an Effective Dense Retriever with Balanced
Topic Aware Sampling. In Proc. SIGIR. 113–122.

[19] J. Johnson, M. Douze, and H. Jegou. 2021. Billion-Scale Similarity Search with
GPUs. IEEE Trans. Big Data 7, 03 (2021), 535–547.

[20] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proc. EMNLP. 6769–6781.

[21] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. In Proc. SIGIR. 39–48.

[22] Hoang Thanh Lam, Raffaele Perego, and Fabrizio Silvestri. 2010. On Using Query
Logs for Static Index Pruning. In Proc. WI-IAT, Vol. 1. 167–170.

[23] Carlos Lassance, Maroua Maachou, Joohee Park, and Stéphane Clinchant. 2022.
Learned Token Pruning in Contextualized Late Interaction over BERT (ColBERT).
In Proc. SIGIR. 2232–2236.

[24] Jimmy Lin. 2019. The Neural Hype, Justified! A Recantation. SIGIR Forum 52, 2
(2019).

[25] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021. Pretrained Transformers
for Text Ranking: BERT and Beyond. Morgan & Claypool Publishers.

[26] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-Batch Negatives
for Knowledge Distillation with Tightly-Coupled Teachers for Dense Retrieval.
In Proc. RepL4NLP Workshop.

[27] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Efficient Document Re-Ranking for Trans-
formers by Precomputing Term Representations. In Proc. SIGIR. 49–58.

[28] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Expansion via Prediction of Importance with
Contextualization. In Proc. SIGIR. 1573–1576.

[29] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized Embeddings for Document Ranking. In Proc. SIGIR. 1101–1104.

[30] Craig Macdonald and Nicola Tonellotto. 2021. On Approximate Nearest Neigh-
bour Selection for Multi-Stage Dense Retrieval. In Proc. CIKM. 3318–3322.

[31] CraigMacdonald, Nicola Tonellotto, and Iadh Ounis. 2021. On Single andMultiple
Representations in Dense Passage Retrieval. In Proc. IIR.

[32] Irina Matveeva, Chris J. C. Burges, Timo Burkard, Andy Laucius, and Leon Wong.
2006. High accuracy retrieval withmultiple nested ranker. In Proc. SIGIR. 437–444.

[33] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv:1901.04085

[34] Alexandros Ntoulas and Junghoo Cho. 2007. Pruning Policies for Two-Tiered
Inverted Index with Correctness Guarantee. In Proc. SIGIR. 191–198.

[35] Cristian Rossi, Edleno S. de Moura, Andre L. Carvalho, and Altigran S. da Silva.
2013. Fast Document-at-a-time Query Processing Using Two-tier Indexes. In
Proc. SIGIR. 183–192.

[36] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei
Zaharia. 2021. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. CoRR abs/2112.01488 (2021). arXiv:2112.01488

[37] Gleb Skobeltsyn, Flavio Junqueira, Vassilis Plachouras, and Ricardo Baeza-Yates.
2008. ResIn: A Combination of Results Caching and Index Pruning for High-
performance Web Search Engines. In Proc SIGIR. 131–138.

[38] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Proc. NeurIPS.

[39] Sree Lekha Thota and Ben Carterette. 2011. Within-Document Term-Based Index
Pruning with Statistical Hypothesis Testing. In Proc. ECIR. 543–554.

[40] Nicola Tonellotto and Craig Macdonald. 2021. Query Embedding Pruning for
Dense Retrieval. In Proc. CIKM. 3453–3457.

[41] Nicola Tonellotto, Craig Macdonald, and Iadh Ounis. 2018. Efficient Query
Processing for Scalable Web Search. Foundations and Trends in Information
Retrieval 12, 4–5 (2018), 319–492.

[42] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. MiniLM: Deep self-attention distillation for task-agnostic compression of
pre-trained transformers. In Proc. NeurIPS, Vol. 33. 5776–5788.

[43] XiaoWang, CraigMacdonald, and Iadh Ounis. 2022. Improving zero-shot retrieval
using dense external expansion. Information Processing & Management 59, 5
(2022), 103026. https://doi.org/10.1016/j.ipm.2022.103026

[44] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-Hoc Ranking with Kernel Pooling. In Proc. SIGIR. 55–64.

[45] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In Proc. ICLR.

[46] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-Miller, and Jaap
Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning a Sparse
Representation for Inverted Indexing. In Proc. CIKM. 497–506.

[47] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2021. Optimizing Dense Retrieval Model Training with Hard Negatives. In Proc.
SIGIR. 1503–1512.

http://arxiv.org/abs/1901.04085
https://doi.org/10.1016/j.ipm.2022.103026

	ACM Cover Sheet (AFV)
	300119
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Pruning
	2.2 Neural Re-ranking and Dense Retrieval

	3 Pruning Multiple Representations
	3.1 Multi-representation Dense Retrieval
	3.2 Static Pruning
	3.3 Token Importance
	3.4 Research Questions

	4 Experimental Setup
	4.1 Dataset
	4.2 Experimental Methodology
	4.3 Pruning Implementation and Settings

	5 Results
	5.1 RQ1 & RQ2 - ReRanking Evaluation
	5.2 RQ3 - Pruned Index Evaluation

	6 Verification on TREC-Covid
	7 Conclusions
	References

