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Abstract—Radio frequency (RF) signals are widely used in 

respiratory detection due to their non-contact, remote sensing 

advantages. In order to satisfy multi-person monitoring, the 

existing RF sensing system greatly increases the complexity of the 

feeder network, which will affect the stability of the system and 

have high maintenance costs. In this study, we propose a single-

channel, low-complexity multi-person respiratory monitoring 

system. It uses a time modulated array (TMA) to detect the 

position and respiration rate of multiple targets. The TMA is 

reconstructed into a conventional multichannel array by the 

harmonic recovery method. Beamforming is used to scan the 

scene horizontally. At the same time, the beamformed signal is 

converted to the frequency domain to construct the angle of 

arrival-frequency map (AFM). By forming a beam pointing to 

the target, the time domain respiration signal of each target can 

be acquired. The experimental results show that the maximum 

RR estimation errors of the proposed system in single-person, 

two-person, and three-person scenarios are 0.77 bmp, 0.96 bmp, 

and 1.32 bmp, respectively. In addition, the Bland-Altman 

analysis shows that our system has good consistency with the 

reference sensor. 

 
Index Terms— TMA, multi-person, respiratory monitoring.  

 

I. INTRODUCTION 

espiratory rate (RR) is an important physiological 

assessment indicator for health status [1]. Accurate 

measurement of the RR is essential for vital signs 

monitoring of patients with breathing troubles such as chronic 

obstructive pulmonary disease (COPD). Daily respiratory 

monitoring in a consistent and cost-effective manner plays an 

important role in assessing patient progress and treatment, 

especially in the case of the COVID-19 global pandemic. 

Traditional wearable breath sensors such as capnography or 

impedance pneumography are widely used in the medical 

field, but these technologies can cause discomfort/injury to 

patients, especially in the case of skin burns, premature birth, 
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and skin diseases. The solution based on computer vision can 

non-invasive detect the vital signs of targets [2-3]. However, 

there is a risk of privacy leakage from video-recorded images. 

In addition, light intensity affects the performance of the 

system. RF sensing schemes are the most promising 

candidates to overcome these drawbacks. The low-power 

radars [4-5] and fast vital sign estimation methods [6-7] are 

proposed for continuous monitoring. In vital sign 

measurement, the phase is affected by hardware noise and 

environmental noise. The adaptive variational mode 

decomposition (VMD) [8,9] are proposed for separating 

respiratory and heartbeat signals, which significantly improves 

the signal-to-noise ratio (SNR). In addition, RF signals can be 

applied in scenarios such as non-line-of-sight sensing [10], 

through-wall monitoring [11-12], and disaster rescue [13] due 

to their reflection and penetration characteristics. However, 

the above research only focuses on extracting vital signs from 

single target. 

In a multi-target detection scenario, multiple targets 

simultaneously affect the RF signal. Therefore, the receiver 

needs to have the ability to separate the individual targets from 

the mixed signal. Currently, there are four main solutions to 

detect the vital signs of multiple targets: frequency separation, 

distance separation, spatial separation and blind signal 

separation (BSS). Assuming that the RR of different people is 

distinct, the RR of each person can be obtained in the 

frequency domain. TR-BREATH [14] projects WiFi channel 

state information (CSI) into the time inverted resonance 

intensity feature space and then applies the root-MUSIC 

algorithm to estimate the respiratory rate of multiple targets. 

TensorBeat [15] employes CSI phase difference data to obtain 

the periodic signals from the movements of multiple breathing 

chests by leveraging tensor decomposition. These methods 

require the number of targets as prior knowledge which is not 

applicable in practical scenarios. Moreover, the performance 

degrades when the RR difference between two targets is less 

than the frequency resolution.  

For the solution based on distance separation, targets can be 

separated depending on the inherent range resolution of the 

radar. The impulse-radio ultrawideband (IR-UWB) radar 

transmits a pulse signal and obtains range information on 

subjects from the propagation delays of echo signals [16-18]. 

Although IR-UWB radars provide higher range resolution 

with their large bandwidth, it is very challenging to generate 

high power pulses in the wide band. This leads to a trade-off 

R 



 

 

between range resolution and maximum range [27]. The 

frequency-modulated continuous wave (FMCW) [19-24] and 

stepped frequency continuous wave (SFCW) [25-29] can also 

separate multiple targets based on different radial distances 

from each target to the radar. When the radial distance 

between two targets is less than the range resolution, the 

conventional FFT-based method cannot resolve multiple 

targets due to the overlap of the main lobes of the sinc 

function. Super-resolution algorithms such as MUSIC are used 

to improve range resolution [23], but the performance of the 

MUSIC algorithm depends on the number of targets, number 

of snapshots, and system SNR. Li et al. overcame this problem 

by reconstructing 3D images using frequency-domain back 

projection (BP) algorithm for the spatial positioning of each 

target [28]. However, they still cannot separate the respiration 

of multiple subjects at the same range. 

According to the different spatial distributions of multiple 

targets, matching algorithms and beamforming can be used to 

separate multiple targets. VSign-ID utilizes the echo signals of 

multiple self-injection-locked (SIL) radars to mark each 

person's vital signs on a thermal image through spatial and 

temporal matching [30]. The several approaches to beam 

steering include leaky wave antennas, phased arrays, and 

digital beamforming (DBF). The leaky-wave antenna realizes 

regular and large-range beam scanning by changing the 

frequency of the RF signal [31,32]. Although these 

architectures have low hardware complexity, the angular 

resolution depends on the antenna pattern. In [33], phased 

array radar is explored for multi-person breathing. The system 

uses the phase shifter to control the phase of each RF channel 

to achieve beamforming. Its flexibility and accuracy are lower 

than DBF. Therefore, DBF is the mainstream technology for 

multi-target detection. Xiong et al. proposed a single-input–

multiple-output (SIMO) CW radar with adaptive DBF for 

simultaneous detection of multiple breaths [34]. In [35], a time 

division multiple-input–multiple-output (MIMO) radar uses 

2D digital beamforming to image the chest of multi-target to 

obtain vital signs. Su et al. propose a Doppler-weighted range-

azimuth map to improve the spatial resolution [36]. However, 

these systems are bulky volumes and have complex feed 

networks and control circuits. Virtual antenna technology is 

proposed to improve the aperture and spatial resolution of TI 

millimeter wave radar [37-39]. However, the millimeter wave 

penetration performance is poor. If the target's clothes are 

thick, the detection accuracy will decrease. 

According to the statistically independent reflection signals 

of the targets, the multi-person respiration sensing can be 

modeled as a BSS problem and solved by the independent 

component analysis (ICA) method [40-41]. Unfortunately, the 

solution of ICA needs to know the number of targets. In order 

to overcome this problem, Zhang et al. present 

underdetermined BSS approach to separate the respiratory 

signal of multiple targets without predetermining the number 

of targets [42]. However, the separated signals are difficult to 

correspond to each target.  

Most of the previous multi-person respiratory detection 

systems have high hardware complexity and complex control 

circuits. The performance of the single-domain (distance 

domain, angle domain) target separation method is limited by 

the inherent resolution of the radar. To address the above 

issues, we propose a TMACW radar. A single-channel TMA 

reduces RF links and hardware costs [43]. The TMA is also 

used for direction finding [44] and target localization [45] due 

to its simple architecture. In addition, DBF and FFT are used 

to map the multi-target echo data into AFM. The main 

contributions of this paper are as follows. 

1. To the best of our knowledge, this is the first system to 

monitor multi-target respiration using TMA. Specifically, the 

harmonic recovery technology is used to convert TMA into 

the conventional multichannel array which reduces hardware 

complexity. 

2. We propose a method for joint spatial domain and 

frequency domain estimation of multi-person RR, which 

improves the ability of multi-target separation and anti-

interference.  

3. We built a prototype of TMACW radar and performed 

extensive experiments to evaluate the performance of the 

system. The experimental results show that the proposed 

system is highly consistent with the reference sensor. 

This paper is organized as follows. Section II introduces 

the system architecture, the multi-person respiratory sensing 

model based on TMA, and signal processing methods. Section 

III presents the results and discussions. Finally, the 

conclusions are drawn in Section IV. 

II. METHODOLOGY 

A. System Architecture and Hardware 

The architecture of the proposed system is shown in Fig. 1. 

The system consists of TMACW radar and signal processing 

module. First, the TMACW radar acquires the target echo and 

converts it to baseband. Then, the digital down-conversion 

(DDC) filter group is used to extract the required harmonic 

components. The proposed harmonic recovery method 

transforms TMA into the conventional multichannel array. 

DBF forms spatially distributed beams to scan the region of 

interest horizontally. After eliminating static clutter, FFT is 

performed on each beam to construct AFM. Finally, the AOA 

and RR of each target can be obtained from the AFM. 

In general, there are two main schemes for the development 

of radar systems: modular assembly and software defined 

radio (SDR)-based method. The concept of SDR 

programmability provides convenience in the development 

and optimization of radar systems. Previous studies have 

utilized various SDR devices to implement radar systems 

[46,47]. Inspired by the above research, we developed the 

TMACW radar prototype using off-the-shelf control circuits 

and data acquisition instruments as shown in Fig. 2. The 

system consists of a transceiver, a single-pole-four-throw 

(SP4T) RF switch (HMC7992), five microstrip Yagi antennas 

with 6 dBi gain and an external MCU. Specifically, we use a 

USRP B210 from Ettus Research as the transceiver to quickly 

validate the proposed method. The flow graph is deployed in 

the free and open source GNURadio framework, which 

reduces the technical requirements for system development. 

The single-channel TMA consisting of four antennas and 

HMC7992 switch is connected to the USRP B210 receiving 



 

 

channel for obtaining target echoes. We use a 

STM32F103ZET6 (STM32) board to serve as the external 

MCU with its GPIO to control the HMC7992 switch. The two 

GPIO pins of STM32 are connected to a two-pin voltage 

CMOS control interface of HMC7992 in order to turn on and 

off each channel of the switch in turn. It is worth noting that 

the TMA in this study works in the receiving state. Therefore, 

it will not radiate infinite harmonics into space, occupy a large 

amount of frequency spectrum and interfere with nearby 

communication equipment. 

 
Fig. 1. System architecture. 

 
Fig. 2. Prototype of the proposed TMACW radar. 

B. Sensing Model Based on TMA 

The CW signal sent by the transmitter is reflected by 

surrounding objects and then returned to the receiver. For the 

uniform linear array (ULA), the signals traveling via multipath 

transmission obtained by the nth antenna can be expressed as: 
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where fc denotes the carrier frequency of the transmitted signal, 

L is the number of objects or targets, τi(t) the propagation 

delay to the first antenna of the ith object echo, β is the spatial 

wavenumber of the carrier frequency fc, d is spacing between 

two adjacent antennas, θi is AOA of the ith object and αi is 

echo amplitude related to the propagation loss and the 

reflectivity of the ith object. 

In fact, the received signal includes the dynamic 

components of human motion and the static components 

reflected by static objects, so (1) can be rewritten as: 
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where K and M represent the number of stationary objects and 

moving targets, respectively. xn
S  and xn

D(t)  are the static 

components and the dynamic components, respectively.  If we 

only consider the dynamic components caused by respiration, 

the time delay τm(t) is expressed as follows: 

( )
( )( )0, ,2 sin 2m r m m m

m

d d f t
t

c

 


+ +
=            (3) 

where d0,m is the distance from the mth target to the ULA, dr,m 

is the displacement of chest wall of the mth target, fm and φ
m

 is 

respiratory rate and initial phase. The TMA can be obtained by 

periodic modulation of an ULA. Specifically, a periodically 

controllable switch is added to each element. In the proposed 

TMACW radar, the received signal should be rewritten as:  

( ) ( ) ( )
1

N

n n

n

y t U t x t
=

=                            (4) 

where Un(t) is the modulation function of the nth element. Un(t) 

is determined by the time modulation method, the common 

time modulation methods are variable aperture sizes, 

unidirectional phase center motion, bidirectional phase center 

motion, pulse shifting (PS) and sub-sectional optimized time 

steps. This paper takes PS modulation as an example to 

introduce the application of time modulation array in 

respiratory monitoring. The function Un(t) is shown in Fig. 3 

and can be expressed as below: 

 

 
Fig. 3. Periodical modulation function Un(t), n = 1,2, …, N. 
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where TP is the modulation period.  Because the modulation 

function Un(t) is periodic, Un(t) can be expanded by Fourier 

series: 
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where fp  = 1/TP is the modulation frequency. The kth 

harmonic coefficient an,k can be expressed as: 
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where ton,n =(n-1)Tp/N and toff,n =nTp/N represent the turn-on 

time and turn-off time of the nth RF switch, respectively. 

Inserting (4) and (5) into (2), the single-channel signal after 

modulation can be written as: 
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After time modulation, the signal received by a single channel 

is the sum of the fundamental component and the harmonic 

components of each order. In the spectrum, it is equivalent to 

shifting the fundamental component at an interval of fp as 

shown in Fig. 4. 

 
Fig. 4. The Spectrum diagram of TMA. 

C. Recovery of Conventional Arrays 

The baseband signal consists of an infinite number of 

harmonics, and the frequency spacing between adjacent 

harmonics is fp. We can use a series of DDC to move each 

harmonic component to baseband, then the digital domain of 

the kth harmonic is expressed as: 

 ( ),

1
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Add noise to the model and rewrite (9) as a matrix form, 

shown as: 
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where Y(tq)=[y
-K

(tq),y
-K+1

(tq),…, y
K

(tq)]
T

 is the harmonic 

matrix, X(tq)=[x1(tq),x2(tq),…,xN(tq)]
T

 is the baseband signal 

received by each element, N′(tq) =[n-K(tq),n-K+1(tq),…, nK(tq)]T 

is the noise matrix and Г∈ℂ 2𝑁×(𝐾+1) is harmonic coefficient 

matrix and is given by: 
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In order to recover the same receiving signals as conventional 

arrays from the harmonic components, the recovery can be 

transformed into solving the unconstrained norm 

approximation problem： 

( )
( ) ( )min

q

q q
t

t t−
X

ΓX Y                             (12) 

where || is a norm on ℂ2𝐾+1.  When (2K+1) ≥ N, which means 

Г is column full rank, the best-fit solution can be obtained 

applying complex least square： 
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1

H H

q qt t
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where superscript H indicates the conjugate transpose 

operation, X(tq) is the recovered signal of TMA. In this study, 

the number of antennas N=4, then the traditional array can be 

restored when K≥2, which means that we only need to extract 

± 2, ± 1 order harmonics and fundamental waves. 

D. Construct AFM 

With (13), the original signal matrix can be estimated 

successfully from the modulated single-channel signal. Spatial 

spectral estimation methods can be used to estimate the target. 

Considering the lack of information such as the number and 

location of targets, we use conventional beamforming method 

to scan the space horizontally. For an arbitrary signal arrival 

angle 𝜃，the steering vector is expressed as:  

( ) sin ( 1) sin1, ,...,j d j N dw e e    − =                 (14) 

By computing the weighted sum of signals received by all 

antennas, the beamformed signal is expressed as: 

( ) ( )

( )( )

( ) ( )
  

, q

D S

D S

Static components Dynamic components

y t w X

w X X

w X w X

 



 

=

= +

= +

            (15) 

where XD= [x
D 

1 (tp), x
D 

2 (tp),…, x
D 

N (tp)]T is the static components 

vector,  XS= [x
S 

1 (tp), x
S 

2 (tp),…,x
S 

N (tp)]T is the dynamic 

components vector. Where θ = θm, the breath signal of the 𝑚th 

target output by the beamformer reaches the maximum and is 

denoted as ∑ αm,ne-j2πfcτm(tq)N
n=1 . Similarly, when θ = θi, that is, 

there is no moving target in this direction. The reflected signal 

of static target reaches the maximum and is denoted as 

∑ αi,n
N
n=1 e-j2πfcτi . If the strength of the static reflection signal is 

much greater than that of the human body, it will be difficult 

to find the desired target from the spatial spectrum. 

Considering from the frequency domain, when there is only a 

static target in the scanning direction, the energy of the 

beamformed signal is mainly concentrated in the zero 

frequency. The beamformed signal will generate a 

corresponding peak in the frequency spectrum if there is a 

moving target in the direction. Based on the above analysis, 

we can find spectral lines of regular chest wall motion in the 

spectrum by performing FFT on the beamformed signal. In 



 

 

order to obtain the spectral information of the target, we need 

to further analyze the dynamic components.  
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where the term ① can be regarded as a constant, and the term 

② contains the respiratory signal of interest. According to the 

Jacobi-Anger expansion, the term ②can be decomposed into 

infinite summation: 
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where z=4πdr,m/λ, Jn(z) is nth order Bessel function with 

arguments z. It can be found there are countless harmonics at 

nfb in addition to the spectral lines at the breathing frequency fb.  

Fortunately, Jn(z) will decay rapidly when |n|≥2, so (12) can 

be approximated as: 
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which consists of two spectral lines at ±fb with respect to n = 

±1 as well as a DC component with respect to n = 0. 

Combining (15) and (18), the zero-frequency components are 

mainly composed of static object reflections and decomposed 

zero-frequency components. These signals produce a 

significant peak in the frequency spectrum that affect the 

estimation of the target respiratory rate. We compute the mean 

in the sliding window and remove it to suppress static 

interference. At the same time, the Hamming window is used 

to prevent spectrum leakage. The AFM can be expressed as: 
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where y
_

(θ, tq) is the mean of the data in the sliding window, Q 

is the length of the sild window, Wham is the Hamming window 

and ∘  is Hadamard product. We compared AFM with and 

without removal mean as shown in the Fig. 5. It can be found 

that the proposed method can effectively suppress the 

interference of static clutter.  

 
(a)                                   (b) 

Fig. 5. Experimental results with subject A at 2 m and 0°. (a)AFM spectrum 

with mean removal. (b) AFM without mean removal. 

E. Sensing Capability Analysis 

It is important to know under what conditions the proposed 

method can separate each target. In other words, we need to 

determine the spatial resolution and frequency resolution of 

the proposed method, which will help us design the perceptual 

system. 

Assuming that different targets have different spatial 

positions, we use the targets’ AOA to distinguish multiple 

targets. The discrimination capability in space domain 

depends on the half-power beamwidth. As described in 

Section II C, TMA can reconstruct conventional ULA. Then, 

the half-power width of the proposed system can be 

represented as: 

( )3dB

1 50.8
BW

cos Nd




=                         (20) 

where θ is the steering angle, N denotes the element number of 

the ULA, d is the distance of two adjacent antenna units. The 

larger the number of antenna units, the narrower the 

beamwidth, the stronger the capacity of the array resolution 

spatial signal. 

In addition, we also used the target breathing rate difference 

to separate multiple subjects. In practice, the ability to 

discriminate in the frequency domain depends on the 

frequency resolution, which is the minimum frequency 

separation on the frequency axis. Assuming that the sampling 

frequency is fs, the number of sampling points is Q, and the 

sampling time is t, the frequency resolution Δf is expressed as: 

s 1f
f

Q t
 = =                                    (21) 

It can be found that the frequency resolution can be improved 

by increasing the sampling time. 

It is worth noting that the proposed method joints the spatial 

and frequency domains. The complementary nature of multi-

domain conjoint analysis can improve the performance of the 

system. If one domain's separation method fails, another 

mechanism may still work. 

III. RESULTS AND DISCUSSIONS 

A. Experimental Setup 

1) Environment: The experiments are conducted in two 

different scenarios with dimensions 7 m×7 m and 3 m × 2.5 m 

as shown in Fig.6 (b) and Fig. 9 (b), respectively.  In order to 

evaluate the respiratory monitoring performance of the system, 

we performed extensive experiments in the first scenario and 

verified the anti-interference ability of the system in the 

second scenario. 

2) TMACW Parameter Settings: The flow graph built by 

GNURadio configures the USRP as a 2.4GHz CW radar with 

a sampling rate of 200 KHz. Both the Tx gain and the Rx gain 

are 60 dB, and the Tx power is -17 dBm. The STM32 is used 

to generate the modulation function with a modulation period 

of 0.5 ms to control the RF switch according to Fig. 3, which 

means that the frequency interval between harmonics is 2 KHz. 

The distance between two adjacent antennas in the TMA is 

half a wavelength. The distances from the Tx antenna and the 

TMA to the ground are 70 cm and 85 cm, respectively. The 

USRP sends the collected data to a laptop with Intel i7-8700 

CPU and 16 GB RAM via USB 3.0. The baseband signal 

processing is implemented in MATLAB 2020b. In harmonic 

recovery, the maximum extracted harmonic order K is equal to 

2 to satisfy the full rank of the Г matrix. We use the Filter 

Designer app of MATLAB to design the low-pass filter in 



 

 

DDC with a passband of 0~50 Hz. The specific parameters of 

the TMACW radar are shown in Table I. 

 

Table I 

TMACW RADAR PARAMETERS  

Parameters Values 

Carrier frequency fc 2.4 GHz 

Sampling frequency fs 200 KHz 

Modulation Period Tp 0.5 ms 

USRP Tx gain 60 dB 

USRP Rx gain 60 dB 

Rx Antenna number 4 

Tx antenna number 1 

Gain of antenna 6 dB 

Harmonic order K 2 

Antenna space 6.25 cm 

Time 30 s 

Tx power -17dBm 

 

3) Participants: A total of 4 healthy volunteers participated 

in this study, i.e., aged from 23 to 29. The basic information of 

all volunteers is listed in Table II. During the experiment, 

slight movements of the head and limbs were allowed. 

 

Table II 

BASIC INFORMATION OF VOLUNTEERS 

Volunteers 1 2 3 4 

Gender Male Male Male Male 

Age (year) 26 23 26 29 

Height (cm) 176 177 181 180 

Weight (Kg) 66 82 65 77 

Width (cm) 30 34 32 33 

 

4)  Ground-Truths: 

During the experiment, we asked the subjects to wear a 

piezoelectric breathing belt (HKH-11C) as the ground truth to 

evaluate the performance of the proposed TMACW radar. 

Except for the abnormal breathing detection experiment, all 

volunteers kept breathing naturally according to their habits. 

B. Two-person Respiratory Detection with Angle Location and 

Beamforming 

In this experiment, two subjects keep the same breathing 

rate as far as possible at angle 30° and -30° of the TMACW 

radar. The longitudinal distance between the subjects and the 

radar is 2 m.  After processing by the proposed method, we 

can find that there are two highlighted parts in the AFM 

corresponding to object A and object B, as shown in Fig. 6(a). 

The AOA of the two subjects is -27.5° and 28°. The breathing 

frequency of both subjects is approximately 0.19 Hz. It can 

find that the AOA measured value deviates from the true value. 

The main reason is that people have a certain width and cannot 

be regarded as an ideal point target. In order to obtain the 

respiration time domain signal, we used conventional 

beamforming to generate two beams directed at subject A and 

subject B, respectively as shown in Fig. 6(c) and Fig. 6(e). The 

extended differentiation and cross-multiplication algorithms 

are used to obtain the respiration signal in the time domain to 

prevent phase ambiguity [48]. The difference in respiration 

amplitude may stem from the fact that the radar measures the 

signal containing both chest wall and abdominal displacement, 

whereas the breathing belt measures the displacement of the 

abdomen. The measured respiration rate is highly consistent 

with the ground truth as shown in Fig. 6(d) and Fig. 6(f).  

 

  
(a)                                            (b) 

  
(c)                                              (d)             

 
(e)                                              (f) 

Fig. 6. Experimental results with Subject A at 2 m and -30◦ and Subject B at 2 

m and 30◦. (a)AFM of two people monitoring. (b) Experimental setup. (c) The 
respiratory signal of subject A. (d) The spectrum of subject A. (e) The 

respiratory signal of subject B. (f) The spectrum of subject B. 

 

 
(a)                                          (b) 

  
(c)                                            (d) 

  
   (e)                                              (f) 

Fig. 7. Experimental results with Subject A at 2 m and 0◦ and Subject B at 2 
m and 15◦. (a) AFM of two people monitoring. (b) Experimental setup. (c) 

The respiratory signal of subject A. (d) The spectrum of subject A. (e) The 

respiratory signal of subject B. (f) The spectrum of subject B. 
 



 

 

According to Section II E, the spatial resolution of the 

proposed 4-element TMACW radars is 25 °. If the angle of the 

two subjects relative to the radar is less than 25°, the two 

targets cannot be separated from the spatial spectrum. If the 

difference between the breathing frequencies of the two 

targets is greater than the frequency resolution, we can 

distinguish them by the frequency spectrum. We set the length 

of the sliding window as 30 s, so Δf =0.03 Hz. In this 

experiment, two subjects are located at 0° and 15° of the radar, 

respectively, as shown in the Fig. 7(b). We asked subject B's 

breathing rate to be greater than that of subject A. It can be 

found that subject A and subject B correspond to (1°, 0.19 Hz) 

and (18.5°, 0.355 Hz) in the spectrum, respectively, as shown 

in the Fig. 7(a). Due to the wide beam produced by 

conventional beamforming, the respiration signal and 

spectrum of the two subjects will interfere with each other as 

shown in the Fig. 7 (c), (d), (e) and (f). The experimental 

results show that the multi-domain joint analysis makes up for 

the deficiency of the single-domain resolution and improves 

the performance of the system.  

C. Abnormal Breathing Detection of Two Persons 

The experimental setup is shown in Fig. 6(b). We asked 

subject A and subject B to simulate an apnea event within the 

first 30 s and the last 30 s, respectively. The Fig. 8 shows the 

breath signals of two subjects in one minute. Apnea events are 

marked by red boxes. In Fig. 8(b), we can clearly see that 

subject A has an apnea from 8s to 18s, and subject B has an 

apnea between 38s and 50s. From the above results, it can be 

seen that our system can not only detect multi-target breaths, 

but also detect abnormal breaths. 

 

  
(a)                                            (b) 

Fig. 8. Experiment of detecting abnormal breathing. (a) The respiratory signal 

of subject A.  (b) The respiratory signal of subject B. 

 

  
(a)                                            (b) 

 
(c)                                            (d) 

Fig. 9. Experimental results with Subject A at 2 m and -20◦. (a) AFM under 
multipath. (b) Experimental setup. (c) The respiratory signal of subject A. (d) 

The spectrum of subject A. 

 

 
(a)                                            (b) 

 
(c)                                            (d) 

  
  (e)                                              (f) 

  
(g)                                           (h) 

Fig. 10. Experiment of monitoring three subjects’ respiration. (a) AFM of 

three people monitoring. (b) Experimental setup. (c) The respiratory signal of 

subject A. (d) The spectrum of subject A. (e) The respiratory signal of subject 
B. (f) The spectrum of subject B. (g) The respiratory signal of subject C. (h) 

The spectrum of subject C. 

 

D. Impact of Strong Scatterers 

If there are strong scatterers in the environment, the method 

based on AOA estimation may have false targets or interested 

targets submerged in the background noise. The larger the 

radar cross section (RCS) of the target, the stronger the echo. 

The RCS of metal is much larger than that of human. In order 

to verify the anti-interference ability of the proposed method, 

we conducted experiments in a complex environment with 

strong scatterers. The metal plate and the metal radiator are 

used as false targets, and the subject is located at the 30° of the 

radar as shown in the Fig. 9(b).  The respiratory rate and 

position of the subjects can be clearly found on the AFM as 

shown in Fig. 9(a). It is worth noting that the information of 

the subject will not be affected by the metal plate and the 

metal radiator. In addition, the respiratory signal measured by 

the radar is consistent with the respiratory bandage as shown 

in Fig.9 (c) and Fig. 9(d). 

E. Three-Person Respiratory Detection with Angle Location 

and Beamforming 

In this experiment, we aim to explore the system capability 

in monitoring the number of targets. Three subjects were 

located at -30°, 0° and 30° of the radar. The distance from 

each subject to the radar is 2 m. The experimental scene is 

shown in Fig. 10(b). It can find three highlighted parts in the 



 

 

AFM as shown in Fig. 10(a). Subject A, subject B and subject 

C correspond to (-36.5°, 0.238 Hz), (3°, 0.277 Hz) and (35°, 

0.227 Hz) respectively. Based on the estimated AOA, beams 

directed towards each target are generated to obtain their 

respiration time domain signals as shown in the Fig. 10(c), (e) 

and (g). The breathing frequency of the three subjects are 

0.2372 Hz, 0.2769 Hz, and 0.2278 Hz, respectively. The 

experimental results show that the respiration results measured 

by the TMACW radar are highly consistent with the 

respiration belt measurements.  

F Performance of RR Estimation 

In order to evaluate the performance of the proposed system, 

we conducted extensive experiments to statistically analyze 

the respiratory accuracy and error of the system. Specifically, 

we conducted experiments at different distances (1 m, 2 m, 3 

m) and different numbers of subjects (1,2,3). Each experiment 

lasted 30 s and was repeated 15 times. A total of 135 samples 

were collected. 

1) Error Statistics 

Fig. 11(a) shows the cumulative distribution functions 

(CDF) of estimation error in RR estimation. It can be seen that 

the maximum RR estimation errors of the proposed system in 

single-person, two-person, and three-person scenarios are 0.77 

bmp, 0.96 bmp, and 1.32 bmp, respectively. At the same time, 

we can find that 90% of the data has an estimated error under 

0.9 bpm. The root mean square error (RMSE) is adopted to 

evaluate the robustness of the system under different numbers 

of subjects as shown in Fig.11(b). As the number of subjects 

increases, the RMSE increases slightly. 

 

 

(a) (b) 
Fig. 11. (a) CDF of estimation error in RR estimation. (b) RMSE in RR 

estimation.  

 

 
Fig. 12. Accuracy at various distances. 

 

 2) Impact of Distance 

Fig. 12 presents the accuracy of RR sensing with different 

distances. The accuracy is calculated as: Accuracy =1-
1

N
∑

|RRest-RRref| 

RRref
. As the number of subjects increases, the 

accuracy decreases slightly. When the distance between the 

TMACW radar and the subject increases, the subjects' echo 

energy decreases, which leads to a decrease in the SNR of the 

respiratory signal and accuracy of the estimated RR. It is 

worth noting that the average accuracy of RR for three people 

only drops slightly from 97.8% at 1m to 96.1% at 3m. These 

results demonstrate that the proposed system can accurately 

measure the respiratory rate of multiple people within 3m. 

3)Consistency Analysis 

In order to obtain accuracy, we calculated the Bland-Altman 

plot and Pearson correlation coefficient (r) with all the 

collected data. In the Bland–Altman analysis, the mean 

difference (MD) and standard deviation (SD) of the MD are 

the estimated bias and the average deviation from the MD, 

respectively. The 95% limits of agreement (LoA) are defined 

as MD ± 1.96 SD. In Fig. 13 (a) and (b), the blue dots, red 

dots, and yellow dots are samples for single-person, two-

person, and three-person scenarios, respectively.  The MD and 

SD of RR are -0.003 and 0.551. As shown in Fig. 10(a), the 

upper LoA and lower LoA are 1.077 bmp and -1.083 bmp, 

respectively. Only 4 samples exceeded LoA. The correlation 

coefficient r between the measured RR and the reference RR 

is as high as 1.0008 as shown in Fig.13 (b). In summary, the 

proposed system has high consistency with medical sensors 

and has the potential to replace wearable devices. 

 

  
(a)                                           (b) 

Fig. 13. Consistency analysis. (a) Bland-Altman of the estimated RR. (b) 

Scatter plot of the estimated RR. 

G. Comparison with Other Relevant Works 

Table III compares state-of-the-art sensing technologies for 

vital sign detection. It can be observed that our approach is 

very different from previous research in terms of sensing 

devices and signal processing methods. In [4], the author 

mainly focuses on low power to meet long-term monitoring 

needs. In [9], the study aims to reduce mutual coupling 

interference. Unfortunately, multi-person monitoring has not 

been emphasized in these studies. WiFi devices have the 

advantages of integrated communication sensing and low cost. 

The method of frequency separation cannot separate subjects 

with the same RR and obtain time-domain signals of vital 

signs [14]. The time-division radar obtains spatial information 

to separate multiple targets [28,35,36]. However, strict 

synchronization between the receiver and the switch is 

required, which means that the received signals need to be 

divided into each transceiver link. The proposed system does 

not require strict synchronization and can convert the TMA 

into the conventional array through harmonic recovery. 

Compared to radar with wideband, the proposed system has 

lower spectrum occupancy and transmission power. Compared 

to multi-channel radar [33-35], The proposed system achieves 

the same performance using fewer antennas. In addition, the 



 

 

multi-domain joint estimation method can improve the anti- interference ability of the system and reduce misjudgment.  

 

TABLE III 
PERFORMANCE COMPARISON OF OUR SYSTEM WITH THE STATE-OF-ART RESEARCH 

REF# Tech. 
Tx freq. 
(GHz) 

Tx/Rx 
antenna 

Tx/Rx 
channel 

Vital 
Sign 

Sampling 
Rate (Hz) 

Tx 

power 

(dBm) 

Max. 

Range 

(m) 

Min.  

radial dis. 
between 

subjects (m) 

No. of 
subjects 

Min. 

Angle (°) 

[4] MFCW 
2 

(75MHz) 
1/1 1/1 RR NA -13.1 2 NA 1 NA 

[9] FMCW 77-81 3/4 3/4 RR/HR 2M NA 1 NA 1 NA 

[14] WiFi 
5.765 

(40MHz) 
1/3 1/3 RR NA 20 NA NA 5 NA 

[19] FMCW 5.46-7.25 1/1 1/1 RR/HR NA NA 8 1.5 3 NA 

[21] FMCW 5.72-5.82 1/1 1/1 RR/HR 20K NA 2 0.7 2 NA 

[25] SFCW 2-3 1/1 1/1 RR/HR 48K 8 1.6 0.68 2 NA 

[27] SFCW 2-4 1/1 1/1 RR 15K 20 6.3 0.3 3 NA 

[28] SFCW 1.75–2.25 10/10 1/1 RR/HR 20(1ST) 20 2.5 NA 3 NA 

[29] 
SFCW 

UWB 

8.35-12.35 

6-8.5 

1/1 

1/1 

1/1 

1/1 
RR/HR 

20(ST) 

30(ST) 
0 2.3 0.1 3 NA 

[30] 

SIL+ 
Thermal 

Camera 

2.3-2.65 2/2 2/2 RR/HR NA 0 4 NA 5 NA 

[31] 
LWA 
SIL 

1.85-2.85 1/1 1/1 RR/HR 125KHz -2-6 1 0.52 2 30 

[33] 
Phased 

array 
2.4 4/4 4/4 RR/HR NA 0 6 NA 2 NA 

[34] 
SIMO 
CW 

5.8 1/8 1/8 RR 200K 8 3 0 3 15 

[35] 
MIMO 

CW 
2.4 6/6 6/6 RR/HR 50K 0 1.8 0 2 17 

[36] 
SIL 

FMCW 
5.8-6.8 1/8 1/1 RR/HR 64 5 4 0 5 NA 

[37] FMCW 77-81 2/4 2/4 RR/HR 2M 12.5 NA NA 3 17.5 

This 
work 

TMA 

CW 
2.4 1/4 1/1 RR 200K -17 3 0 3 15 

1ST means slow time 

H. Discussion 

There are several limitations in this study. First, it is very 

difficult for the proposed system to detect heartbeat signals 

from multiple people. The reason is that when converting 

beams into the frequency domain, the weak heartbeat signals 

are easily submerged in the respiratory harmonics and noise. It 

is difficult to observe heartbeat signals in AFM. Second, the 4-

element TMA receiving array has a low spatial resolution. 

Although it is possible to distinguish two adjacent targets 

depending on frequency resolution, the extracted breath signal 

is subject to interference from adjacent targets. Third, it is 

difficult to detect respiratory signal when a moving object is 

obstructed in front of the subject. The reason is that the 

moving object introduces dynamic components whose 

strength is much greater than the echo of the target behind it. 

Vital sign signals drown in the interference and can’t be 

detected. Finally, our system can only utilize beam scanning in 

the plane. When the system is applied in hospital scenarios, it 

is necessary to change the deployment location of the system. 

The proposed TMCW radar has other potential applications 

besides respiratory detection. Our system has the advantage of 

low Tx power so it can be used for long-term sleep monitoring. 

In addition, the proposed system has the same function as the 

conventional multi-channel radar. By combining Doppler 

information and angle information, the system can realize 

gesture recognition, user identification and fall detection. 

IV. CONCLUSION 

In this paper, A novel single-channel TMACW radar is 

proposed to enable multi-person respiratory sensing. The radar 

consists of a 4-element Rx TMA and one Tx antenna. The 

harmonics generated by time modulation are utilized to 

recover the conventional array signals which reduces the 

hardware complexity of multi-channel radars. We also 

propose a joint spatial and frequency domain method to 

estimate the AOA and RR of multiple targets simultaneously. 

The experimental results show that the proposed system has 

high consistency with the reference sensor.  Although the 

proposed system still has some limitations such as lack of HR 

estimation capability, number of detected targets, and 

inapplicability to moving object occlusion scenarios, it is 

foreseeable that the optimization of radar hardware and 

algorithms will also attract more researchers’ attention. We 

also believe that the proposed radar can be considered a 

promising sensing technology for long-term health monitoring 

in the future. 
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