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Abstract—The amount of data generated in Industry 4.0 and
the introduction of advanced data analytics support establishing
“smart factories” and one of its crucial characteristics – predic-
tive maintenance. Current solutions primarily focus on offline
predictions and do not provide end-to-end scalable solutions.
Furthermore, there is a lack of support for incremental ma-
chine learning in predictive maintenance. This paper addresses
these limitations by proposing MARTIN, a scalable microservice
architecture for predictive maintenance that can collect, store,
and analyse data, and make decisions based on the machine
state. The architecture uses incremental learning as the basis
for predictions. The designed system was implemented and its
performance was evaluated experimentally. The results show that
the solution can provide high prediction accuracy in terms of
practical processing time.

Index Terms—Predictive maintenance, Machine Learning, Mi-
croservice, Architecture

I. INTRODUCTION

The industry is continuously developing and adopting tech-
nological improvements to adapt and improve its functioning,
which has led to what is known as the fourth industrial
revolution, Industry 4.0 [1], [2]. One of the basic principles
of Industry 4.0 is the reduction of human intervention in
decision making processes by automating and optimising them
using artificial intelligence [3], which is stimulated by the
need to enhance the productivity, efficiency, and flexibility of
production processes. However, equipment maintenance is a
crucial factor that impacts long-term success of manufacturers,
representing 15–60% of their total operational costs [4]. Un-
expected downtime costs the industrial sector circa $50 billion
a year in the US alone, with 42% of this being attributed to
equipment failure [5].

Predictive maintenance is an effective approach that utilises
data to prepare for equipment failure before it happens,
which reduces downtime and increases profits. Such data
are collected through monitoring the operational environment.
For example, a smart factory is a cyber-physical system that
contains a large number of networked devices and machines
that are monitored by sensors. The monitoring data includes
machine component states, e.g., heat, pressure, motor rotation,
circuit interruption, transmitter fault, etc. The collected data
are leveraged to reason about issuing maintenance operations.

In this context, data are crucial in generating knowledge that
is key in making automated predictive decisions. Identifying
trends and behaviour patterns – using machine learning models
– is needed in order to predict component failures. This

enables proactive decision making, and avoids system failures
and downtime, which, in turn, increases productivity and profit
[6].

Predictive maintenance has attained considerable impor-
tance in the literature. There are existing approaches that
incorporate several technologies such as Machine Learning,
Big Data and the Internet of Things [3]. However, most of
these attempts rely on collecting large amounts of data to
perform batch learning (offline by experts) to predict fail-
ures. There is limited support for online learning capabilities
that would incrementally provide insights about the running
performance of system components, which enables dynamic
adaptation to new patterns in data. More generally, we find
a lack of proposals that address predictive maintenance in a
holistic manner; i.e., integrating mechanisms for data collec-
tion, analysis, and decision making in order to enable adaptive
and timely predictive maintenance.

This work develops a Microservice architecture for pRedic-
Tive Industry mainteNance (MARTIN) to support incremental
learning in Industry 4.0. MARTIN facilitates smart factory
characteristics such as real-time decision making and increased
visibility, and provides predictive maintenance mechanisms.
MARTIN uses the microservice architectural pattern to provide
reliability and scalability, as is now the de facto standard
practice in developing and deploying applications [7], [8].
Furthermore, the architecture supports the application of in-
cremental machine learning for predictive maintenance tasks
[9]. MARTIN can serve as a basis for a data-agnostic mechanism
to support multiple smart factories within the same system. In
summary, the main contributions of this paper are as follows:

• Design an architecture to facilitate data collection, data stor-
age, real-time decision making, alert system, and predictive
maintenance mechanisms.

• Evaluate the solution by executing use cases that involve
multiple different time-series datasets.

• Evaluate the performance of the incremental machine learn-
ing method for predictive maintenance.

The rest of the paper is organised as follows. Section II
discusses related works. Sections III and IV present the design
and implementation, respectively, of the proposed architecture,
MARTIN. Section V presents scenarios to demonstrate inter-
action with MARTIN. Sections VI and VII detail the setup
and the results, respectively, of our performance evaluation.
Section VIII provides a discussion of the main findings and the



threats of validity. Section IX draws conclusions and outlines
future work.

II. RELATED WORK

Many publications studied different approaches to create an
effective predictive maintenance mechanism. Sipos et al. [10]
designed a system that uses logs generated by machines
to create a model that is evaluated by data scientists then
used to predict failures. Paolanti et al. [11] created a data
analysis mechanism with a Random Forest approach trained
using Azure Machine Learning Studio and reached 95%
accuracy. Kaiser and Gebraeel [12] used a combination of
component-specific real-time degradation signals together with
historical data about reliability. These papers focused only on
predictive maintenance aspects, omitting challenges related
to the scalability of the predictive maintenance solution. It
is hard to make the predictive maintenance mechanism op-
timal in real-life scenarios without a proper architecture to
support it. Hasselbring et al. [13] developed a platform for
integrating production environments with Industrial DevOps,
and applied predictive maintenance as an application scenario
of the platform. In contrast to the above contributions, this
paper describes an end-to-end solution to facilitate scalable
predictive maintenance.

Complex Event Processing (CEP) [14] is a technique that
processes data from different streams to infer complex events
in real-time. CEP usually works by having a set of predefined
rules and matching them with the data to identify specific
events. Etzion and Niblett [14] used an adaptive approach to
predict future data and apply CEP rules. The implementation
resulted in high accuracy, however, it is limited to only
one data domain. In contrast, MARTIN supports various data
domains simultaneously and along with customisable CEP
rule sets. Akbar et al. [15] implement a generic architecture
to combine predictive maintenance with CEP. However, they
use offline learning which required a substantial amount of
historical data for training. Eichler et al. [16] provide a
generic architecture for event- and agent-based smart systems.
The architecture is designed specifically to help with system
comprehension and debugging. Other related contributions
(e.g., [17], [18]) offer purely theoretical models with no actual
implementation of a prototype.

The work of Wang et al. [19] uses CEP together with
dynamic Bayesian Networks, and applies the results to road
traffic data. Christ et al. [20] tried to apply conditional den-
sity estimations to change CEP from reactive to predictive.
The AutoCEP framework [21] uses historical data to predict
patterns and transform them into CEP rules which are later
used to configure the CEP engine. The work described in [22]
connects CEP, predictive maintenance, and the microservices
architecture in a single solution to predict potentially danger-
ous situations and act accordingly using offline learning. In
contrast, this paper leverages incremental machine learning
which enables adaptive real-time decision making. Further-
more, MARTIN allows users to alternate event processing rules

dynamically, without the need to redeploy the architecture,
reducing potential downtime.

III. DESIGN

This section presents the design of the architecture. It
first discusses the requirements that guided the design of the
architecture then describes its components.

A. Requirements

MARTIN was designed based on the following set of require-
ments that are based on our analysis of the related works and
discussion with different stakeholders as described in . The
architecture should:
• accept, analyse, and store the generated data in real-time

using an industry-standard communication protocol. Using
popular protocols will make the architecture available and
reduce compatibility issues.

• be able to process various data domains, ideally originating
from multiple organisations. This would allow the system
to be used by multiple companies without implementation
adjustments.

• be capable of matching data with defined complex event
rules and make decisions based on the actions defined in
event processing rules, which is necessary for predictive
maintenance tasks.

• be able to predict failures within a specified time-frame in
order to allow users to schedule appropriate actions and
avoid sudden failures.

• have means to alert system users about potential threats with
a notification; such as email.

• allow users to define custom rules for event processing and
custom schema of the gathered data.

• store raw sensor data, predictions, and decisions for analyti-
cal and historical purposes. Such data can be used to assess
the performance of predictive maintenance and adjust the
settings accordingly.

• be divided into loosely coupled microservices; each respon-
sible for one functionality, allowing easier maintainability,
and enabling scalability, flexibility and reusability.

B. Architecture components

MARTIN is based on the microservice architectural pattern,
wherein the system is made of a set of independent microser-
vices. This architectural style has multiple benefits over the
monolith alternative, such as loosely coupled development
and independent deployment, testing and scaling. In turn,
this improves scalability and availability, and affords reuse of
components, which fulfils our design requirements.

The boundary between services is set appropriately to allow
services to be operationally independent and keep related
functionalities within a single component [23]. This approach
increases scalability and the ability to maintain each service
independently. Furthermore, the designed architecture aims
to minimise the number of direct links between services,
which should further reduce the coupling between services and
increase performance and availability [23]. Figure 1 depicts



Figure 1: An overview of MARTIN, the predictive maintenance architecture.

the MARTIN architecture, which is composed of the following
components:

1) Data Entry Service: This is an entry point of the
architecture that accepts data from IoT sensors. This service
supports REST as a popular and language-independent means
of data exchange. Once a data point arrives, the service fetches
the appropriate schema from the Schema service (explained
below) and validates the entry. If the received data match the
schema, the service forwards the entry to the message broker,
which sends it to other services that use the information for
their tasks. If the data do not match the defined schema, the
service does not push the data further into the system, and is
rejected.

2) Schema Service: This service is responsible for manag-
ing various data schemes that are supported by the system.
It allows the user to define the data structure that the system
accepts. Furthermore, the user can mark the required fields,
which will lead to data rejection if one of these fields is
missing. Apart from schema management, the service provides
saved schemes if requested, and in the proposed architecture,
the Data Entry service asks for various schemes when IoT
data arrive.

3) Data Service: This service listens for the raw data
points published by the message broker and stores them in the
database. The raw data can be later retrieved from the database
using the service and used for various tasks such as offline
analytics or the training process of the prediction model if the
architecture will be extended to support traditional machine
learning. In MARTIN, Data communicates directly with the
Data Retrieval service (explained below) and provides the raw
data used to generate system reports.

4) Prediction Service: This service is responsible for two
major tasks: incremental training of models and prediction of
the possible failure of the asset based on incoming data points.
The service listens to the data, fulfils the prediction tasks, and

publishes the result to the message broker. In addition, each
prediction is stored in the database. Furthermore, the service
supports the learning process and stores trained models in a
separate database. Although it appears that the service is broad
and can be potentially split into two independent services –
one for training and one for predictions – it was decided to
keep those two functionalities within a single service. With
two different services the system would have to maintain
duplicated models in multiple databases, which could cause
consistency issues.

5) Event Processing Service: This service handles event
processing with a CEP engine that runs with a customizable
set of event rules. This service allows users to create and
apply new conditions to be matched against incoming data
without redeploying the system. Furthermore, the component
listens for the data published by the Data Entry service and
the predictions from the Prediction service. The architecture
utilises CEP to detect valuable behaviours that the user wants
to catch. The acquired information is analysed and compared
with the specified rules. If any of the rules are matched, the
system makes a decision by looking at the action defined in
it and creates the action object that is later published to the
message broker. The service can also translate user-defined
rules from an initial JSON structure to syntax understood by
the CEP engine. All decisions made by the system and the
rules defined by the user are stored in a dedicated database.

6) Notification Service: This service listens for actions that
involve any type of user notification, reads the information, and
notifies users of the notification topic and details. Currently,
the service is designed to notify users via emails. This kind
of notification represents an example of how actions can
be consumed by the system. However, this service can be
extended to perform other actions such as shutting down faulty
assets, redirecting the manufacturing process somewhere else,
or scheduling maintenance tasks that involve humans.



7) Data Retrieval Service: This service uses data stored by
other services (such as Prediction, Event Processing and Data
services) to generate reports about the system.

8) Message broker: The message broker implements asyn-
chronous interactions between architectural services. It works
as a publish/subscribe system with different services sub-
scribing to and pushing messages to various topics. This
component also increases the consistency and reliability of the
architecture. The broker stores the generated messages until
the subscriber can consume them. Asynchronous communica-
tion enables the independent evolution of the architecture, for
example, when adding and removing services. In order to get
access to the data streamed to the system, the services need
to subscribe to a specific topic, and all new data entries will
be pushed to it.

9) Knowledge base: This is a logical collection of
databases. It encapsulates all the databases used within the
architecture to store the historical data and information re-
quired by specific services. Each service has its own inde-
pendent database, making the architecture less coupled. The
databases are grouped in the diagram to increase clarity.

As shown in Figure 1, most of the components within
the architecture communicate using an asynchronous message
broker, except for the communication between the Data Entry
and Schema services. Synchronous communication between
these services is crucial for increasing reliability and providing
better user experience. For example, synchronous communica-
tion makes it easier to indicate the status of a request to store
data. If the request is rejected (which may indicate a fault in a
component), the user must be promptly notified, thus the need
for synchronicity. In the diagram, synchronous operations are
depicted with arrows pointing directly from one service to
another, and not through the Message broker.

C. Coordinating multiple organisations

One of the requirements of the proposed architecture is
that it should support multiple data domains from various
organisations; therefore, design decisions are taken to allow
for such functionality. The system can be accessed by multiple
companies, each of which is uniquely identified by organisa-
tionId. All requests accepted by the architecture must have
organisationId to allow access to the appropriate resources
within the system. Each service uses an identifier while han-
dling the requests, and it is required to locate the information
needed to fulfil the request. Furthermore, the system can
dynamically adjust to different data structures owing to the
user-defined schemes. Each schema can be identified using a
schemaId unique to the organisation. Using the schema, users
can decide which fields from the sensor readings should be
expected and used by the system. The final parameter used
by the architecture is deviceId, which uniquely identifies the
sensor or machine within the system. These three values are
used to support predictive maintenance for multiple companies
or factories within a single system without the need to adjust
the solution for each individual customer.

All sensor readings arriving into the architecture should
contain organisationId, schemaId, and deviceId. The
Data Entry service uses the organisationId-schemaId pair
to execute the interface exposed by the Schema service and
fetch the schema that the submitted reading should match.
Furthermore, the Schema service uses the values to manage the
database structure in which the schemes are stored. The Event
Processing service utilises organisationId and deviceId
to manage the storage and execution of event-matching rules.
The rules can be defined within the organisation on two
different levels: general conditions for the devices having the
same type (using the device type information encoded in the
deviceId) or conditions for the specific device. The Data
service structures the raw data storage by dividing the database
using organisationId, and the Prediction service utilises
it together with deviceId to separate and locate prediction
models responsible for different types of devices.

D. Prediction mechanism design

One of the main features of the architecture is the ability
to analyse data and predict whether there is a possibility of
failure occurrence in the factory. To achieve this, the prediction
mechanism is designed considering things such as the presence
of data from multiple companies or different types of machines
exposing various behaviours that may indicate possible faults.
The Prediction service uses real-time data to predict whether
an accident will happen within the window of n following ma-
chine cycles. It is assumed that the physical assets connected
to the system operate in equally spaced cycles over time. A
cycle is the point in time when a machine submits the values of
the sensors to the architecture for analysis. The cycle duration
is used to determine the time frame during which the failure
may occur and accordingly schedule maintenance.

The Prediction service is designed to support incremental
machine learning techniques for predictive maintenance, as it
enables adaptation to varying patterns of data that continuously
arrive at runtime. The service maintains an expandable set of
machine learning models that are organised so that there is one
model responsible for predictions related to one type of device
within the organisation. Such a structure supports the fact
that different types of devices submit various data, and may
have unique trends that indicate faults. Incremental machine
learning has the ability to perform an ongoing learning process
without the need to have the dataset upfront and train the
model before deployment. Therefore, the service supports a
constant learning process by consuming the training data once
it is submitted to the system and adjusting the appropriate
model. All models are serialised and stored in the database,
and the service fetches the required one to effectively save
memory resources. IoT sensor data are often unlabelled, which
makes the process of gathering training data costly and time-
consuming. Thanks to incremental learning, the model can be
deployed with minimal training and further trained when new
data are available without starting the learning process from
scratch. This helps save resources and omit the requirement



to load significant amounts of data into the service memory
which can result in reduced availability.

Preprocessing is another crucial aspect of the machine learn-
ing process. Raw data often contain many details that do not
contribute to the final predictions, or the range of the specific
values is broader than that of other measurements. MARTIN
supports simple data preprocessing, where every prediction
model is trained together with a simple scalar that transforms
the data for mean and unit variance equal to zero. Although it
helps to increase the accuracy, it is known that preprocessing
techniques must be adjusted according to the nature of the
processed data, and it is difficult to generalise the methods
used. Apart from consuming the training and actual, real-time
data from the system, the Prediction service also generates
the prediction objects that are to be used by other parts of
the architecture. The trained models can classify submitted
readings into two classes: NORMAL which indicates that the
machine is functioning correctly, and ALARM which sig-
nalises possible faults within the following ten machine cycles.
Each organisation has a general rule for ALARM prediction
defined in the rule set loaded into the Event Processing service.
Once the prediction object is published to the topic within
the message broker, the Event Processing service attempts to
match the defined condition against it and executes the action
related to the rule (e.g., sending an email to the specified user).
When the prediction object is consumed, the entire process
of the predictive mechanism is complete. Furthermore, the
generated predictions are stored in an appropriate database and
can be queried using the Data Retrieval service for analysis
or statistics.

IV. IMPLEMENTATION

This section describes the implementation of the MARTIN
architecture.

A. Technology stack

The services of the architecture are implemented using
Kotlin, a statically typed programming language designed to
be concise, expressive, and safe. MongoDB, a document-
oriented NoSQL database, was selected to be used in the
architecture. The use of a NoSQL database that does not
require any constraints makes it simple to store unstructured
data and to operate with multiple data domains.

B. Implementation details

1) Data Entry Service: This Service encompasses three
elements: SensorDataController, TrainDataController, and
SchemaManager. SchemaManager encapsulates a reactive We-
bClient used to make a GET request to the Schema service and
fetch the appropriate schema. TrainDataController exposes the
REST endpoint used to stream training data to the system,
and SensorDataController handles a stream of real-time data
submitted by machines for the analysis. The service exposes
two REST endpoints accessible on the following routes: POST
organisationId/readings - for real-time data, and POST organ-
isationId/train - for the training data.

{
"_id":{

"\$oid":"62684a4e74fa892fbff4b2ec"
// MongoDB id

},
"\$id":"a4944a5c-2a5f-4608-9674-f77a7cc8f2d6",
// schemaId used by the system

"title":"Example schema",
"description":"Example description",
"properties":{

"valueOne":{
"type":"float"

},
"valueTwo":{

"type":"float"
}

},
"required":[ "valueOne" ]

}

Listing 1: An example schema

2) Schema Service: This service contains two main classes:
SchemaController which handles the exposed REST end-
points, and SchemaRepository - the component responsible
for connection with the MongoDB instance. The schemes
are fetched from the database using SchemaRepository. The
database is organised such that each organisation has its own
collection with organisationId as its name, and every schema
is a new document inside this collection. Listing 1 shows an
example schema stored in the database.

3) Data Service: This service consumes the data pub-
lished by the message broker. It has three main elements:
DataController, SensorReadingListener, and DataRepository.
DataController allows external entities to access data stored
in the database, DataRepository handles the communication
with MongoDB, and SensorReadingListener consumes the
data points published in the message broker.

SensorReadingListener intercepts messages published to the
readings topic and calls DataRepository to store them in the
database. Later, the endpoint managed by the DataController
can be called to get the raw data stored for specified or-
ganisationId, schemaId, and deviceId. The database structure
looks as follows: there is a separate document collection for
each combination of organisationId and schemaId values, and
every document in such collection contains the deviceId field.
The presented implementation is simple; however, it can be
extended with functionalities such as filtering by specific value
or timeframe.

4) Event Processing Service: This service contains a set of
crucial components. RulesController manages the endpoints
responsible for adding and fetching user-defined conditions,
ReadingListener that consumes the real-time data, DroolsRule-
Translator responsible for translating conditions from JSON to
format understandable by the CEP engine. It contains also two
repositories: DecisionRepository that manages the connection
with decisions storage, and RuleRepository which handles
communication with the rule storage.

The service uses Drools, an open-source rule engine that
supports conditions written using Drools Rule Language



Figure 2: Predictive model training flow

(DRL). All user-defined rules are retrieved and submitted
in JSON format; therefore, they need to be translated into
the DRL. DroolsRuleTranslator can transform simple JSON
rules into the *.drl file loaded later to the engine. Rules are
organised so that each organisation has a single .drl file with
all conditions defined. Additionally, there is a default rule
to match the prediction objects published by the Prediction
Service. The service fires all loaded files over the incoming
data, and if any is matched, the appropriate decision object is
produced. It is later published to the decisions topic and stored
in the decision storage for future usage.

5) Prediction Service: This is the most crucial component
of the system, implemented with Python. There are two Kafka
consumers: the first one consumes the training data, and the
second consumes the real-time data and makes predictions.
Furthermore, there is a producer publishing the predictions
to the message broker. The current implementation uses four
machine learning models, namely, Logistic Regression (LR),
k-Nearest Neighbours Classifier (kNN), Passive-Aggressive
Classifier (PA), and Hoeffding Adaptive Tree Classifier (HAT),
which are implemented using the API provided by the River
ML package. The models provide learn one(x, y) and
predict one(x) APIs. The first one updates the model with
a single set of features and the target, and the second one
is used to make the prediction. When training data arrives,
the service loads a serialised model from the database, uses
the data point to train it and saves the updated model in the
database. In case of the real-time data arriving in the system,
the required model is loaded from the database and used to
predict whether the failure is possible. The model uses two
labels for the prediction - NORMAL and ALARM. If the
predicted label is equal to ALARM, the service publishes
the result with organisationId and deviceId to the predictions
topic.

6) Notification Service: This service has only one main
component - DecisionListener, a Kafka consumer that sub-
scribes to the decisions topic. It maintains a fixed thread pool

used to send emails if the decision contains the send email
action.

V. DEMONSTRATION

This section shows scenarios of the system processes that
can be initiated by a client.

A. Predictive model training

A popular scenario that would be executed by the arch-
itecture is the learning process of the incremental machine
learning model. Figure 2(a) shows the flow that is executed
upon the arrival of a data point as a training sample. The
process consists of the following steps:

1) Training data is streamed to the Data Entry Service.
2) Data Entry Service calls Schema Service for the appropriate

schema.
3) The request is validated and published to the message

broker.
4) Data Service fetches the data and stores them in the

database.
5) Prediction Service pulls the message for the learning pur-

poses.
6) Appropriate model is fetched, updated with the data and

stored back in the model storage.

B. Sensor readings analysis

Another important scenario is initiated by the machines
connected to the architecture, and involves the execution of
the previously trained model. Figure 2(b) depicts the flow of
actions from the submission of readings to the generation of
an alarm and decision making by the system. The steps taken
are as follows:

1) Data are streamed to the Data Entry Service, validated and
published to the message broker similarly to the previous
scenario.

2) Prediction Service pulls the message, fetches the appropri-
ate model and generates the prediction.



3) For alarm predictions, an alarm message is generated and
published to the message broker.

4) Event Processing Service fetches raw data and alarm mes-
sages, attempts to match them against the event rules loaded
to the CEP engine, and generates the appropriate decision
to the message broker.

5) Notification Service intercepts the decision and executes the
action encapsulated inside.

VI. EVALUATION

Our evaluation aimed to examine the feasibility of in-
cremental machine learning for predictive maintenance and
performance under different workload patterns.

A. Experimental setup

The architecture implementation was containerised and de-
ployed using Docker, with each component packaged as a
separate container. The experiments were conducted on a PC
with an Intel Core i7-10750H CPU and 16GB RAM. Although
all components are technically running on the same machine,
they cannot access each other directly. They communicate
using the internal network created within the Docker Engine
instance through their respective RESTful interfaces. Note that
deployment of MARTIN in a distributed fashion is a separate
topic that we do not address here.

1) Datasets: Two different datasets describing machine
operations were used in the experiment: the turbofan engine
degradation simulation dataset (referred to as the NASA
dataset) [24] and the predictive maintenance modelling ex-
periment dataset (referred to as the Microsoft dataset) [25].
Both datasets contain time series data as required for the
functionality of the architecture. The NASA dataset contains
data that represent simulations of jet engines run-to-failure sce-
narios. Each entry contains a set of sensor measurements and
is labelled as ALARM or NORMAL. Similarly, the Microsoft
dataset contains maintenance measurements that include volt,
pressure, and vibration, among others, as well as a metric that
indicates the number of cycles before failure. Similar to the
previous dataset, entries were labelled NORMAL or ALARM.
Further details regarding the datasets can be found in the cited
references.

2) Procedure: The experiment was divided into two parts:
(1) measuring the performance of the incremental learning
applied within the architecture, and (2) assessing the system
performance under different workloads. Initially, the system
did not store historical data or trained models. The only
information present in the system is the appropriate schema
to match the dataset and a set of basic event rules populated
before the start of the experiment within the Event Processing
Service.

To measure the machine learning metrics, the training and
test parts were created for both datasets. Furthermore, the
training dataset was divided into 10 smaller sets used for
the learning process. Each small set was streamed to the
architecture to train the data, and between the training sets
architecture is evaluated with the test set, and multiple machine

learning metrics were recorded. This procedure simulates a
scenario in which the entire training dataset is not available
at the start of the learning process, but becomes accessible
incrementally over time. Measuring metrics after training with
each part of the set helps monitor changes in the model’s
performance and the way of responding to the data. The
experiment was repeated twice, each time with a different
dataset, to assess the ability of adaptation to various data
domains.

In the second part of the experiment, the architecture was
tested against the workload. The data are constantly streamed
to the system for 60 seconds and services record information
related to the processed data points. The experiment was
repeated five times, with 10, 100, and 1000 concurrent users
submitting sensor readings to the system. In order to simulate
different numbers of concurrent clients, Apache JMeter was
used, which is an open-source solution for testing web services
and measuring their performance.

B. Performance criteria

Throughout the experiment, a set of measures was collected
and later processed to determine the feasibility of incremental
machine learning for predictive maintenance and to assess
behaviour under various workloads.

1) Machine learning metrics: The Prediction service was
administered to gather the machine learning metrics during the
first part of the experiment by storing them in a text file at
the end of each evaluation with the test set. We report on the
classification accuracy, which can be defined as a fraction of
right predictions within the total number of predictions.

2) Performance measures: In order to gather the perfor-
mance measures, a logging system was added to all services
that were monitored during the evaluation. Logs are stored in
a text file and contain important details that can be later used
to process and draw conclusions. Each incoming request to the
architecture is marked with a unique requestId, and services
note it together with the time when the request enters the
service and leaves. Because of this identifier, it is possible
to track the request through the architecture and calculate
the desired performance metrics. Performance was evaluated
using the following metrics: average time required to process
a single request, number of requests processed per second,
total number of requests processed, and total time required to
finish processing.

VII. RESULTS

This section presents the results of the experiments.

A. Incremental machine learning

As previously explained, the implemented architecture is
supposed to predict whether there will be a failure within the
next ten machine cycles. Four different models were trained for
two datasets to fulfil the task, and the architecture was able to
produce models with the performance scores presented below.

Figure 3 shows the change in accuracy during training with
the NASA (Figure 3a) and Microsoft (Figure 3b) datasets for



Figure 3: Accuracy measured during training dataset

the four classification algorithms. In the case of the NASA
dataset, we observed that all models had high accuracy (≈ 0.9)
after processing only one-tenth of the data. The results are
somewhat different with the Microsoft dataset: model accuracy
attains a relatively high value (> 0.8) after processing one-
tenth of the data and is stabilised during the learning process,
with only minor changes for the three algorithms; however,
the PA algorithm struggles to achieve high accuracy and varies
between 0.4 and 0.8 throughout the training.

B. Scalability evaluation

This section evaluates the scalability of the architecture with
various workloads. The experiment stressed the system with
different numbers of users submitting requests and measured
the rate of processing requests and the average processing
time.

Figure 4 shows the number of processed requests for
different numbers of users. During 60 seconds of streaming
data to the system, the system was able to process 67397,
82106, and 80663 requests when the number of users was
10, 100, and 1000, respectively. Furthermore, looking at the
requests processed per second, one can see that the service
starts to ramp up and, after about 30 seconds gets stabilised
with the ability to process approximately 1500 requests per
second.

With respect to the processing time, Figure 5 plots the
request processing times for the three cases of the number of
users. For the 10-users case, the architecture required an aver-
age of 25.08ms to process a single request, with a minimum of
8ms and maximum of 1466ms. The measured processing times
changed when 100 concurrent users were working. Although
there are 10 times more users, the architecture can process
only 82,106 requests with an average of 98.73ms, a minimum
of 22ms, and a maximum of 1891ms per request (roughly
a 4-fold increase). Even though most of the requests are
processed within 100ms, there is a growing number of those
that take between 200 and 250ms as seen in the figure. In the
case of 1000 concurrent users, the results were significantly
different: the system needs 710ms on average to process a
single request (minimum 255ms, maximum 4,079ms). The
histogram shows that only a small number of requests are
processed quicker than 500ms, and most require between 500
and 600ms. Furthermore, there are a significant number of
calls that take 1 second or longer.

VIII. DISCUSSION

We now comment on the observations from our evaluation.

A. Incremental machine learning

Although the models trained with both datasets scored
relatively high accuracy, they exhibited different behaviours.
The models trained with the NASA dataset performed better
than those trained using the Microsoft dataset. For the NASA
dataset, the performances of the four classification algorithms
were somewhat similar. It can also be observed that the PA
and Logistic Regression models had the best fit for the NASA
dataset. With regard to the Microsoft dataset, it can be ob-
served that the models have a lower accuracy than the NASA
dataset. In addition, the PA algorithm struggles to stabilise its
accuracy which may lead to unexpected performance drops
in the future, making it an inappropriate algorithm for this
dataset.

There may be several reasons for the differences between
the two datasets. First, most of the Microsoft dataset is labelled
as regular readings with only a little part being the ALARM
data. Second, the obtained results show that pre-processing
and classification algorithms must be carefully selected to
match the specific data. Both models use the same pipeline
with incremental standard scalar and various classification
algorithms. Although some algorithms fit the NASA dataset,
this may not be the case for the Microsoft dataset.



Figure 4: Number of requests processed per second

Figure 5: Histogram of number of requests vs processing time

B. System performance

Intuitively, one can observe that the system performance in
the cases of 10 and 100 users is lower than that of 1000 users.
One of the reasons for these results is the lack of horizontal
scaling of the implemented system. With multiple instances of
the Data Entry service running and appropriate load balancing,
the overall performance can be increased.

The other value that must be interpreted is the maximum
time required to process the request. In the scenario with 1000
users, the reason behind this can be the limited capabilities
of the Data Entry service; however, with 10 and 100 users,
the value is multiple times higher than the average. Even
though it appears to be a performance issue, most of it is
the time required to complete the TCP handshake between
the Data Entry service and the Schema service, as those two
communicate synchronously using the REST protocol over
HTTP. After the initial connection is made, it is reused later
and the exchange time between Data Entry service and Schema
service is significantly lower. Owing to the stateless design
and microservice pattern, the implementation can be deployed
using tools such as Kubernetes to enable horizontal scaling.

C. Generalizability

The use of microservices for designing MARTIN allows
for scalability and flexibility, making it adaptable to a wide

range of environments and systems. Additionally, the use of
incremental learning can enable the architecture to continu-
ously improve its predictions over time, thereby increasing its
accuracy and applicability to new scenarios. However, factors
such as the quality and completeness of the data fed into the
incremental predictive model and the selection of appropriate
features can affect the generalisability of the architecture.
These design considerations require appropriate attention.

D. Threats to validity

Although the evaluation process provided meaningful re-
sults, some aspects could be changed to improve the gath-
ered data and provide more information about the solution.
First, the experiment was performed using a local machine
without any calls over the Internet; therefore, the obtained
results do not include the latency and failures introduced by
network operations. To extend the evaluation, the implemented
architecture can be deployed in an actual cloud environment,
where calls are issued over the Internet. Second, the incre-
mental learning evaluation provided results sufficient to assess
whether this technique is feasible for predictive maintenance
mechanisms. The experiment showed that the designed arch-
itecture can be used as a maintenance tool; however, it requires
further evaluation in terms of the reliability of predictions and
learning pipelines implemented within the system.



IX. CONCLUSION

We propose an end-to-end architecture for predictive main-
tenance that supports online incremental learning, which en-
ables timely proactive decision making in the context of
Industry 4.0 applications. This architecture facilitates real-
time predictions using incoming data to inform users about
potential equipment failures. The architecture operates as a
set of microservices that provide scalability and reliability for
various and varying deployment sizes. Using two real-world
datasets, we demonstrated the ability of the architecture to
provide high accuracy at an acceptable processing overhead.
In future work, we plan to expand the evaluation by applying
the architecture to an operating real-world case study for a
broader evaluation of the solution.
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