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ABSTRACT
We propose a new form of plausible counterfactual explanation
designed to explain the behaviour of computer vision systems
used in urban analytics that make predictions based on properties
across the entire image, rather than specific regions of it. We illus-
trate the merits of our approach by explaining computer vision
models used to analyse street imagery, which are now widely
used in GeoAI and urban analytics. Such explanations are impor-
tant in urban analytics as researchers and practioners are increas-
ingly reliant on it for decision making. Finally, we perform a user
study that demonstrate our approach can be used by non-expert
users, who might not be machine learning experts, to be more
confident and to better understand the behaviour of image-based
classifiers/regressors for street view analysis. Furthermore, the
method can potentially be used as an engagement tool to visual-
ise how public spaces can plausibly look like. The limited realism
of the counterfactuals is a concern which we hope to improve in
the future.
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1. Introduction

Most explainable computer vision xCV or more generally explainable artificial intelligence
xAI methods in urban analytics, explain the response of a machine learning ML classifier or
regressor via localization using heatmaps.1 Given a picture, a heatmap-based explanation
may show why a classifier has labelled it as a cyclist by identifying regions of the image
that the classifier maximally depends on. If these regions do in fact contain a cyclist, a sci-
entist making use of the system can feel more comfortable that the classifier is working as
intended, and not for example, exploiting correlated features in the local context, such as
if an image contains a cycle lane, in deciding if it is a motorcyclist or a cyclist.
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Unfortunately, for many scientific tasks, we are interested in estimating attributes
that do not depend on small regions of an image. For example, in urban analytics, we
may be interested in estimating the greenness or scenicness of the environment from
a street photo. These estimates do not depend solely on parts of the image, but on
emergent properties that come from considering the entirety of the image. For a tree
classifier, the explanation should not just highlight the existing trees but also all the
buildings where there could be trees. As such explanability methods such as heatmaps
that highlight multiple parts of the image can be difficult to observe what the meth-
ods depend on. We refer to such problems as holistic image tasks.

In this paper, we show how explanations can be provided for ML systems that solve
these holistic image tasks, like those in urban analytics where attributes are closely
linked with each other, allowing scientists, who may not be machine learning experts,
to be more confident about what these systems do and how they work. To this end,
we propose a new form of plausible counterfactual explanation, that visualises how
images can be altered to increase or decrease the response of the ML system. To dem-
onstrate the helpfulness of these explanations to lay users, we apply our approach for
street scenes image-based classifiers/regressors in urban systems.

1.1. The importance of explaining urban analytics models

In urban systems, streets and spaces between buildings are an integral component to
our livelihood, as they provide access to leisure, enable economic activities, and help
to connect people. In an attempt to leverage this, much recent progress has been
made using deep learning to mine street image data. This combination of data-type
and method has become popular in urban analytics and GeoAI (Ibrahim et al. 2021,
Biljecki and Ito 2021). In no small part, this growth has been driven by advances in
deep learning methods, scalable computation, and the proliferation of ground level
street imagery from sources such as Google and Mapillary.

Example applications include estimating demographic profiles using vehicle types
(Gebru et al. 2017), measuring physical changes in neighbourhoods (Naik et al. 2017),
estimating real estate values (Law et al. 2018, Kang et al. 2021), and the estimation of
various perception indicators in cities (Naik et al. 2014, Seresinhe et al. 2019).
Furthermore, eye-level street view, as opposed to overhead aerial view, can provide
useful information for urban planning that is often costly and difficult to collect manu-
ally. To illustrate, the activeness of a street frontage as measured by the openness and
the frequency of entrances and windows, can be an indicator of safety perception
(Jacobs 1961, Law et al. 2020), which can be easily retrieved from photos of street
scenes. These methods, can distill insights and help understand, map, and better
monitor our urban environments, allowing us to better plan and design future
neighbourhoods.

Despite the widespread use of computer vision, little research in urban analytics
has been undertaken to interpret and explain the machine learning (ML) models we
use (Kakogeorgiou and Karantzalos 2021). As these computer vision systems become
increasingly commoditized, more scientists with little experience of deep learning or
computer vision will make use of them, and thus it is important to provide
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explainability tools that allows these scientists to build intuition about how these sys-
tems work so that they are not misled by their output.

This paper explores explainability in computer vision models for street images in
urban analytics. In contrast to standard heatmap-based explainability approaches that
give importance scores to every location in the image, we will explore the use of an
explainability approach referred to as ‘counterfactual explanations’ (Wachter et al.
2017), which asks what would need to be altered in the street scene for the classifier
to give a different result. For example, modifications can include introducing more
greenery, taller buildings or bringing in more skylight onto the street scene. Such
plausible urban counterfactuals are potentially more intuitive to urban planners than
other existing xML(xAI) visual explanation methods, as the visualisations of urban
design scenarios are often used as a public engagement tool in practice.

Methodologically, we extend on previous works (Wachter et al. 2017), by showing
how counterfactual explanations (i.e. what should be altered in this image in order for it
to be classified differently) can be computed in a low-dimensional latent space induced
over the mid-level responses of a deep network. The low-dimensional nature of this
space means that such explanations are visually more distinctive than those editing in
image space which are more similar to adversarial perturbations (Elliott et al. 2021).

In this paper, we propose a counterfactual explanation pipeline in urban analytics
whose resulting image provide visual explanations for street image regressors/classi-
fiers in an urban setting. These explanations are important as stakeholders in urban
planning are increasingly reliant on these models for decision making. Our research
makes the following contributions:

� Introduce an explainability approach in urban analytics that produces counterfac-
tual visual explanations for an urban image based regressor.

� Evaluate qualitatively the distinctiveness and coherency of the counterfactual visual
explanations.

� Evaluate quantitatively the explanations to ensure the counterfactuals visualisations
are consistent with the regressor trained from the original images.

� Compare the explanations from our urban counterfactual method with a popular
baseline saliency method in a user study.

2. Related work

Several explainable AI techniques have been proposed to visually explain computer
vision models such as convolutional neural networks. Most commonly used
approaches are heatmap-based visualisations which highlights areas of images that
are salient with respect to the classifier decision (Simonyan et al. 2013, Zeiler and
Fergus 2014). These approaches are primarily post-hoc methods that can be further
divided into perturbation-based methods e.g. (Zeiler and Fergus 2014, Ribeiro et al.
2016, Fong and Vedaldi 2017) and Gradient-based approaches e.g. (Simonyan et al.
2013, Selvaraju et al. 2017). The majority of the GeoAI research that uses visual
explainability methods, for example in the context of remote sensing (Kakogeorgiou
and Karantzalos 2021), applies heatmap-based methods such as GradCam (Selvaraju
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et al. 2017) to gain insight on computer vision classifiers to improve transparency and
to ensure these models are not making erroneous inference/decisions.

Although heatmap-based visualisations can highlight regions of images that are impor-
tant for the classifier decision, such methods do not show how it could change (Lang
et al. 2021). Moreover, heatmap-based methods are not necessarily understandable, and
might not be able to explain more complex scenes and concepts where multiple parts
are being highlighted. A recent approach that addresses some of these challenges is
through the use of generative counterfactual explanations that synthesise images that are
altered towards a particular classifier outcome (Goetschalckx et al. 2019, H€ark€onen et al.
2020, Lang et al. 2021). These approaches synthesize contrastive examples by searching
over and editing the latent space of a generative model such as a generative adversarial
network (GAN) (Goodfellow et al. 2014, Mirza and Osindero 2014, Karras et al. 2020).

2.1. Growing use of generative models in urban analytics

There is increasing application of generative models such as GANs in urban analytics as
demonstrated in a recent survey from Wu et al. (2022). Current use includes the generation
of building footprints from a street plan (Wu and Biljecki 2022), street facade restoration
(Sun et al. 2022), satellite image enhancement (Pham and Bui 2021), satellite-to-street
cross-view synthesis (Tang et al. 2019) and 3D reconstruction (Kelly et al. 2018).

There is relatively limited related research applying or editing generative models on
street imagery in urban analytics. The most relevant studies are Joglekar et al. (2020),
which applied a GAN architecture to beautify street scenes follow by a nearest neigh-
bour search on the edited image; Sun et al. (2022), that applied an image-to-image
translation CycleGAN (Zhu et al. 2017) model to renovate building facades; and
Ibrahim et al. (2021), that applied a U-Net (Ronneberger et al. 2015) model to visualise
urban design intervention from a self-curated ‘before-and-after’ dataset.

The approach of Joglekar et al. (2020) has some similarities with the method we
introduce in this paper, in that it edits the latent space of a traditional GAN. Due to
the noisier edited street scene, the authors proposed a nearest neighbour search to
identify more plausible images. Despite this, we observed that such nearest neighbour
search can yield street scenes that are perceptually too distant from the original
image, as we demonstrate and discuss in section 4.2.

Although the approaches of Ibrahim et al. (2021), Sun et al. (2022) synthesizes more
realistic examples, they are limited by the diversity and volume of the available, self-
curated, ground-truth data. As the curation of such data require substantial effort,
they might be unable to produce counterfactuals in a range of magnitudes for a spe-
cific attribute. We extend this line of research by introducing a generative counterfac-
tual explanation pipeline in urban analytics for street scenes, that does not require
this additional annotated data.

3. Methods and materials

The aim of the research is to explore the utility of counterfactual explanations in the
urban settings. To do this we created a pipeline which allows us to both construct a
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regressor of urban images for an underlying target, i.e. trees, buildings, and to also
construct counterfactuals to help to explain the regressor.

3.1. Urban counterfactual architecture

The overall machine learning pipeline can be found in Figure 1. This formulation (as
well as much of recent machine learning work) uses a latent representation where we
map the observed data x (images of street scenes) into a relatively small learned latent
space (z), which well represents the data. We can then use this latent space to both
perform regression on our target of interest (e.g. presence of trees or buildings), and
to reconstruct the image. A crucial decision in this work is to use this low-dimensional
space to search for counterfactuals, rather than searching directly in image space
which produces imperceptible changes (Elliott et al. 2021).

The processing pipeline and the models involved in the approach are shown in
Figure 1, and in the remainder of the section we will introduce them one by one. In
total, four models are trained or computed in this order sequentially and separately. It
consists of: (1) A generative model (in red), in this case a Variational Autoencoder
(VAE), consisting of an encoder that maps an input image to a lower-dimensional
latent distribution, and a generator that maps from this latent space back to image
space (Kingma and Welling 2013, Doersch 2016); (2) A regression model (in orange)

Figure 1. Pipeline for our method. It consists of (1.) A Generative model (in red) that maps an
image to a latent space, (2.) a Regression model (in orange) that maps from latent space to a
street scene semantic attribute, (3.) an Image enhancement model (in green) that synthesize higher
quality images and (4.) a Counterfactual explanation procedure (in blue).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2579



that maps the latent space to a target attribute; and (3) an image enhancement model
(in green), that enhances the quality of the reconstruction (Choi et al. 2020) following
recent work in image super-resolution (Umer et al. 2021). Finally at inference time, (4)
we introduce our counterfactual explanation procedure (in blue) that allows for guided
editing in the latent space for visual explanations.

The focus of the research is to demonstrate a somewhat model agnostic method
for finding plausible urban counterfactuals. As a result, we have selected standard
machine learning models and cite the relevant literature for each component. The
generative model, regressor and image enhancement model are trained sequentially
and separately. The counterfactual explanation is applied at inference time to explain
the street image regressor.

3.2. Training our urban counterfactual

3.2.1. Generative model
As detailed above, our first model is a variational autoencoder (VAE) (Kingma and
Welling 2013, Doersch 2016), detailed in panel 1 (red) of Figure 1. This model learns a
low-dimensional latent representation that our other models can use: for regression,
for reconstruction of street scenes, or (combining the two) for the creation of counter-
factuals. The VAE model consists of three networks: an encoder Eð�Þ which encodes
the input image x to a latent space z, a corresponding generator Gð�Þ that maps the
latent space back to image space �x , and an auxiliary discriminator Dð�Þ that enhances
(qualitatively) the reconstruction through adversarial training. Training our adversarial
VAE thus involves two stages. The first stage minimizes the VAE loss Lvae ¼ Lrec þ Lreg,
where Lrec is the reconstruction loss and Lreg is the regularisation loss. The second
stage follows the adversarial training procedure in LSGAN (Mao et al. 2017), which
consists of an discriminator loss Ldis and a generator loss Lgen. The two parts of the
generative model are trained sequentially using the ADAM optimizer (Kingma and Ba
2014) with a learning rate of 0.0001. Details of the architecture and the loss function
can be found in the Appendix A. We have selected a VAE as it is a conventional gen-
erative model in the literature. However other generative models such as GANs
(Joglekar et al. 2020) and diffusion models (Rombach et al. 2022) can be used here.

3.2.2. Classifier/regressor
The second model to train is our regressor, which is detailed in panel 2 (orange) of
Figure 1. This model in essence learns the relationship between the low dimensional
latent representation (from our encoder) of each of our street scenes to the underlying
quantity of interest. Thus, by combining this network with the output from the trained
encoder network we have a regressor that can be applied on a new image. We train a
MLP regressor Mið�Þ that maps the latent embedding z to the regression response y
for attribute i, minimising the mean squared loss Lmse ¼ MSE½MiðzÞ, yi� between the
regression target and the prediction using the ADAM optimiser (Kingma and Ba 2014).
The functional form for Mið�Þ is flexible and can be a linear regressor (in our study) or
a more complex non-linear one (future study). We opted for a more straightforward
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linear model, as it generated plausible counterfactuals and was also more computa-
tionally efficient.

3.2.3. Image enhancement
Lastly we trained an image enhancement model, which is detailed in panel 3 (green)
of Figure 1. The image-to-image enhancement/translation model uses the StarGanv2
architecture (Choi et al. 2020) Sð�Þ to convert between multiple image domains, in this
case a lower resolution image style and a higher resolution image style. The
StarGanv2 contains a generator that translates an input image to a higher resolution
style, a style encoder that extracts styles from an image, a mapping network that
transforms a latent code into a style code, and a discriminator typical of GANs that
improves image quality. We use default hyperparameters here.2 For details of the
architecture and its training details please see Choi et al. (2020). During inference, we
can use the generator of the translation model to convert a lower resolution counter-
factual �x 0 into a higher quality one �x 0hr ¼ Sð�x 0, hrÞ: This image enhancement step
ensures the reconstruction and the counterfactual is perceptually distinctive. StarGan
v2 has been selected as it is a conventional architecture in the literature; other similar
image2image architectures can be used here.

3.3. Generating counterfactual explanations

After training these models, we use our low dimensional embedding space to con-
struct counterfactuals following Elliott et al. (2021), as detailed in panel 4 (blue) of
Figure 1. Essentially, this procedure asks the question, ‘What is the smallest change in
our low dimensional representation of a street scene that would result in our regressor
returning a different output?’ i.e. what is the regressor reacting to in our urban
imagery. Mathematically, following Elliott et al. (2021), we can find the latent position
z0 which gives the closest regressor prediction to T by minimising

Miðz0Þ � T
� �2

(1)

where T is a value greater than zero and Mð�Þ is a standard regressor that takes z from
the latent space of the VAE. However, simply minimising Eq. (1) will not produce a
low dimensional representation close to the image in question, e.g. if we ask for a lot
of trees, it may return a forest rather than the requested urban scene. Thus, we add a
second term which forces the latent position to be close to the latent position of the
image in question:

Miðz0Þ � T
� �2 þ kjjz0 � zjj1 (2)

where k balances the importance of each of the terms, thus finding a street image
close to the original while changing the regressor value.

Specifically, we minimised this objective using an adaptive stochastic gradient des-
cent optimiser (Polyak and Juditsky 1992) with a learning rate of 0.001, a k¼ 100 and
for 20000 iterations. The hyper-parameters for the counterfactual method have been
chosen qualitatively as illustrated in Figure B1 of the Appendix B. Minimising this
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objective for an appropriate value of k and T is a good strategy for finding a plausible
counterfactual.

3.4. Data augmentation

Data augmentation is a popular technique in machine learning to increase both
the volume and the diversity of the training data, by applying some form of label-
preserving transformation to the original data (Shorten and Khoshgoftaar 2019). Data
augmentation is used here as a regulariser to reduce overfitting and to help ensure
the prediction from the StarGan reconstruction is consistent with the prediction from
the original data. As part of our training procedure, we test the usefulness of the aug-
mentation by including an enhanced reconstruction of each image in the training
data which results in doubling the size of the training data. Figure 2 shows the ori-
ginal image on the left, a reconstruction in the middle, and an enhanced reconstruc-
tion on the right synthesised for data augmentation. The enhanced reconstruction
generally captures well the original image with some notable textual artefacts (e.g.
road marking). The results of the data augmentation step can be seen in section 4.3.

3.5. Materials

We used the dataset of Law et al. (2018) consisting of street images taken from
Google Streetview (Google 2017).3 Following Law et al. (2018), one front-facing image
was collected from the centroid of each street in the Greater London Area using the
Google StreetView API. For more details, see Law et al. (2018). The regression target
we used in this investigation is the normalised pixel counts of trees, sky and buildings
extracted from a pretrained semantic segmentation model (Segnet) on street imagery
which achieved a per-class average accuracy of 72% and a global accuracy of 91% for
11 classes (Badrinarayanan et al. 2017). The method was selected as it has been used
and verified in previous urban analytic studies (Liang et al. 2017, Joglekar et al. 2020).
We plan to experiment with more recent pretrained segmentation models in the
future.

Figure 2. Enhanced reconstruction used for data augmentation. (left) the original street scene,
(centre) street scene reconstruction, and (right) the enhanced reconstruction used for data augmen-
tation. Contains Google StreetView data # Google # 2017.
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4. Evaluation and results

In order to evaluate our explainability method, we conducted both qualitative evalua-
tions demonstrating the results of our approach, and quantitative evaluations includ-
ing a user study to empirically verify our method.

4.1. Qualitative evaluation

We first visually inspect the counterfactuals produced by our approach. Figure 3 shows
the original image (left-most column) and a generated counterfactual for perturbing
each of the different regression attributes in turn – showing an increase in the number
of tree pixels, building pixels and sky pixels, respectively. For each selected street
image, we see that the target regression attribute is visually distinctive, and that the

Figure 3. Figure showing the urban counterfactual for each regressor target (Tree, Building, Sky)
for four example images. Contains Google StreetView data [copyright] Google [copyright] 2017.
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perturbation are localised in expected regions of the image. For example, tree pixels
are added on the sides of streets, building pixels are added above the existing build-
ings, and sky pixels are used to remove existing buildings. However, there are still sig-
nificant artefacts in the perturbed image; for example, a lack of windows on the
transformed buildings, unrealistic road markings and shadows of trees emerging from
the sky.

To study how the perturbation changes for different levels of regression targets, we
computed a set of explanations where we set k¼ 100 and vary T 2 f0, 1, 2, 3, 4, 5g in
Eq. (2). Figure 4 shows how a street scene gradually shift towards each of its regres-
sion attributes as predicted from the StarGan reconstruction ŷ (i.e. Tree, Sky, Building)
as T increases.

A prominent example is the building counterfactual where the trees on the left-
side are slowly being removed before a floor is added on the right-side. These result
also generally show perturbing with a larger magnitude is necessary for the model to
make perceptually meaningful counterfactuals.

However, its realism also reduces significantly at higher levels of T suggesting these
generated images might lie outside the data manifold. This is most apparent for the
tree counterfactual where the road markings become distorted when ŷ tree > 0:231: We
also notice that multiple attributes are being edited concurrently. The most notable
example is the sky counterfactuals where the vehicle begins to disappear when ŷ sky >
0:301: These results suggest our perturbations are making changes to the images hol-
istically, but it also do not fully disentangle each semantic attribute when multiple
attributes change concurrently. In such cases, street scenes with more sky pixels are
more likely to have lower building density and consequentially fewer vehicles.

Figure 4. From left to right, showing how the urban counterfactual shifts towards its regression
attributes for varying levels of T 2 f0, 1, 2, 3, 4, 5g: The regressor prediction (̂y) presented are com-
puted on the full counterfactual reconstruction (i.e. the image shown). Contains Google StreetView
data [copyright] Google [copyright] 2017.
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4.2. Nearest neighbours comparison

Next we compared our approach to a previous one, Joglekar et al. (2020), by visualis-
ing the counterfactuals in our manner as oppose to looking for street scenes in the
dataset that are closest to it. Figure 5 shows an original street scene, a counterfactual
generated from our approach with an increase number of tree pixels, and the two
nearest neighbours in the latent space z of the counterfactuals. Despite showing some
similarities between the counterfactuals and the nearest neighbours, such as the vege-
tation in both sets of images, there are notable differences between the two street
scenes in terms of architecture style and the vehicles on the street. These results are
similar to those observed in Joglekar et al. (2020) where the high dimensionality of
images means that finding an exact counterfactual street scene is difficult. Despite
some notable artefacts such as changes on the road marking and the sky, the gener-
ated street scene is visually closer to the original street scene than its nearest
neighbours.

4.3. Quantitative evaluation

To evaluate whether the counterfactuals produced by the model pipeline are consist-
ent with the prediction of the image regressor, we trained three sets of models. The
first set is between the observed and the predicted from the original image, with and
without data augmentation. The second set is between the observed and the pre-
dicted from the StarGan reconstruction, with and without data augmentation. The
third set is between the predicted from the original image and the predicted from the
StarGan reconstruction, with and without data augmentation.

For all experiments, we divided the dataset (N¼ 20,000) into a train- and test-set
(80 : 20) where we train a linear regressor Mið�Þ for each attribute i that minimises the
mean squared error on the training set, using the ADAM optimiser (Kingma and Ba
2014). We tested with learning rates 0.001 and 0.0001 and report the test set R2, MSE

Figure 5. Nearest neighbours for the counterfactuals. Contains Google StreetView data [copyright]
Google [copyright] 2017.
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and MAE between the ground truth, the predicted from the original image and the
predicted from the StarGan reconstruction.4

Table 1 shows the goodness of fit between the ground-truth (true), predicted from
the original image (pred) and the predicted from the StarGan reconstruction (pred
SG), with and without data augmentation (trained with lr¼ 0.0001). These results dis-
play a positive fit between the ground truth and the predicted from the original
image. The fit is stronger between the ground truth and the predicted from the ori-
ginal image as opposed to the ground truth and the predicted from the StarGan
reconstruction. The gap decreases when using the data augmentation pipeline sug-
gesting the response predicted from the counterfactual is more consistent when using
the augmented regressor. However, there is also a reduction in fit between the
ground-truth and predicted from the original image when using the data augmenta-
tion pipeline. Results for model trained with lr¼ 0.001 (in table B1 of the Appendix B)
shows similar findings but with a larger gap between the R2 of the sky and tree attrib-
utes. The results show a reasonably strong fit and consistency between the observed
and the predicted from the image and the reconstruction. Future research is necessary
to improve the overall fit of the image regressor.

4.4. User study

In order to evaluate whether our approach can generate distinctive and plausible vis-
ual explanations, we performed four user experiments using Amazon Mechanical Turk
(a popular crowd survey tool), with a protocol adapted from Lang et al. (2021) and
compared our method with GradCam (Selvaraju et al. 2017), a popular heatmap-based
method for explaining image-based holistic image classifiers/regressors. For our
approach, we computed a set of explanations where we set k¼ 100, Ttree ¼ 1.5,
Tbuilding ¼ 3 and Tsky ¼ 5 (parameters set based on qualitative results) in Eq. (2). For
the baseline method, we used the Captum (Kokhlikyan et al. 2020) interpretability
library to produce GradCam heatmaps. We utilised default settings, visualising the last
ReLU layer before the linear regressor.5

4.4.1. Experiment 1: Street scenes change survey
For the first user experiment, each participant is shown four pairs of images, corre-
sponding to modification of one of the three attributes (tree, building, sky) for a given

Table 1. Statistical analysis results for the regression models trained with lr¼ 0.0001.
true vs pred true vs pred SG pred vs pred SG

Orig. Aug. Orig. Aug. Orig. Aug.

Tree R2 0.717 0.721 0.167 0.669 0.127 0.780
MSE 0.0008 0.0008 0.0025 0.0010 0.0022 0.0005
MAE 0.0222 0.0220 0.0400 0.0240 0.0388 0.0178

Building R2 0.753 0.737 0.188 0.696 0.219 0.833
MSE 0.0021 0.0021 0.0069 0.0026 0.0056 0.0012
MAE 0.0357 0.0372 0.0686 0.0398 0.0648 0.0269

Sky R2 0.806 0.779 0.447 0.734 0.577 0.861
MSE 0.0007 0.0008 0.0019 0.0009 0.0013 0.0005
MAE 0.0200 0.0215 0.0357 0.0236 0.0303 0.0171

We report the test set R2, MSE and MAE between the ground truth (true), the predicted from the original image
(pred) and the predicted from the StarGan reconstruction (pred SG).
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image. The two transforms on the left both modify the same unknown attribute i,
serving as a baseline. On the right, one transform is shown which modifies i in a simi-
lar magnitude, alongside another transform which instead modifies attribute j. The
user is then asked to identify which of the two transforms on the right (option A or B)
matches the two baseline transforms on the left. A correct response is when the par-
ticipant selects a transformation that corresponds to modifying the same attribute i.
An example of this experiment can be found in the top panel of Figure 6.

4.4.2. Experiment 2: Street scenes heatmap survey
For the second user experiment, each participant is similarly shown four pairs of
images, but this time rather than showing a transformation, it instead shows a
GradCam heatmap that highlights relevant regions for one of the three attributes
(tree, building, sky) in a given image. As in experiment 1, the left two heatmaps both
correspond to a particular attribute i, whereas on the right, one of the heatmap is pro-
duced from the same attribute i while the other is produced from a different attribute
j. The user is then asked to identify the heatmap on the right (option A or B) that cor-
responds to the same attribute i as highlighted on the left. This experiment is used as
a comparison for Experiment 1. An example of this experiment can be found in in the
bottom panel of Figure 6.

Figure 6. Top: experiment 1 Bottom: experiment 2 Contains Google StreetView data [copyright]
Google [copyright] 2017.
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4.4.3. Experiment 3: Street scenes change description
For the third user experiment, each participant is shown two rows of images. The top
row is a set of four randomly selected street imagery and the bottom row are counter-
factuals produced from one of the attribute i (tree, building, sky). The user is then
asked to describe in 1–4 words the single most prominent attribute they see increas-
ing for all the images. A correct response is when the participant describes the trans-
formation that corresponds to the attribute i being transformed. An example of this
experiment can be found in in the top panel of Figure 7.

4.4.4. Experiment 4: Street scenes heatmap description
For the fourth user experiment, each participant is shown two rows of images. The
top row is a set of four randomly selected street imagery and the bottom row are
heatmaps corresponding to one of the attributes i (tree, building, sky). The user is
then asked to describe in 1–4 words the single most prominent attribute that is being
highlighted for all the heatmaps. An example of this experiment can be found in the
bottom panel of Figure 7.

For the user study experiments, we used the augmented regressor with lr¼ 0.001
(see Table B1) and constructed 120 sets of reconstructions, counterfactual explanations
and GradCam heatmaps for each attribute i. We then randomly selected images (with
replacement) and made 40 tasks for each experiment and ran four separate experi-
ments for seven days where each worker would get the same sets of questions.
Following an initial test, we hired experienced AMT workers/participants (i.e. those
ranked as ‘Mechanical Turk Masters’) for the user study to ensure higher quality of the
submissions. Manual data cleaning was necessary for experiment 3 and experiment 4
to remove erroneous textual descriptions by a small number of users (e.g. using a
mathematical transform as a description). A total of 50 were removed for experiment
3, and 134 were removed for experiment 4. In the end we coded and approved 704
responses for experiment 1, 682 responses for experiment 2, 840 responses for experi-
ment 3 and 780 responses for experiment 4.6

Table 2 shows a summary table (accuracy and standard error in brackets) for all
four experiments. The result shows that users with access to our explanations have
higher accuracy than GradCam for both sets of surveys indicating that our approach
gives more distinctive explanations for these street image classifiers.

Table 3 shows the summary table for both the street scene change survey using
our method on the left and the street scene heatmap survey using the baseline
method on the right. Users with access to our explanations (left) have greater accuracy
for the tree and building counterfactuals and a slightly lower accuracy for the sky
counterfactuals suggesting the challenges for interpreting the background attribute
(sky) relative to the foreground attribute. The baseline gradcam method results in a
lower user accuracy than our approach for all three attributes; with multiple parts of
the image highlighted (see Figures 6 and 7). These results suggest our approach pro-
vides more distinctive and noticeable explanations for holistic image classifiers which
depend on the entirety of the image.

Table 4 shows the summary table for street scene change description task using
our approach on the left and street scene heatmap description using the baseline
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saliency method on the right. Our method (left) shows a higher accuracy for the tree
and building attribute and a lower accuracy for the sky attribute. The main reason
being that keywords such as increase of ‘sky’ or ‘clouds’ are not used when describing

Figure 7. Top: experiment 3 bottom: experiment 4 Contains Google StreetView data [copyright]
Google [copyright] 2017.

Table 2. User study results summary.
Experiment Accuracy (± S.E.) N

01 Urban Counterfactual Survey (Ours) 0.695 (± 0.017) 704
02 Urban Heatmap Survey (GradCam) 0.543 (± 0.019) 682
03 Urban Counterfactual Desc (Ours) 0.601 (± 0.017) 840
04 Urban Heatmap Desc (GradCam) 0.513 (± 0.018) 780

Table 3. Results for urban change and heatmap survey.
Urban explanation Counterfactual (Ours) (Exp. 1) GradCam (Exp. 2)

Survey Accuracy (± S.E.) N Accuracy (± S.E.) N
tree 0.690 (± 0.029) 252 0.498 (± 0.031) 257
building 0.787 (± 0.028) 211 0.568 (± 0.033) 220
sky 0.618 (± 0.031) 241 0.571 (± 0.035) 205

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2589



a street scene with more sky pixels. Instead, the participants describe the scenes as
having ‘less buildings’ or ‘less trees’ or ‘emptier streets’. The baseline method (right)
shows opposite results where the sky attribute achieved a higher accuracy relative to
the building and tree attribute. In contrast, keywords such as ‘sky’ or ‘clouds’ are often
used when describing a street scene where the sky pixels are highlighted. These
results potentially suggest that heatmap localisation methods can be more perceptible
when describing a background attribute than our approach.

To briefly summarise the user study, these results generally suggest our approach
can help better understand the use of machine learning model for describing holistic
computer vision regressors for street scene analysis. Qualitatively, the direction and
the magnitude of the change is less detectable with the heatmap approaches where
multiple parts of the image is being highlighted. Whereas for our approach, the modi-
fied attribute is visualised, in that our explanation for a tree classifier will show more
trees in the street scene. However, a couple of limitations are observed with our
approach for the user experiment. One is that changes with background attributes
can be perceptually less evident when describing the changes of a street scene with
our approach (e.g. more sky vs less buildings) and in instances whose attributes have
more extreme values, perturbing in the same direction as these attribute might also
be less noticeable (e.g. increasing trees in an already forested street).

5. Discussion and concluding remarks

Despite the rising popularity of utilising ML in Urban Analytics (Biljecki and Ito 2021),
there is presently limited research focusing on explaining machine learning models in
this domain. To address this we propose a novel pipeline to explain holistic image
regressors/classifiers in urban analytics, by synthesising counterfactuals, where the
explanations are computed over the lower dimensional latent space of a deep neural
network as oppose to image space (Elliott et al. 2021). To illustrate and verify our
novel pipeline, we applied our methodology to a set of Google StreetViews (GSV)
images of London for multiple regression targets. We validated our approach, both
qualitatively through visual comparisons and quantitatively through a user study com-
paring our approach to an existing baseline heatmap method. Through this study, we
were able to demonstrate that our explanation is distinctive and can be better under-
stood by non-experts.

The development of explanations/explainable models are very important in urban
systems, as urban planners are increasingly reliant on these types of models for deci-
sion making. As an illustration, given a model that uses street images to predict house
prices (Law et al. 2018, Kang et al. 2021), one can visualise the changes in the street
scenes due to an increase in price, thereby revealing the features in the scene that

Table 4. Results for urban change and heatmap description.
Urban explanation Counterfactual (Ours) (Exp. 3) GradCam (Exp. 4)

Description Accuracy (± S.E.) N Accuracy (± S.E.) N
tree 0.824 (± 0.022) 295 0.598 (± 0.029) 286
building 0.723 (± 0.028) 253 0.280 (± 0.026) 293
sky 0.271 (± 0.026) 292 0.731 (± 0.031) 201
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correspond with the regressor, which could correspond to architectural styles or street
greenery. Further, these visual counterfactuals are potentially useful in urban planning
beyond aiding in the understanding of computer vision systems in street view ana-
lysis. They can also serve as a visual communication tool to help stakeholders imagine
how future public spaces can plausibly look like, e.g. what if we add more greenery,
denser buildings or even a cycle-lane on a particular street.

Methodologically, one benefit of our approach is its flexibility, in that a new regres-
sion target (e.g. house price or cycle-lanes or semantic classes such as pedestrians and
vehicles from the Cityscape dataset)7 can be easily fitted without needing to retrain
the entire model from scratch. A further advantage of our approach is the introduction
of a generic pipeline for generating urban counterfactuals, which allows us to replace
the various components (see Figure 1) as needed. However, one consequence of this
is we did not test each model component exhaustively resulting in artefacts and lim-
ited realism for the generated street scenes. Thus, with the growing popularity of gen-
erative models for realistic image synthesis (Rombach et al. 2022), our pipeline can be
adapted for use with these newer methods for future research.

In this work, we focused on the use of Google StreetViews (GSV), a widely used
data source in urban analytics (Biljecki and Ito 2021, Ibrahim et al. 2021). GSV offers
several advantages for our work, namely, data consistency and coverage which poten-
tially can help generate less noisy and geographically more diverse street scenes
when compared to open data sources such as Mapillary. However, the use of such
data sources also has its own drawbacks, i.e. the inability to share data and pretrained
models which leads to a lack of reproducibility. In the future, we plan to explore open
data sources using our pipeline.

Finally, it is important to acknowledge that these methods pose increasing ethical risks
in geography, such as the possibility of satellite imagery being manipulated for malicious
purposes (Zhao et al. 2021). Therefore, it is essential to conduct research and develop
techniques that can detect ‘deep fake’ street scene to prevent misuse in the future.

Notes

1. In this work, we use image-based classifier and regressor interchangeably.
2. We trained for 100,000 iterations using the ADAM optimizer (Kingma and Ba 2014) with

default hyper-parameters ksty ¼ 1, kds ¼ 1 and kcyc ¼ 1 following (Choi et al. 2020).
3. #2017 Google Inc. Google and the Google logo are registered trademarks of Google Inc.
4. We tested other learning rates (0.1 and 0.01) but these models did not converge.
5. See https://github.com/pytorch/captum for more information.
6. The user study has been approved by the university departmental internal ethics review

where further formal reviews were not instructed. All results were suitably anonymised
where researchers on this project have no access to personal identifiable information that is
held by Amazon Mechanical Turk.

7. https://www.cityscapes-dataset.com/
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Appendix A. Model architecture and training details

The adversarial VAE model comprises of three components: an encoder Eð�Þ that encodes an
image x into a latent space z, a generator Gð�Þ that maps from latent space back to image space
�x , and an auxiliary discriminator Dð�Þ that fine-tunes the reconstruction by distinguishing
whether an image is real x or not real �x: These models are sequentially trained over two stages.
The first stage minimizes the VAE loss Lvae ¼ Lrec þ Lreg, where Lrec is the reconstruction loss and
Lreg is the regularisation loss. Lrec is calculated as the perceptual distance between the image
features of the input image x and the reconstructed image �x ¼ GðEðxÞÞ Johnson et al. (2016).
Formally, Lrec ¼

P
l2L jCðlÞðxÞ � CðlÞð�xÞjj22

�� where CðlÞðxÞ is the classifier response of the lth layer of
a pretrained VGG16 (Simonyan and Zisserman 2014). Lreg is calculated as the KL divergence DKL

between the real and the encoder as described in Kingma and Welling (2013). Formally, DKL ¼
�0:5

Pð1þ logðr2Þ � ðlÞ2 � ðr2ÞÞ where l and r2 are the mean and the variance of the latent
space from the Encoder E(x). The second stage follows the adversarial training procedure in
LSGAN (Mao et al. 2017), which consists of a discriminator loss Ldis and a generator loss Lgen.
More formally, Ldis ¼ 0:5ð1n

PððDðxÞ � 1Þ2Þ þ 1
n

PnðDð�xÞ2Þ and Lgen ¼ 0:5ð1n
PððDð�xÞ � 1Þ2ÞÞ,

where x is the input image, �x is the reconstructed image and D is the discriminator.

Table A1. Encoder.
Layer Resample Norm Output

In – – 224� 224� 3
Con – Ins 224� 224� 64
Con Max Ins 112� 112� 64
Con – Ins 112� 112� 64
Con Max Ins 56� 56� 64
Con – Ins 56� 56� 64
Con Max Ins 28� 28� 64
Con – Ins 28� 28� 64
Con Max Ins 14� 14� 64
Lin – – 1568� 2
Out – – 1568

Table A2. Generator.
Layer Resample Norm Output

In – – 1568
Lin – – 12544
Con Up Ins 28� 28� 64
Con – Ins 28� 28� 64
Con Up Ins 56� 56� 64
Con – Ins 56� 56� 64
Con Up Ins 112� 112� 64
Con – Ins 112� 112� 64
Con Up Ins 224� 224� 64
Out – – 224� 224� 3

Table A3. Discriminator.
Layer Resample Norm Output

In – – 224� 224� 3
Conv Max Ins 112� 112� 28
Conv Max Ins 56� 56� 36
Conv Max Ins 28� 28� 48
Conv Max Ins 14� 14� 64
Conv Max Ins 7� 7� 64
Out – – 1
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Appendix B. Extra fit results and visualisations

Figure B1. Urban counterfactuals varying k and no. of iteration.

Table B1. Statistical analysis results for model trained with lr¼ 0.001.
true vs pred true vs pred SG pred vs pred SG

Orig. Aug. Orig. Aug. Orig. Aug.

Tree R2 0.716 0.529 0.288 0.554 –0.353 0.781
MSE 0.0008 0.0014 0.0021 0.0013 0.0026 0.0004
MAE 0.0218 0.0292 0.0380 0.0281 0.0458 0.0156

Building R2 0.652 0.751 0.078 0.705 0.516 0.843
MSE 0.0030 0.0021 0.0079 0.0025 0.0028 0.0009
MAE 0.0433 0.0364 0.0746 0.0395 0.0430 0.0232

Sky R2 0.805 0.564 0.462 0.443 0.675 0.900
MSE 0.0007 0.0015 0.0019 0.0019 0.0008 0.0003
MAE 0.0202 0.0330 0.0356 0.0376 0.0238 0.0125
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