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A novel micromorphic approach captures non-locality in continuum bone
remodelling
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aFaculty of Mechanical Engineering, Nuremberg Tech, Nuremberg, Germany; bGlasgow Computational Engineering Centre, University
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ABSTRACT
In continuum bone remodelling, bone is considered as continuous matter on the macroscale.
Motivated by i) the underlying trabecular microstructure of bone resulting in size-dependence
and ii) the non-local characteristics of osteocyte mechanosensing, a novel phenomenological
approach based on a micromorphic formulation is proposed. Via illustrative benchmark exam-
ples, i.e. elementary unit cube, rod-shaped bone samples, and a 3D-femur sample, the novel
approach is compared to the established local formulation, and the influence of the characteris-
tic size of the microcontinuum and the coupling between macro- and microscale deformation is
analysed. Taken together, the interaction between continuum points at the macroscale and their
neighbourhood is effectively captured by the micromorphic formulation thus influencing the
resulting distribution of nominal bone density at the macroscale.
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1. Introduction

Bone, as a living material, is capable of adapting its
internal microstructure to mechanical loading. The
trabecular structure of bone and thus the nominal
(homogenised) bone density strive for a biological
equilibrium (homeostasis). Consequently, nominal
bone density increases when mechanically overloaded
and decreases when mechanically underloaded.

It is recalled that bone is a microstructural mater-
ial, thus resulting in size-dependent effects (as already
remarked by Galilei (1638)). Size dependence mani-
fests as a small bone being relatively more resistant
than a large one. In order to resolve the trabeculae at
the microscale, Bagge (2000) describes bone remodel-
ling as a structural optimization task in which the
stiffness of the microstructure is maximised by mini-
mising the strain energy. However, by construction,
standard local continuum approaches to phenomeno-
logical bone remodelling at the macroscale do not
resolve the underlying trabecular microstructure. Kuhl
and Steinmann (2003) and Kuhl (2004) have
accounted for the characteristic size effect of the
microstructural bone material phenomenologically by
including a mass flux in the mass balance, resulting

in a more uniform nominal density distribution with
an increase in the corresponding mass conduction
coefficient or, likewise, a relative decrease in bone
size. Coelho et al. (2009) and Fernandes et al. (2012)
pursued optimization of microstructural stiffness
while additionally minimising the metabolic cost of
bone formation. In their two-scale optimization, nom-
inal bone density is determined at the macroscale and
the trabecular microstructure is captured at the
microscale. Scheiner et al. (2013) coupled a model of
multiscale bone mechanics with the population kinet-
ics of bone cells. Therein, in addition to the concen-
tration of biological cells, biochemical factors are also
considered.

Moreover, according to Haj et al. (1990) and
Klein-Nulend (2010), osteocytes act as mechanosen-
sors in the adaption process, are activated by mechan-
ical signals, and regulate the mechanical adaptation of
bone. It is conjectured since long that bone remodel-
ling at a certain point is triggered by non-locally dis-
tributed mechanosensors in its vicinity, i.e. within an
influence sphere of finite size. Indeed, already
Mullender et al. (1994) proposed a non-local integral
formulation in which the mechanical stimulus is com-
putationally sampled over the neighbourhood of each
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continuum point, necessitating two different meshes
for sampling mechanosensors and simulating bone
remodelling. Recently, Park et al. (2022a, 2022b) used
a spatial influence function for the influence sphere
capturing the distance between osteocytes and cell-
forming osteoblasts and cell-absorbing osteoclasts,
respectively. Schaller et al. (2022) also provided a
non-local integral framework for bone remodelling
using peridynamics.

Motivated by the above observations, we here extend
established phenomenological concepts of local con-
tinuum bone remodelling (Kuhl et al. 2003) by a novel
micromorphic approach. Continuum bone remodelling
considers bone phenomenologically as an open con-
tinuum system that can continuously exchange mass,
momentum, energy, and entropy with its environment,
thereby emulating the processes of bone growth or
degeneration, for the local case see, e.g. Papastavrou et al.
(2020a, 2020b) and Schmidt et al. (2021a, 2021b). By
extending these concepts to a micromorphic formulation,
see Hirschberger (2008), that is augmented by the evolu-
tion of nominal bone density to capture bone remodel-
ling, an algorithmically straightforward implementation is
proposed. It avoids the need for higher continuity
requirements of the finite element approximation, as
required in higher gradient approaches, and expensive
neighbourhood sampling, as in integral approaches.
Recall that in phenomenological continuum bone remod-
elling, nominal bone density is considered as an effective
(homogenised) macroscopic measure of the ratio of bone
mass to pore volume in the underlying trabecular micro-
structure. Thus, in our approach, accounting for the
bone microstructure is not aimed at explicitly resolving
individual trabeculae, but rather at phenomenologically
capturing the emergent effect on the nominal bone dens-
ity at the macroscale. Here, a characteristic length meas-
ure reflects the underlying microstructure, and a scale
transition parameter penalises the deviation of the micro-
morphic from a higher gradient case. With these parame-
ters, the model can be calibrated to the bone
microstructure, however without explicitly resolving it.
Our approach is implemented in the open-source finite
element library deal.II (Bangerth et al. 2007; Arndt et al.
2022).

Taken together, micromorphic bone remodelling
captures the well-accepted non-locality of bone adap-
tion, which is physiologically motivated by the under-
lying heterogeneous bone microstructure as well as by
spatially correlated mechanosensation and -regulation.

The structure of this contribution is as follows:
The classical local and the novel micromorphic con-
tinuum bone remodelling formulation as well as the

finite element setting of the latter are presented in
Section 2. The micromorphic approach is then illus-
trated in Section 3 using numerical benchmark exam-
ples, i.e. elementary unit cube and rod-shaped bone
samples, as well as a 3D femoral head. We close with
a discussion and conclusion in Section 4.

2. Theoretical background

In the following, we present an approach in which the
classical macroscopic formulation in bone remodelling
is extended to a micromorphic formulation. Therefore,
the fundamental kinematics, the theory of local and
micromorphic continuum bone remodelling, and the
computational implementation are introduced.

2.1. Kinematics

The kinematic description of deformation on the macro-
scale is presented in Section 2.1.1. Subsequently, the
description of the micromorphic problem on the micro-
scale is introduced in Section 2.1.2. For a detailed
account of the latter, see also Hirschberger (2008).

2.1.1. Macroscale problem
Consider a solid body where B0 denotes the reference
configuration and Bt the current configuration at time
t0 and t 2 Rþ, respectively. Based on the deformation
map u, the kinematic description is characterized
through the material placement X of a physical particle
in the reference configuration B0 and its spatial pos-
ition x in the spatial configuration Bt, that is

x ¼ uðX, tÞ : B0 � Rþ ! Bt: (1)

The deformation gradient F defines the linear tan-
gent map from the material tangent space to the spa-
tial tangent space as

F :¼ GraduðX, tÞ : TB0 ! TBt: (2)

Its determinant is the Jacobian J ¼ detF > 0, which
relates the volume elements in the two configurations.

2.1.2. Microscale problem
The microscale deformation gradient �F represents an
affine map of material points from their reference
placement �X to their current position �x at the micro-
scale and is kinematically independent of the macro-
scale continuum,

�x ¼ �F � �X: (3)

The gradient of the microscale deformation gradi-
ent with respect to the macroscale material placement
is a third-order tensor defined by
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�GðXÞ :¼ Grad�FðXÞ: (4)

2.2. Local continuum bone remodelling

After the basic kinematic quantities have been introduced,
the description of the balance equations and the constitu-
tive assumptions in the theory of local continuum bone
remodelling follow, for details see Kuhl et al. (2003).

2.2.1. Balance equations
Since bone is a living material, the nominal density q0 of
the considered reference volume in B0 can evolve to
describe growth or atropy. In open systems theory, mass
transfer can occur so that the material density may
change in response to mechanical stimulation, see Kuhl
et al. (2003) and Schmidt (2022). The biological equilib-
rium is reached, when R0 ¼ 0 and thus q0 ¼ const: The
change in density with time, q0

:
, therefore corresponds

to the mass source R0 such that

q0
: ¼ R0: (5)

Here we neglect mass flux, for the reasons described in
the introduction, thus it does not appear in the balance of
mass. The balance of linearmomentum reduces to

DivP ¼ 0 (6)

where P is the Piola stress tensor. As motivated in
Frost (1987), Jacobs et al. (1995) and Schmidt et al.
(2021b) inertial effects as well as body forces are
neglected in this context, since the forces acting on
human bones due to physical activity are significantly
larger than those caused by gravity and do not repre-
sent the dominant stimulus.

2.2.2. Constitutive equations
In the classical continuum modelling approach,
bone, being an open-pored hard tissue, is character-
ized by a compressible neo-Hooke energy function
Wneo

0 , as proposed in Kuhl et al. (2003), weighted by
the relative density ½q0=q?0�n, see e.g. Carter and
Hayes (1977) and Gibson and Ashby (1982),

W0 ¼ q0
q?0

� �n
Wneo

0 (7)

with

Wneo
0 ¼ 1

2
k ln 2J þ 1

2
l F : F� 3� 2 ln J½ �: (8)

However, the assumption of geometrically nonlinear
continuummodelling does not necessarily mean that large
deformations are to be expected, but it has the advantage
of not introducing additional and non-required

approximations for the kinematics. Here k and l are the
classical Lam�e parameters and q0 and q?0 denote the cur-
rent and initial values of nominal density, respectively. The
exponent n characterises the actual porosity of the bone tis-
sue and is typically set to n¼ 2 for trabecular bone with
low nominal density, see also Schmidt et al. (2021a). As
indicated in the mass balance, we assume a mass source
R0 responsible for the evolution of the density in the con-
sidered reference volume. Because bone seeks for bio-
logical equilibrium, see Harrigan andHamilton (1993) and
Harrigan and Hamilton (1994), the expression for the
mass sourceR0

R0 ¼ q0
q?0

� ��m

W0 �Wa
0 (9)

balances the weighted energy density with a reference value
Wa

0, called the attractor stimulus, which can be interpreted
as a target energy density. The dimensionless scalar param-
eter m is relevant for numerical stability (Harrigan and
Hamilton 1993, 1994). In the sequel, the parameter is set to
m¼ 3, see also Kuhl and Steinmann (2003).

2.3. Micromorphic continuum bone remodelling

In the following, the balance equations and the con-
stitutive equations are introduced similarly to Section
2.2, however now adapted for micromorphic con-
tinuum bone remodelling.

2.3.1. Balance equations
The balance of linear momentum for the micromor-
phic case expands to

DivP ¼ 0,

Div �Q � �P ¼ 0,
(10)

as motivated in Hirschberger et al. (2007), where �P is
the microscale Piola stress and �Q is the microscale
double stress. All kinetic measures associated with the
problem are summarized in Table 1. The balance of
mass according to Equation 5 also applies in the
micromorphic case.

Table 1. Summary and definition of the utilized kinetic meas-
ures. Order refers to the order of the tensorial quantity.
Measure Label Order

Total energy density W0 0
Macroscale deformation map u 1
Macroscale deformation gradient F ¼ Gradu 2
Microscale deformation gradient �F 2
Macroscale Piola stress P ¼ DFW0 2
Microscale Piola stress �P ¼ D�FW0 2
Gradient of the microscale deformation gradient �G ¼ Grad�F 3
Microscale double stress �Q ¼ D�GW0 3

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 3



2.3.2. Constitutive equations
In the novel micromorphic approach for continuum bone
remodelling, the total energy density W0 now consists not
only of the local macroscale neo-Hookean energy density
Wneo

0 , see Equation (8), weighted by the nominal relative
density, see Equation (7), as typically used in classical bone
growth theory, but also includes contributions from the
microscale and an additional scale-bridging contribution

W0 ¼ q0
q?0

� �n
Wmac

0 ðFÞ þWmic
0 ð�GÞ þWscale

0 ðF, �FÞ
h i

:

(11)
Consequently, both the local macroscale and the non-

local microscale contribution are scaled by the relative
density. In the following, the neo-Hookean energy density
is referred to as themacroscale contribution

Wmac
0 ¼ Wneo

0 : (12)

Moreover, as described in Hirschberger (2008) and
McBride et al. (2020), a quadratic formulation for the
microscale energy density is assumed

Wmic
0 ¼ 1

2
ll2 �G� : �G (13)

together with a scale-bridging contribution

Wscale
0 ¼ 1

2
p �F � F½ � : �F � F½ � (14)

coupling the macro- and microscale deformation. Here,
the internal length scale parameter l accounts for size
dependence and can be interpreted as the characteristic
size of the microcontinuum. For p ! 0 the macro- and
microscale contributions are decoupled, while for p ! 1
the macro- and microscale deformations are penalised to
become more and more equal. For the limiting case �F � F
gradient elasticity is obtained. The case p¼ 0 and l¼ 0 pro-
vides the standard problem of local continuum bone
remodelling. The corresponding derivatives needed for the
residual, i.e. the macroscale Piola stress, the microscale
Piola stress, and the microscale double stress, are com-
puted as follows

P :¼ @W0

@F
¼ q0

q?0

� �n
k ln J � l½ �F�t þ lF

� �� p �F � F½ �
h i

,

�P :¼ @W0

@�F
¼ q0

q?0

� �n
p �F � F½ �,

�Q :¼ @W0

@ �G
¼ q0

q?0

� �n
ll2 �G:

(15)

2.4. Computational implementation

The computational implementation of the finite elem-
ent formulation is performed similar to the one for

micromorphic elasticity, see McBride et al. (2020),
where the system consists of two primary fields,
namely the macroscale deformation u and the micro-
scale deformation gradient �F: If additional bone
growth is considered, a third variable, the nominal
density, must be taken into account as an internal
variable that locally results from the time discrete
residual statement of the balance of mass

rq0 ¼ Dq0 � DtR0ðq0,F, �F, �GÞ ¼ 0: (16)

The discrete balance of mass is solved at each integra-
tion point using a local Newton-Raphson iteration scheme.
At each global time step, the local residual is calculated and
a new density is determined. The local Newton-Raphson
procedure is executed for each time step until the local
residual falls below a certain tolerance value. For the sake
of brevity, we refrain from indicating a new time step
counter and always refer to the current time step. For a
more detailed description in this regard, see Schmidt
(2022). With NI

u and NI
�F denoting vector- and tensor-val-

ued finite element shape functions, the global residual
statements follow as

RI
u :¼

ð
B0

P : GradNI
u

h i
dV �

ð
C0

t0 � NI
udA _¼ 0 8I 2 Iu

RI
�F :¼

ð
B0

�P : NI
�F þ �Q� : GradNI

�F

� �
dV �

ð
C0

�t0 � NI
�FdA _¼ 0 8I 2 I �F :

(17)

where the sets Iu and I �F contain the degrees of free-
dom for the macro- and the microscale fields. For the
solution by a global Newton-Raphson scheme, the fol-
lowing coupled problem

Kuu Ku�F

K�Fu K�F�F

� �
du
d�F

� �
¼ � Ru

R�F

� �

results in each global Newton iteration. The line entries of
the tangent operator K associated with the degrees of free-
dom I 2 fIu, I �Fg and J 2 fIu, I �Fg follow as

Kuu

� �
IJ
¼ @uJR

I
u ¼

ð
B0

DFP : GradNJ
u

h i
: GradNI

udV

Ku�F
� �

IJ
¼ @�FJR

I
u ¼

ð
B0

D�FP : NJ
�F

h i
: GradNI

udV

K�Fu
� �

IJ
¼ @uJR

I
�F ¼

ð
B0

DF�P : GradNJ
u

h i
: NI

�FdV

K�F�F½ �IJ ¼ @�FJR
I
�F ¼

ð
B0

D�F
�P : NJ

�F

h i
: NI

�FdV

þ
ð
B0

D�G
�Q� : GradNJ

�F

h i
� : GradNI

�FdV:

(18)For quadratic convergence of the Newton-Raphson
scheme, the algorithmic update of the nominal dens-
ity, see Equation 16, is considered in the
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linearisations

DFP ¼ @FPþ @q0P�dq0@FR0

D�FP ¼ @�FPþ @q0P�dq0@�FR0

DF�P ¼ @F�P þ @q0
�P�dq0@FR0

D�F
�P ¼ @�F �P þ @q0

�P�dq0@�FR0

D�G
�Q ¼ @ �G

�Q þ @q0
�Q�dq0@ �GR0

(19)

with the abbreviation

dq0 ¼ Dt 1� Dt@q0R0
� ��1

: (20)

The entries @q0P, @FR0 and @q0R0 are defined in
Kuhl and Steinmann (2003) and are provided here in
the Appendix. In the same fashion, we determine the
derivatives that result from the microscale deform-
ation. Considering the constitutive equations given in
Section 2.2 and 2.3, the following expressions

@FP ¼ q0
q?0

� �n
lI��Iþ kF�t�F�t � k ln J � l½ �F�t�F�1 þ pI��I
� �

@�FP ¼ @F�P ¼ �@�F �P ¼ �p
q0
q?0

� �n
I��I½ �

@ �G
�Q ¼ ll2

q0
q?0

� �n
I��I½ �

@q0
�P ¼ 1

q0
n�P

@q0
�Q ¼ 1

q0
n �Q

@�FR0 ¼ q0
q?0

� ��m
�P

@�GR0 ¼ q0
q?0

� ��m
�Q

(21)

are obtained to determine the tangent operator, given
in Equation (18).

3. Numerical examples

The presented finite element problem is solved within the
open-source library deal.II (Bangerth et al. 2007; Arndt
et al. 2022). It is a Cþþ software library that supports the
creation of finite element codes for a broad variety of PDEs
(Bangerth et al. 2022). For the finite element implementa-
tion we use 3D elements with a 3� 3 quadrature rule and a
tri-quadratic approximation for the macroscale deform-
ation u and a tri-linear approximation for the microscale
deformation gradient �F:

In this section, the micromorphic approach is com-
pared with the classical approach, which will be
referred to as the local approach in the following.
Moreover, variations of the characteristic length scale
parameter l and the penalty parameter p are per-
formed. As a first numerical example, we consider a
unit cube under inhomogeneous loading, then we

study a cantilever beam representing a bone specimen
of the femoral shaft, and finally we illustrate the
emerged findings by calculations on a full femoral
head model.

3.1. Unit cube

In order to perform basic investigations of our model,
a unit cube consisting of only one finite element is
considered. The dimensionless parameters used in the
model are given in Table 2.

The cube is fixed on its bottom surface, where no
displacements are permitted. For the other nodes, dis-
placement is allowed only in vertical direction. A
force acts on the top surface in the positive x - direc-
tion for the nodes where z¼ 0, and in the negative
direction for the nodes where z¼ 1, according to the
schematic in Figure 1. Over the simulation time, the
force is increased four times in a stepwise manner. In
this example, the cube is strongly restricted in its
degrees of freedom in order to be able to clearly
interpret the effects of the parameter variations and
to reduce the superposition of different factors.

3.1.1. Variation of the length scale parameter
To investigate the influence of the length scale param-
eter l, the penalty parameter is set to p¼ 1 during this
investigation. Since both, the boundary conditions
and the forces on the cube are constant in y-direction,
it is sufficient to focus on one x-z-plane. As quadratic
element expansions are used, one surface of the cube
consists of nine nodes, see Figure 1. The evolution of
the nominal density is shown in Figure 2 for the
quadrature points, which are identified with different
markers. For the description of the density evolution
curves we refer to quadrature points (QP 1-9) and for
the displacements to the nodes (Node 1-9). The dens-
ity at QP 3 and QP 9 as well as the density of QP 2
and QP 8 develop almost identically, which is why
they are each marked with the same color and
marker. Only close to the supports, at QP 1 and QP
7, is a difference in density due to the different load-
ing directions visible. The density increase due to ten-
sion, at QP 1, is higher than the density increase due

Table 2. Non-dimensionalised reference parameters for the
unit cube.
Shear modulus l 1

Poisson’s ratio � 0.2
Initial density q�0 0.01
Attractor stimulus Wa

0 0.01
Load start value Fpre 60:4

Please consider, that the shear modulus should not appear as the header
of the table. It should be a table without a header line.

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 5



to compression, at QP 7. The density increase is high-
est at the quadrature points close to the force applica-
tion and decreases in the direction of the supports.
The black dashed line represents the averaged density
evolution of the unit cube. The length scale parameter
l can be considered as the characteristic measure of
the underlying heterogeneous bone microstructure.
Consequently, it can be calibrated to the size of the
trabecular structure of the bone under investigation.
With dimishing length scale value, the micromorphic
solution converges towards the local case, see Figure
2a–c. For the local case, it can be clearly seen that the
points in the unloaded part of the cube, QP 4, QP 5
and QP 6, lose density in almost the same way, i.e.

the curves lie on top of each other. This changes
within the micromorphic approach, where the red
curves drift apart from each other according to the
size of the length scale parameter.

The corresponding displacements of Node 3 and
Node 9 are depicted in Figure 3. As expected, the
deformation of the cube increases as the length scale
parameter is decreased, since the local case is
approached with l¼ 0. It should also be mentioned
that the displacement due to tension, at Node 3, is
higher than the displacement due to compression, at
Node 9. The fact that the density at QP 1 develops
more strongly than at QP 7 also fits to this
observation.

Figure 1. Unit cube clamped at its bottom surface, allowing for displacements at all other nodes only in the x-direction, and the
corresponding external load F over time.

Figure 2. Evolution of the density within the unit cube by performing the variation of the length scale parameter.
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3.1.2. Variation of the penalty parameter
Figure 4a–c show the evolution of the density with
variation of the penalty parameter. The length scale
parameter is set to l¼ 1 during this investigation.

As the penalty parameter is increased, the range of
the density curves is significantly affected. The higher
the penalty, the more the density curves converge.
Figure 4d shows the range of the density values over the
penalty parameter. Above a certain penalty value, the
convergence of the system can no longer be achieved
because a numerical limit is reached. This is drawn as a
dashed line which approaches a minimum.

The corresponding displacements ofNode 3 andNode 9
are shown in Figure 5. As the penalty parameter increases,
the deformation of the cube decreases significantly, which

means that the cube gains stiffness, similar to the observa-
tion by Hirschberger (2008). It can be clearly seen that the
displacement is approaching a minimum value
with p¼ 25.

3.1.3. Local vs. micromorphic approach
Finally, the classical local approach is compared to the
micromorphic approach with a mixed set of length scale
parameter l¼ 0.01 and a penalty parameter p¼ 25, see
Figure 6.

The length scale parameter should tend to take small
values to represent a fine microstructure of the material.
Whereas a large penalty parameter is used to force the
macro- and microscale deformation gradients to converge.
Since an opposing behaviour is to be expected, the

Figure 3. Evolution of the displacement of Node 3 and Node 9 of the unit cube by performing the variation of the length scale
parameter.

Figure 4. Evolution of the density within the unit cube by performing the variation of the penalty parameter.

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 7



parameters were considered individually in detail before-
hand. As can be seen, the density distribution of the points
differs significantly between the approaches, especially for
the red points in the unloaded part of the cube. As an
example, we consider QP 6, whose neighbors, QP 3 and
QP 9, move in opposite directions. However, in the local
approach, this point does not experience any density
increase. This changes in the micromorphic approach,
where the point is now also affected by the high stress of its
neighbors, even though it is not directly loaded. As a result,
this point experiences an increasing density. For themicro-
morphic approach, interaction between continuum points
is evident. Thus, areas of the material that are not directly
loaded also respondmore to the loading of their neighbors
than for the local case. The parameters control how strong
the interaction is. This manifests itself in a more homoge-
neous density distribution and thus influences the stiffness
of the body. After basic investigations have been carried
out on a unit cube, a more complex example is considered
in the following and the emerged findings will be
discussed.

3.2. Bending of a cantilever bone specimen

A femoral head is loaded in vertical direction by the load
transferred from the hip to the hip joint. Although the
actual force on a femoral head changes significantly in

direction andmagnitude as a function of body locomotion,
the perpendicular force, represents the major component.
This vertical force component causes the bone to undergo
bending. In this process, the outer side of the bone (lateral
cortex) experiences a tensile load, while the inner side
(medial cortex) is compressed. In this example, the bend-
ing situation is investigated using a simple cantilever beam,
which serves as a bone specimen from the femoral shaft
region.

As shown in Figure 7, the simple cantilever beam
is subjected to bending uniformly along the end face
due to the applied traction tpre.

Table 3 provides the parameters used in the model.
The Young’s modulus can vary depending on the
type of bone, age, etc. However, the chosen parame-
ters are commonly used for proximal femur for the
sake of demonstration, see also Carter and Beaupr�e
(2000), Kuhl et al. (2003), Schmidt et al. (2021a) and
Schaller et al. (2022). The value for the attractor
stimulus, which acts as a driver for the remodelling
process, and a constant traction are chosen such that
the characteristics of the model are clearly visible and
quantifiable. For this reason, the deformation of the
beam is also larger than a real bone specimen would
allow. However, for the final numerical example of
the 3D femoral head, we use a lower traction that
results in smaller and more realistic deformations.

Figure 5. Evolution of the displacement of Node 3 and Node 9 of the unit cube by performing the variation of the penalty
parameter.

Figure 6. Comparison of the approaches.
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As for the unit cube, the variation of the length
scale parameter (const. p¼ 1) and the variation of the
penalty parameter (const. l¼ 1) are also performed
for the bone specimen in the following.

3.2.1. Variation of the length scale parameter
The 3D beam in Figure 8 shows how the density
inside the bone specimen evolved after certain time of
load application given in Table 3 using the classical
local approach, i.e. the length scale parameter and the
penalty parameter are set to zero in this case.

It can be seen that for the local approach the density
increases mainly at the top and bottom of the beam
close to the clamping, the neutral fibre of the beam does
not experience any density gain. The density in this area
even falls below the initial value given in Table 3. This
simplified model of a bended beam from the femoral
shaft region illustrates clearly why nature has evolved a
hard bone cortex and a spongy bone interior in long
bones due to basic loading conditions.

In the following, a cut-through surface of the beam
next to the support is used to evaluate the differences
between the approaches. The evaluation does not take
place directly at the clamping in order to avoid influ-
ences of the boundary conditions. With increasing the
length scale parameter, the density in the centre of
the beam is increased. This means that the continuum
points in the region of the neutral fibre are no longer
unaffected by the loading conditions. To make this
quantifiable, the diagram in Figure 8 shows the dens-
ity distribution within the cross-section plotted
against the z-coordinate. The centre of the beam is
located at z¼ 0. The top and bottom area is hardly

affected by the variation of the length scale.
Comparing the local and the micromorphic approach,
it becomes obvious that the latter is a non-local
method. The interaction between the continuum
points is affected in such a way that now also the
points in the centre of the beam experience a density
gain, depending on the value of the length scale.

3.2.2. Variation of the penalty parameter
Correspondingly, now the variation of the penalty
parameter is carried out. Figure 9 shows the density
distributions of the cut-through surfaces for different
penalty values. The diagram shows the density distri-
bution inside the beam in the same manner as in
Figure 8. Furthermore, in the additional diagram the
range of density is plotted against the corresponding
penalty value. The range means that the lowest dens-
ity value in the middle of the beam is subtracted from
the highest value at the edge of the beam. This repre-
sentation shows again a very similar behaviour to that
already observed with the unit cube. The range of
density values decreases with increasing penalty.

The variations of the length scale parameter and
the penalty parameter were performed separately.
Different combinations of these parameters are dis-
cussed in the following using the final numerical
example of the proximal femur.

3.3. Proximal femur

The formulation is now applied to the problem of a
proximal femur. A 3D scan of a commercially avail-
able anatomical model of a femoral bone was created,
surface optimised, and meshed using the tools mesh-
mixer (Autodesk 2022) and coreform cubit (Coreform
2022).

Table 4 shows the parameters used in the model.
Consequently, the same material parameters were
used as for the bone specimen, except for the
attractor stimulus, which was adopted as it is typically
used to simulate the geometry of a whole femoral
head, see also Schmidt et al. (2021a,2021b) and
Schaller et al. (2022). A vertically prescribed traction
of tpre ¼ 0.8 is applied to the femoral head to achieve
a much smaller and more realistic deformation than
it was the case for the beam example. The applied
traction results in a displacement in the x-direction
corresponding to 1.5% of the total length of the 3D
femoral model shown in Figure 10.

Figure 10 shows the 3D model of the proximal femur
using the classical local approach. Without introducing
an a priori distinction between cortical and cancellous

Figure 7. Cantilever beam under bending load serving as a
simplified model for the femoral shaft region.

Table 3. Non-dimensionalised reference parameters for the
cantilever beam.
Young’s modulus E 500
Poisson’s ratio � 0.2
Initial density q�0 0.4
Attractor stimulus Wa

0 0.1
Traction tpre 1

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 9



Figure 8. Density distribution inside a bone specimen under bending load by performing the variation of the length scale
parameter.

Figure 9. Density distribution inside a bone specimen under bending load by performing the variation of the penalty parameter.
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material, our model is able to predict a pronounced
density increase in areas where nature also develops
dense, cortical bone. Although only a simplified vertical
loading condition is assumed, the areas of predicted
density increase agree very well with real radiographs,
e.g. from Parkinson and Fazzalari (2013) and Jacobs
et al. (1995). Increased density growth can be observed
mainly in the medial and lateral femoral shaft and in the
neck region. It must also be acknowledged that the sim-
plified vertical loading on the femoral head leads to an
increase in density only in the medial and lateral regions,
but not in the anterior and posterior regions. Since in
reality the femur is also subjected to anterior and poster-
ior loads, e.g. during running, this prescribed loading is
not sufficient to fully predict the density distribution in
all directions. In addition, the density distribution in the
horizontal section of the femoral shaft, which is not
exactly vertically aligned, is due to the fact that the bone
is fixed only at the lower end. This allows rotational
deformation in z-direction, i.e. not straight bending as in
the previous example. Figure 10 also shows the sectional
planes chosen for the detailed study in Figure 11.

Figure 11 shows a variety of combinations where
different length scale and penalty parameters were
tested. In the case of a constant length scale of l¼ 0.1,
there is hardly any difference in the variation of the
penalty parameter visible. Here, the microscale contri-
bution is so small, and thus so similar to the classical
local approach, that even increasing the coupling does
not make the density distribution within the bone

more homogeneous, as described in the previous sec-
tions. However, when the length scale parameter, and
thus the size of the microcontinuum, is increased, e.g.
l¼ 0.4, this effect can be observed. More precisely, the
larger the length scale parameter, the more pro-
nounced this effect becomes. Furthermore, in the case
of a constant penalty of p¼ 1, a difference in the vari-
ation of the length scale parameter is apparent but
relatively small. Here, the scale bridging between
micro- and macroscale deformation is minimal. With
increasing the penalty, the micro- and macroscale
deformations are forced to become more and more
alike, resulting in a reduction of the dispersion of the
density. In summary, a large penalty combined with a
large length scale would result in the most homoge-
neous density distribution and can be interpreted as
gradient elasticity.

4. Discussion and conclusion

In this work, a novel micromorphic approach for non-
local bone remodelling has been proposed. Therein, a
local approach for continuum bone remodelling, see, e.g.
Kuhl et al. (2003), has been extended, based on
Hirschberger (2008), to a micromorphic formulation and
implemented into the finite element library deal.II
(Bangerth et al. 2007; Arndt et al. 2022). The macroscale
energy density, driving the density growth at the (quadra-
ture) point level, is enhanced by a micromorphic energy
contribution in terms of the microscale deformation gra-
dient and a scale transition part. A penalty parameter is
used to influence the coupling between micro- and mac-
roscale deformation and a length scale parameter cap-
tures the size of the microcontinuum. The influence of
these parameters has been investigated and a comparison
with the classical local approach performed.

Table 4. Non-dimensionalised reference parameters for the
3D proximal femur.
Young’s modulus E 500
Poisson’s ratio � 0.2
Initial density q�0 0.4
Attractor stimulus Wa

0 0.01
Traction tpre 0.8

Figure 10. Density distribution inside a femoral head using the classical local approach.
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As observed by Hirschberger (2008) for the purely
mechanical case, an increase of the micromorphic
parameters leads to a stiffer material behaviour. As a
result, the micromorphic contributions have a decisive
influence on the distribution of the nominal bone
density within a bone sample. To illustrate the prop-
erties of the micromorphic model, a unit cube and a
cantilever beam were first studied as benchmark
problems. Then, a 3D femoral head was considered as
a more realistic and relevant problem. The novel
micromorphic approach captures the non-local inter-
action between macroscale continuum points. The
size of the microcontinuum and the coupling between
micro- and macroscale deformation can be used to
control how strong the interaction is. This is similar

to Kuhl and Steinmann (2003), where the size effect
was alternatively modelled by incorporation of the
mass flux. There, a diffuse and almost homogeneous
density distribution was observed with decreasing
bone size, which corresponds to an increasing length
scale in our case. In summary, it can be concluded
that the consideration of non-locality has a significant
impact on the density distribution in bone samples.
In the proposed formulation, the non-locality of bone
remodelling can be realized without an integral
approach, such as presented by Mullender et al.
(1994) or Schaller et al. (2022). The advantage of the
micromorphic approach is that the time-consuming
sampling of the mechanical stimulus in the vicinity of
each point can be omitted. In addition, the early

Figure 11. Density distribution inside a femoral head by performing the variation of the length scale and penalty parameter.
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approach of Mullender et al. (1994) requires two dif-
ferent meshes for mechanosensing and the bone
remodelling problem. Furthermore, the micromorphic
approach eliminates the need for a costly two-scale
model that explicitly resolves the microstructure, as
presented, e.g. by Coelho et al. (2009). The metabolic
cost parameter introduced there is similar in spirit of
our internal length, since both can be used to influ-
ence the intensity of the density evolution. The lower
the metabolic cost parameter, the more densely the
bone structure develops. In our approach, we can
achieve similar behaviour by increasing the internal
length or penalty parameter, respectively, but without
explicitly resolving the trabecular microstructure.

For future applications, the micromorphic parame-
ters need to be chosen depending on the size and tra-
becular microstructure of the bone. As noted by
Gitman (2012), who followed an alternative gradient
elasticity approach for modelling bone tissue, deter-
mining the appropriate value for the internal length
scale is a question in itself and requires a separate
study. This is similar to the state of affairs in gradient
plasticity, where extensive research has been con-
ducted to establish a physical basis for the length
scale. These efforts need to be applied to modelling
bone adaption as well.

It is expected that with more realistic loading con-
ditions, the characteristics of bone density growth can
be captured even better. Although the rather simpli-
fied loading assumption in this work provides already
very good agreement with radiographs in the coronal
plane, in the future we need to represent the loading
situation in the anterior and posterior directions
more precisely to achieve full agreement with 3D
scans of femoral heads. To this end, we will have to
equip our model with improved loading scenarios,
requiring an extensive load determination. Moreover,
we plan integrating loading cycles from patient data
into our model. Finally, muscle forces, such as the
force exerted by the muscles on the greater trochan-
ter, will also be considered as these influence the
density distribution in real bone samples.
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Appendix
As indicated in Section 2.4, the remaining tangent entries
are given by

@q0P ¼ 1
q0

nP

@FR0 ¼ q0
q?0

� ��m

P

@q0R0 ¼ n�m½ � q0
q?0

� ��m 1
q0

W0

(22)
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