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A B S T R A C T

Studies on polycentric urban development (PUD) have been done by using LandScan and point of interest data.
So far, the quality of PUD products has been limited by the spatio-temporal resolution of these datasets. Using
Sentinel-1 SAR missions with a 10 m pixel spacing and a weekly repeat cycle, this study, for the first time,
explores the potential of using a time series of Sentinel-1 SAR images for measuring urban polycentricity. In
particular, we develop a variance-based filtering method to mitigate speckle noise. We propose the Kittler and
Illingworth with a Modified Model (KI-MM) method to accurately identify PUD-related changes. We focus on
the mean distance of new-born patches and the mean patch area for a PUD-related change analysis. These
allow us to associate SAR tailor-made output with PUDs. The proposed methods were implemented on Google
Earth Engine platform using 304 Sentinel-1 SAR images on the city of Shanghai, China, acquired between 2015
and 2018. We have tested 80 distribution models and found that the Laplace distribution is the best model
for the KI-MM method. Our results show 2526, 2409, 4232 new-born patches for 2015–2016, 2016–2017,
2017-2018, with areas equal to 18, 20, 36 km2, respectively. Using cross-validation with Sentinel-2 (optical)
reference, we found that the matching rates and F1-score between detected changes and reference for the
years 2015–2016, 2016–2017, 2017-2018 were equal to 89.79% and 91.67%, 100% and 100%, 88.64% and
94.06%, respectively. We conclude that Sentinel-1 SAR images are suited to PUD applications at an intra-city
scale with a high spatio-temporal resolution.
1. Introduction

1.1. Polycentric urban development

Over the past decades, polycentric urban development (PUD) has
evolved as a key concept in urban planning, as a framework for empir-
ical assessment (Hall and Pain, 2006) and as a strategy for normative
development (Bailey and Turok, 2001). Meanwhile, PUD has become
a stretched concept, rendering its variations in definition along with
its measurement framework (Derudder et al., 2021). The key to PUD
is the existence of multiple proximate urban centers, where it lacks an
obvious hierarchy (e.g., dominance and connectivity) amongst different
centers (Van Nuffel et al., 2010). Despite a proliferation of studies
that measure the status of urban polycentricity at different scales,
we identify two research trends and possible knowledge gaps. First,
following classical polycentricity research with secondary data in pre-
defined administrative boundaries, recent studies utilized finer-detailed
geospatial information that delineate urban sub-centers with more
details. Two prominent examples are grid-based geospatial products
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such as LandScan (Liu and Wang, 2016) and point of interest (POI) data
based upon crowdsourced data (Liu et al., 2021). Urban centers defined
via LandScan benefit from their harmonized production framework for
global coverage for more than two decades. Considering their 1 × 1 km2

spatial resolution, a detailed and nuanced analysis at an intra-city scale
is not feasible. Urban centers extracted from POI data have a detailed
spatial resolution, while the crowdsourced nature of POI information
may lack the required data quality across different geographical areas
and periods. Therefore, PUD research using an analytical framework
incorporating data characterized by high spatial and temporal reso-
lution is needed. Second, from an empirical point of view, there is a
dearth of studies investigating the dynamics of PUD. For instance, Li
and Derudder (2020), and Liu (2020) are so far the only empirical
studies focusing on the temporal dynamism of urban polycentricity. To
further investigate such an analytical framework, this study, for the first
time, investigates the dynamic PUD solution using satellite Synthetic
Aperture Radar (SAR) imagery with a high spatio-temporal resolution.
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1.2. Synthetic Aperture Radar (SAR) in change detection

Satellite SAR techniques provide a powerful tool to deliver Earth
observations for various applications in such as agriculture, forestry,
ocean, and hazard (Liu et al., 2019). Thanks to the increase of SAR
observations, we can monitor surface dynamics in both time and space
(Ban and Yousif, 2012). Although those SAR-based techniques are
not straightforwardly designed for the PUD application, we see good
possibilities to do so with advanced methods of change detection in
SAR imagery.

Change detection in SAR imagery has two facets. (i) Patch-wise
change detection, which is based on ground target features where the
geometric rectification is more relevant than the radiation correction
(Wan et al., 2019). Application examples include sea ice monitoring,
glaciers, oceanic features, and other shape-based change detection
(Zhao et al., 2022). (ii) Pixel-wise change detection, which consid-
ers both the geometric rectification and radiation correction, and its
application examples include monitoring crop variation, soil moisture
change, and land-use changes (Kumar et al., 2020). By embracing
machine learning methods, change detection can be realized by either
supervised or unsupervised methods. Supervised methods need ground
truth to train the classifier, while unsupervised methods use the pixel
information (e.g., spectral, spatial and structure features) to extract
the changes automatically (Fang et al., 2022). Unsupervised change
detection can be done by algebraic subtraction (Ma et al., 2012),
being a simple and straightforward way to get the difference map. The
simplicity of this method, however, cannot always secure accuracy,
as speckle noise lowers the quality of obtained images. Several other
methods are proposed to reduce its impact. Gong (2011) proposed the
neighbor-based ratio approach that combines gray level information
and spatial information of neighbor pixels. Ma (2012) investigated
the wavelet fusion method that fuses the wavelet coefficients for low-
and high-frequency bands. Sofiane (2010) put forward the similarity
measures method based on pixel intensity or local statistics. These
methods, however, do not provide a significant improvement compared
with the commonly used log-ratio method (Hu and Ban, 2014). We
introduce the ratio change detection method to address this issue.

When using the log-ratio method to derive the difference map, a
major challenge is how to define a proper threshold is essential to
separate the types of changed areas. Kittler et al. (1984) proposed
an automatic threshold algorithm to extract the changed information
based on the statistical information of the images. The drawback of this
method (Nakagawa and Rosenfeld, 1979) is that the result is sensitive
to the correctness of the probability distribution function (PDF) as-
sumption. To tackle this issue, Kittler and Illingworth (1986) proposed
KI thresholding, which utilizes statistical decision theory to determine
the minimum error threshold, thus overcoming the drawbacks above.
KI thresholding has become a common method in determining the
threshold. Moser (2006) developed the KI to be a generalized Kittler
and Illingworth thresholding (GKIT) method. Hu (2014) applied this
GKIT method over large urban areas to detect the changes if the
difference map does not follow the unimodal histogram because of the
high proportion of changed pixels. Ban (2012) has tested four density
functions for urban change detection and validated the efficiency of
different models. With the development of the SAR sensors, especially
Sentinel-1, however, some assumptions may not hold anymore. For
example, changed pixels often count for a relatively small portion
w.r.t. the coverage of a Sentinel-1 image, and the distribution model
of the difference map varies over time. Hence, this study will fur-
ther develop the traditional KI thresholding to leverage assumption
constraints.

1.3. The use of Google Earth Engine (GEE)

Google Earth Engine (GEE) is designed to deal with the abundance
2

of remote-sensed data, including SAR and optical imagery and the a
geospatial analysis of the global scale and large time span (Gorelick
et al., 2017; Tamiminia et al., 2020). It provides an online application
programming interface (API) to investigate petabyte remote sensing
data. Many GEE-related studies have been published recently, such as
vegetation monitoring, landcover mapping, agricultural applications,
disaster management, and earth science. Only a few PUD-related stud-
ies upon the GEE platform are available. These consider investigating
the urban growth and urban–rural gradients in the Greater Bay Area
(Xie et al., 2022), analyzing the anthropogenic heat flux in monocentric
and polycentric cities (Puttanapong et al., 2022), and transformation to-
wards a mega-regional formation (Morshed et al., 2022). More studies
and demonstrations in this regard should be done to utilize the capable
resource on this platform.

The main contribution of this study is to develop SAR methods
for PUD by categorizing ground target changes. The rest of the paper
is organized as follows. These methods are demonstrated on the GEE
platform using large-scaled high spatio-temporal SAR data in a polycen-
tricity study. Section 2 introduces our KI-MM (Kittler and Illingworth
with a Modified Model) threshold determination method and proposes
a change-type classification method. Section 3 describes the study area
and the data we used. The change detection and validation results are
also presented in Section 3, followed by discussion and conclusions in
Section 4 and Section 5, respectively.

2. Methods

We introduce the three-block data processing flowchart in Sec-
tion 2.1 and elucidate the methods employed during data processing.
Next, we introduce an adapted log-ratio method, called KI-MM (Kittler
and Illingworth with a Modified Model) specifically, for various differ-
ence maps in Section 2.2. Then, we describe a threshold segmentation
method to separate changed and unchanged pixels in Section 2.3.
Finally, Section 2.4, presents a method to reclassify the changed pixels
according to the proposed classification metrics.

2.1. Processing flowchart

The processing flowchart includes three blocks: 1. preprocessing,
2. change detection and 3. postprocessing, as shown in Fig. 1.

1. Preprocessing: On the GEE platform the SAR amplitude time
series are loaded and analyzed to detect the changes between SAR
acquisitions. SAR images are first mosaicked when multiple SAR scenes
cover the whole area of interest (AOI). Next, temporal averaging is
applied on all SAR images in each stack to mitigate noise and impact
due to temporal decorrelation. Then an external shapefile can be used
to crop the stitched SAR images to the AOI. Spatial smoothing using,
e.g., morphological mean filter (Lin et al., 2016), Lee filter (Rubel et al.,
2021) can be applied to reduce speckle noise influence further. As
an optional step, a priori knowledge, e.g., the optical images used to
produce the NDVI-NDWI masks, is employed to exclude the vegetation
areas and water bodies (Szabo et al., 2016).

2. Change detection: We designed the KI-MM (Kittler and Illingworth
with a Modified Model) method to detect any changed pixels in this
section. The key step of the KI-MM method is to find the optimal
distribution model of the derived pixel-wise ratio map (details in
Section 2.2), and integrate the distribution model with the threshold
criterion function 𝐽 (𝑇 ) (see Section 2.3). The KI-MM method minimizes
(𝑇 ) to determine the best threshold 𝐾𝐾𝐼 for class separation, akin to

traditional KI. Then, for each 𝐷𝐿𝑅 in the pixel-wise ratio map, it will
all into changed or unchanged categories in accordance with the 𝐾𝐾𝐼 .
3. Postprocessing: A patch is considered to be discarded if its area

s below the predefined threshold 𝐾Area. 𝐾Area is defined based on the
nowledge of noise level and minimal expected changed area size. After
efining the changed area, we classify the changed areas based on the
nequality 𝑆GEEb − 𝑆GEEa = 𝐷 (Eq. (6)) into positive change (𝐷 > 𝐾+),
egative change (𝐷 < 𝐾−) and stable area (𝐷 = 𝐾𝛥 ± 𝑒, stable area
eans no ground change between two time spots), where 𝐾+ is the
ositive 𝐾𝐾𝐼 , 𝐾− is the negative 𝐾𝐾𝐼 (refer to Fig. 5 (d)), and 𝑒 is the

cceptable stochastic variation.
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Fig. 1. Processing flowchart.
2.2. Log-ratio

The intensity value of pixel at position (𝑥, 𝑦) in two SAR image
stacks, denoted as 𝐼𝐴(𝑥, 𝑦), 𝐼𝐵(𝑥, 𝑦). Every image stack includes a group
of images, which are lumped together annually for our case. For
instance, one stack covers images acquired in 2015 while the other
one covers images acquired in 2016. Then 𝐼𝐴(𝑥, 𝑦) being temporally-
averaged intensities of image stack A is obtained as

𝐼𝐴(𝑥, 𝑦) =
∑𝑚𝑎

𝑖 𝐼𝑎(𝑥, 𝑦)
𝑚𝑎

, (1)

where 𝑚𝑎 represents the number of SAR acquisitions, 𝐼𝑎(𝑥, 𝑦) indicates
the intensity value of the pixel at position (𝑥, 𝑦) for the 𝑖 th acquisition.
A similar expression applies to stack B.

The pixel-wise log-ratio is employed to differentiate the changed
areas from unchanged areas in SAR intensity maps, expressed as (Kittler
and Illingworth, 1986)

𝐷𝐿𝑅(𝑥, 𝑦) = log10
𝐼𝐵(𝑥, 𝑦)
𝐼𝐴(𝑥, 𝑦)

, (2)

where 𝐷𝐿𝑅(𝑥, 𝑦) represents the log-ratio at the pixel position (𝑥, 𝑦).
In Eq. (2), the ratio is first taken between the intensity value of the
corresponding pixel at position (𝑥, 𝑦) in two SAR image stacks, and then
converted into the logarithmic domain.

Considering the format disparity between raw and pre-processed
SAR images on GEE, 𝐼𝐴(𝑥, 𝑦) = 10

𝑆𝐺𝐸𝐸𝑎(𝑥,𝑦)
10 and a similar expression

applies to 𝑆𝐺𝐸𝐸𝑏(𝑥, 𝑦). Then 𝐷𝐿𝑅(𝑥, 𝑦) can be reformulated as

𝐷𝐿𝑅(𝑥, 𝑦) =
1
10

(𝑆𝐺𝐸𝐸𝑏(𝑥, 𝑦) − 𝑆𝐺𝐸𝐸𝑎(𝑥, 𝑦)). (3)

Here, 𝑆𝐺𝐸𝐸𝑎(𝑥, 𝑦) and 𝑆𝐺𝐸𝐸𝑏(𝑥, 𝑦) are the intensity at position (𝑥, 𝑦)
in the logarithmic domain for image stack A and B on the GEE platform,
respectively.

2.3. KI with the modified model

Determining the appropriate critical values for 𝐷𝐿𝑅 is important to
distinguish between changed and non-changed areas. Here we review
and further develop upon the minimum error thresholding method, KI
thresholding, which is developed by Kittler and Illingworth (Kittler and
Illingworth, 1986).

Using Eq. (3), the log-ratio map of SAR image stacks A and B, being
a gray scale map, can be obtained. The histogram of this log-ratio
map, ℎ(𝑋) from the observations 𝑋, is equal to a mixture of changed
3

or unchanged areas. Each observation can be denoted as potential
threshold 𝑇 to separate these two classes, but, not all of 𝑇 is the best
threshold value 𝐾𝐾𝐼 at a global scale. We define the criterion function
𝐽 (𝑇 ) to identify the best threshold value 𝐾𝐾𝐼 among all the potential
thresholds 𝑇 , expressed as

𝐽 (𝑇 ) = −
∑

ℎ(𝑋) ln[ℎ(𝑋|𝑐, 𝑇 )𝑃𝑐 (𝑇 )], (4)

where 𝐽 (𝑇 ) represents the quality of the threshold 𝑇 , 𝑐 indicates the
class index, e.g., 𝑐 ∈ {1, 2}, ℎ(𝑋|𝑐, 𝑇 ) is the best fitting distribution
model for the log-ratio map, and 𝑃𝑐 (𝑇 ) is the prior probability density
function (PDF). The lowest value of 𝐽 (𝑇 ) corresponds with the opti-
mized threshold 𝐾KI. Therefore, the best critical value 𝐾KI for 𝐷𝐿𝑅 is
determined by 𝐾KI = argmin𝐽 (𝑇 ), 𝑇 ∈ {𝑋}.

Traditional KI thresholding uses the Normal distribution model to
shape ℎ(𝑋|𝑐, 𝑇 ). The Normal distribution kernel, however, cannot well
represent all the log-ratio maps because of the familiar bell curve
shape and moderate slope. The histogram of log-ratio maps is pointed
in the middle, like a pole holding up a circus tent, and has sharp
slops. The SAR image change detection differs from the optical im-
age since the SAR amplitude image is often supposed to follow the
Rayleigh distribution (Kuruoglu and Zerubia, 2004). Ban and Yousif
(2012) demonstrated that the SAR change map is more suitable for
the Laplace, Log normal, or Nakagami ratio distribution model. In
practice, we observe that the magnitude of the SAR images will vary
because of different SAR sensors, and the reflectivity of variational
ground truth may change for the same sensor. Therefore, a suitable
distribution model should be evaluated for different scenarios. Here
we propose a Kittler and Illingworth with a Modified Model (KI-MM)
to replace the distribution model ℎ(𝑋|𝑐, 𝑇 ) with a best-fitted model.
To be more specific, we test the difference maps with commonly used
distribution models listed in Scipy (Virtanen et al., 2020). For this
study, the Laplace distribution model is the best-filled model, formed as
𝑓 (𝑋|𝑢, 𝑏) = 1

2𝑏 exp(−
|𝑋−𝑢|

𝑏 ), where 𝑏 = 1
𝑁

∑𝑛
𝑚 |𝑋 − 𝑢|, 𝑋 ∈ [𝑚, 𝑛], [𝑚, 𝑛]

is the bound of the log-ratio map, 𝑁 is the total number of log-ratio
pixels, and 𝑢 is the mean value. For this model we substitute ℎ(𝑋|𝑐, 𝑇 )
and derive the criterion function 𝐽 (𝑇 ) with class index 𝑐 ∈ {1, 2} (see
in A), where 𝐽 (𝑇 ) equals

𝐽 (𝑇 ) = 𝑃1 ln 2𝑏1 + 𝑃1(𝑇 )
𝑇
∑

𝑚

|𝑋 − 𝑢1(𝑇 )|
𝑏1

− 𝑃1(𝑇 ) ln(𝑃1(𝑇 ))

+ 𝑃2 ln 2𝑏2 + 𝑃2(𝑇 )
𝑛
∑

𝑇

|𝑋 − 𝑢2(𝑇 )|
𝑏2

− 𝑃1(𝑇 ) ln(𝑃2(𝑇 )),

(5)

and summations ∑ cover the different classes of the histogram.
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Fig. 2. Study area and SAR image coverage.
2.4. Change type classification

The areas labeled by 𝑐 = 1 and 𝑐 = 2 are classified by a log-ratio
classification and by KI-MM thresholding. We now consider that the
polycentric urban development manifests itself as positive and negative
changes. By analyzing the intensity difference between stack A and B,
denoted as 𝐷, we classify the change type by

𝐷 = 𝑆𝐺𝐸𝐸𝑏 − 𝑆𝐺𝐸𝐸𝑎

⎧

⎪

⎨

⎪

⎩

> 𝐾+, positive
< 𝐾−, negative
= 𝐾𝛥 ± 𝑒, neutral

, (6)

where 𝑒 is the allowable bias or predefined tolerance. A negative
change, 𝐷 < 𝐾−, implies that the intensity value (in decibels) of a
pixel decreases in image stack B from the corresponding value in image
stack A. A positive change, 𝐷 > 𝐾+, indicates that the intensity value
of a pixel increases in image stack B from the value in image stack
A. When 𝐷 = 𝐾𝛥 ± 𝑒, no change occurs. In a noise-free scenario, 𝑒
equals to zero. For instance, if a ground target, e.g., a single building,
appears in image stack A and is absent in image stack B, then the
intensity value decreases and 𝐷 < 𝐾−, thereby indicating a negative
change. If a building exists in image stack B but not in image stack A,
then the intensity value increases and 𝐷 > 𝐾+, thereby indicating a
positive change. The positive change is regarded as new-born patch or
city center in later analysis. If a building exists in both stack A and B,
then 𝐷 = 𝐾𝛥 ± 𝑒, no change occurs.

2.5. PUD indicators

To facilitate SAR-derived positive changes for the polycentric urban
development monitoring, we propose two indicators, (i) patch mean
distance and (ii) patch area. (i) Patch mean distance is the average dis-
tance between the nearest patches. To obtain the mean distance 𝑀𝑑𝑖𝑠,
one first identifies the nearest patches, then calculates the distance
between the patch boundary of every two patches, and computes the
average distance of all patches. 𝑀𝑑𝑖𝑠 is obtained by

𝑀𝑑𝑖𝑠 =
2
∑

𝐷𝑖𝑠(𝐴𝑟𝑒𝑎𝑖, 𝐴𝑟𝑒𝑎𝑗 )
𝑁𝐴𝑟𝑒𝑎(𝑁𝐴𝑟𝑒𝑎 − 1)

, (7)

where 𝐷𝑖𝑠() is the distance between patches 𝐴𝑟𝑒𝑎𝑖 and 𝐴𝑟𝑒𝑎𝑗 (𝑖, 𝑗 ∈
[1, 𝑁 ] but 𝑖 ≠ 𝑗) and 𝑁 (𝑁 ≥ 2) is the total number
4

𝐴𝑟𝑒𝑎 𝐴𝑟𝑒𝑎 𝐴𝑟𝑒𝑎
of calculated patches. The standard deviation of patch mean distance
(STD) equals

𝑆𝑇𝐷 =

√

∑

(𝐷𝑖𝑠(𝐴𝑟𝑒𝑎𝑖, 𝐴𝑟𝑒𝑎𝑗 ) −𝑀𝑑𝑖𝑠)2

𝑁𝐴𝑟𝑒𝑎
, (8)

reflecting the degree of concentration. (ii) Patch area, is an important
indicator in describing city centers (Hajrasouliha and Hamidi, 2017). It
is expressed as

𝑀𝐴𝑟𝑒𝑎 =
∑𝑁𝐴𝑟𝑒𝑎

𝑖=1 𝐴𝑟𝑒𝑎𝑖
𝑁𝐴𝑟𝑒𝑎

, (9)

showing the mean spatial extent of all changed patches.

3. Experiments and results

3.1. Study area: the city Shanghai

The test site covers the city of Shanghai city, China, outlined in
black in Fig. 2. This study area is interesting for our proposed method
from empirical and planning perspectives. Situated in the Yangtze
River Delta megaregion, its embodies a high degree of both inter-
city polycentricity and intra-city polycentricity (Liu and Wang, 2016;
Liu et al., 2018). Shanghai is a de facto polycentric city with several
different data sources and measurement schemes (Zhang et al., 2019).
It has explicitly adopted the PUD strategy for its economic growth and
industrial restructuring (Murakami and Chang, 2018). For instance,
its municipal government sequentially decided to establish new em-
ployment sub-centers (named ‘‘mini-CBDs’’) surrounding the traditional
city center in 2006, 2007, and 2012, primarily by converting former
industrial parks or upgrading old commercial districts along with floor
area ratio increases, transportation infrastructure investments, and land
use right sales for new commercial estate development. PUD strategies
have been formulated as ‘‘1+8’’ (one CBD, eight subcenters) and as
‘‘1+8+60’’ (one CBD, eight new centers, 60 satellite towns). More
recently, Shanghai has put forward a more ambitious vision for urban
polycentricity in its 2030 master plan (Chen, 2014).
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3.2. Sentinel-1 and Sentinel-2 data

We used Sentinel-1A/B SAR ground range detection (GRD) data
in C-band. Sentinel-1A/B SAR satellites offer high-temporal sampling
data with a 6-day repeat cycle, and are operated in either VV and
VH or HH and HV polarization channels. Specifically, our data have
a 10 m pixel spacing in IW mode and VH channel on GEE platform.
All Sentinel-1A/B images (as shown in red and green in Fig. 3, respec-
tively) were acquired between 2015 and 2018 in ascending mode. The
annual acquisitions equaled 21, 57, 108, and 118, respectively (Fig. 3).

s Sentinel-1B data were accessible from September 2016, the total
mount of Sentinel-1A/B in the first two years was relatively small.
hree frames labeled 96, 97, and 98 were used (Fig. 2).

Sentinel-2A/B data were used as prior knowledge to produce the
DVI-NDWI mask and also used for validation. Bands 3, 4, 8 were used

o derive the NDVI-NDWI masks, and bands 2, 3, 4 of a 10 m resolution
were fused as true-color images to validate change detection results.
Sentinel-2 A data were acquired from June 2015 with ten days repeat
cycle, while Sentinel-2B data were acquired from March 2017 and were
combined with the Sentinel-2 A to obtain a constellation of five days
repeat cycle. In total, we collected 39, 127, 124, and 233 Sentinel-2A/B
images in 2015, 2016, 2017, and 2018, respectively, shown in blue and
purple in Fig. 3.

3.3. LandScan population data

LandScan High-Resolution Global Population Dataset (Dobson et al.,
2000) aggregates various data sources. It provides global population
coverage at a 1 km spatial resolution annually. Although its algorithms
are still within patent protection, the quality of population estimation
has been proven reasonable; LandScan data have been widely applied
in dozens of studies and can even be used as the ground truth to vali-
date population distributions (Bhaduri et al., 2007). LandScan provides
us with population distribution information at fine resolution, while it
also will enable us with potential (international) comparison studies
in the future. LandScan data have been widely applied to identify
population centers in PUD (Liu and Wang, 2016; Wang et al., 2019;
Meng et al., 2021; Wang, 2021; Li and Derudder, 2022).

3.4. Data preprocessing on GEE

Using the GEE platform, all 304 Sentinel-1A/B SAR and 523
entinel-2A/B images were preprocessed following block 1. preprocess-
ing in the data processing flowchart (Fig. 1).

Intensity time series of all pixels in Sentinel-1A/B were collected
5

on GEE. As an example, Fig. 4 shows the intensity time series in dB of
points P1 (in red), P2 (in blue), and P3 (in green), which were averaged
by their patches. The location of these three points is indicated in
Fig. 8 (g). We used yearly mean values of the Sentinel-1A/B intensity
time series (shown in the dashed line in Fig. 4 as an example) to
detect annual changes per point. To reduce the speckle noise, we
used a convolution kernel with a radius of 100 pixels. For temporal
filtering, we used yearly averaged SAR images and their mean values
to detect annual changes. As such, the speckle noise was mitigated. For
instance, for the 21 SAR images in 2015, we assumed that every SAR
image had the same standard variance 𝜎SAR, the standard error of the
annually-averaged SAR for 2015 was equal to 𝜎SAR∕

√

21.
We defined the cloud occupancy as ≤ 10% to minimize the influence

of the cloud on Sentinel-2A/B. The annual median values of Sentinel-
2A/B were computed to mitigate noise. Bands 4 and 8 of Sentinel-2A/B
were selected to obtain NDVI = band8−band4

band8+band4 , while bands 3 and 8 were
sed to derive NDWI = band3−band8

band3+band8 . The pixels, with the NDVI values
bove 0.1 and NDWI values below 0, were regarded as vegetation and
ater area, respectively (Ashok et al., 2021), and were binarized as the
DVI-NDWI mask for the preprocessed SAR images.

.5. Change detection and postprocessing results

According to the procedure in block 2, change detection, we used
he log-ratio (Eq. (3)) to further analyze the preprocessed SAR stacks.
hree ratio maps were generated in a daisy-chain manner between
015 and 2018. By visually interpreting the histograms of these three
atio maps in Figs. 5(a)–(c), we found that the changed and unchanged
ixel values were mixed to form a unimodal histogram. Using the KI-
M method, we tested 80 commonly used distribution models with

riterion metric including a summation of squared error (SSE). The top
hree distribution models with minimum SSE values in Table 1 and
isualized in Figs. 5(a)–(c). We found that SSE values vary between dif-
erent yearly ratio maps in Table 1, the best-fitted model is the Laplace
istribution with the minimum SSE of 5.75, 3.95, and 6.43 for 2015–
016, 2016–2017, and 2017–2018, respectively. This is followed by
ogistic and Normal distribution. Figs. 5(a)–(c) show that the Laplace
istribution fits the histograms best. Next, we moved to the change
etection threshold selection. Updating Eq. (4) with parameters of the
aplace distribution, we derived Eq. (5) obtaining the threshold quality
alue 𝐽 (𝑇 ), as shown in Fig. 5(d). The 𝐽 (𝑇 ) values decrease towards

the dip between (−0.5, 0) and increase rapidly to the peak at zero,
while for positive 𝑇 values, the contrary is the case. In the sequel, two
local minima on the positive and negative sides served as thresholds to
separate the positive and negative changes according to Eq. (6). The
final threshold values were equal to −0.157 and 0.142 for SAR image
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0

Fig. 4. Intensity time series of three example points P1, P2, P3 (shown in Fig. 8 (g)), in Sentinel-1 images on the GEE platform. The dotted line in red represents the intensity
value of P1 in each SAR image acquisition, while blue and green lines represent P2 and P3. The dashed lines represent averaged intensity value of points P1, P2, P3 in 2015,
2016, 2017, and 2018 separately. The gray shade covers the years 2017 and 2018. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Fig. 5. Histogram of ratio map with the top 3 fitted models of 2015–2016 (a), 2016–2017 (b), 2017–2018 (c), and all potential threshold quality values 𝐽 (𝑇 ) (d).
4
2

a
S

Table 1
The summary of squared error (SSE) of different distribution models in
each yearly ratio map (unit: times2).
Distribution model Laplace Logistic Norm

2015–2016 5.75 22.13 56.91
2016–2017 3.95 19.29 50.39
2017–2018 6.43 23.31 58.01

stack 2015 and 2016, −0.163 and 0.137 for 2016 and 2017, −0.175 and
.129 for 2017 and 2018, respectively.

We then moved to block 3, postprocessing. As the detected changed
areas occurred irregularly, we applied the following refinement pro-
cesses to match them with the ground truth. First, patches sharing
the same boundary were merged into a larger patch. Acknowledging
6

v

that some pixels disappeared in homogeneous patches during the pixel-
based change detection, we used a morphological dilation to probe
and extend the shapes in the patches. Besides, pixel-based change
detection was smeared by the changes of speckle noise, which occurred
as isolated (small) patches. These patches were excluded manually by
setting an area-size threshold. Considering the 10 m pixel resolution
of Sentinel-2 data, we discarded the patches with a spatial extent ≤
0.005 km2. As a result, the total number of patches between 2015 and
2016 was equal to 99215, and the area to 364 km2, to 107733 and
89 km2 between 2016 and 2017 and to 118113 and 520 km2 between
017 and 2018, respectively (Table 2).

To link the change maps with the PUD, we classified the changed
reas into positive, negative changes, and stable areas as described in
ection 2.4. For instance, a newly built structure possesses a positive
alue in the log-ratio map, derived from image stacks in 2015 and 2016.
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Fig. 6. Change map of 2015–2016 (a), 2016–2017 (b), 2017–2018 (c), and a zoom-in map (d). The positive, negative changes, and stable areas are respectively indicated in red,
blue, and green. Only positive change is indicated in (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 2
The statistical information of changed areas.
Year Type Stable areas Positive

changes
Negative
changes

Total

2015–2016 Patch number 90869 2526 5820 99215
Area (km2) 314 18 32 364

2016–2017 Patch number 100722 2409 4602 107733
Area (km2) 439 20 30 489

2017–2018 Patch number 111335 4232 2546 118113
Area (km2) 464 36 20 520
Next, we identified positive and negative changes, and stable areas fol-
lowing Eq. (6). Based on Fig. 6, we found that most patches were stable
areas, which means these patches remain to be unchanged. Positive
and negative change areas were detected in a scattered pattern. Patches
with positive and negative changes count for 8.38%, 6.51%, 5.74% of the
total number of detected patches between 2015 to 2018, and they
are unrecognizable from Fig. 6. Zooming in on the Pudong district in
Fig. 6(d), we found that the number of patches increased as well as their
spatial extent. There were 325 positive increased patches with an area
of 3.02 km2 between 2015 and 2016, 342 and 4.11 km2 in 2016 and
2017, 618 and 6.24 km2 in 2017 and 2018. In this way, we obtained
the annual growth rate of new-born city centers, e.g., 42.78% for the
Pudong district.

3.6. Validation results

As the LandScan population data were available at a local scale,
we selected nine test sites to compare the changed patches by visual
interpretation. For each ratio map, three 5.5×5.5 km sites were selected
according to the annual changes in the population data. They were
located in the high population density area (Fig. 7(a)), while the
detected patches in Fig. 7(b) are the results of the change detection ex-
periment based on Sentinel-1. A group of manually selected validation
7

samples from Sentinel-2 is presented in Fig. 7(c). Acknowledging the
disparity in detected-patch patterns between Sentinel-1 and Sentinel-
2, we considered that the Sentinel-1 results were in line with the
Sentinel-2 reference when the interpreted patches could totally cover
or partly cover the Sentinel-1 detected patches. For instance, patch D4
in Fig. 8(f) is fully covered with the validation polygon, while patch
D1 in Fig. 8 (d) is only partly covered. In Fig. 8(b), the accuracy of the
positive change is obtained using the three correctly classified patch
areas (excluding the two patches on the top right), divided by the total
detected positive change area. The matching rate for each change type
area was presented as the ratio between the corrected patch area and
the full area. Following this metric, all three types of change were
validated for these nine validation sites (Fig. 8, Table 3). We also
calculated the conventional accuracy metric F1-score in Table B.5 in
Appendix B, which manifests the same relationship between different
types of changes for the selected nine sites.

We found that matching rate values are relatively high except for
the positive change in A2 during 2015–2016. Because most of the
detected positive patches were containers near the port, they are likely
to have changed frequently in time series and are easily misjudged if
our SAR image and reference optical image are acquired at different
times. The other matching rates all exceed 80%, and even five positives,
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Table 3
Validation statistics of the nine validation sites. Here the columns for Positive changes, Negative changes, Stable and
average, and the last row for Average show the matching rate between Sentinel-1 and Sentinel-2 results with the
units of %.
Year Validation

sites
Positive
changes (%)

Negative
changes (%)

Stable (%) Average (%)

2015–2016 A1 100 100 98.26 99.42
A2 69.36 87.94 96.78 84.69
A3 100 100 90.16 96.72

2016–2017 B1 100 100 90.54 96.85
B2 100 92.06 76.48 89.51
B3 100 98.34 97.31 98.55

2017–2018 C1 93.65 100 98.89 97.51
C2 83.76 100 99.18 95.98
C3 88.52 100 95.39 94.64

Average (%) 92.81 97.59 93.66
Fig. 7. (a) Validations site map with LandScan population data. (b) Sentinel-1 change detection results superimposed by the 2017 Sentinel-2 image. (c) Visualized interpretation
result superimposed by 2018 Sentinel-2 optical image.
six negative matching rates are 100% matching. The positive changed
patch number for A1, B1-3 are 5, 11, 5, 1, and negative changed patch
numbers for A1, A3, B1, and C1-3 are 1, 1, 4, 10, 1, 4. Note that the
matching rate can be high if few changes occurred and all these changes
are identified. These limited patch numbers and gentle changes in the
inland region compared with rapid changes near the port region did not
largely affect the detection results. Overall, for each change type, their
average matching rate is above 90%, and for three test sites each year,
the average matching rate exceeds 90% except for test site A2 between
2015 and 2016.

To exemplify the relation between the ground truth and Sentinel-
1 change detection results, we chose three points, P1, P2, and P3,
in Fig. 8. Their intensity time series are shown in Fig. 4. We found that
the intensity values of P1 increased from October 2017 to April 2018.
This increase could respond to the detected positive changes of this
patch between 2017 and 2018 (shown in gray). The intensity values of
8

P2 are relatively stable until May 2018. There is a sudden decline from
May to the end of 2018. Although a small jump occurred between June
and August, the decreasing tendency is pronounced. This time series
trend resonates with the detected negative changes over this patch.
The intensity time series of P3 remains stable, which coincides with
the detected stable patch shown in Fig. 8 (g).

3.7. Inner-relation indicators

Mean distances in the nine validation sites are shown in Table 4.
They vary from 400 m to 1600 m, except for B3. One isolated positive
change patch is observed in this test site, without neighbors, and hence
the mean distance closes to zero. Considering the STD of mean distance,
almost all STD values are smaller than the mean distance except for the
B2 test site. The reason is that three positive changes are concentrated
in the top left corner, and one distinguished patch is situated in the
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Fig. 8. Validation maps of sites A1 (a), A2 (b), A3 (c), between 2015 and 2016, B1 (d), B2 (e), B3 (f) between 2016 and 2017, and C1 (g), C2 (h), C3 (i) between 2017 and
2018.
v
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bottom right (Fig. 8 (e)). The smaller mean distance indicates that the
changes are close, while the minor STD means concentrated distribu-
tion of these changes. As a result, the mean distance and STD indicators
can reflect the spatial distribution of positive changes (new-born city
centers).

Table 4 shows that all the test sites have the minimum patch area
values between 5000 m2 and 7000 m2 except B3. Maximum patch areas
9

a

ary a lot, from 15478 m2 to 115075 m2, caused by different ground
hange processes. For example, the largest positive change area is
ocated in test site B1, which is a new-born community named Jinganfu,
s shown in Fig. 9 (e). In contrast, the minimum value in maximum
atch area indicator in test site A2 is caused by containers change
n the port region. That is to say, the minimum and maximum patch
rea can reflect different ground truth variations. The last indicator,



International Journal of Applied Earth Observation and Geoinformation 121 (2023) 103340X. Zhang et al.
Table 4
Mean distance, patch area, and number of the positive changed patches.
Year Validation

sites
Mean
distance (m)

STD of mean
distance (m)

Minimum
patch
area (m2)

Maximum
patch
area (m2)

Mean patch
area (m2)

Patch
number

2015–2016 A1 893 473 7017 69637 26070 5
A2 1243 1104 5631 15478 10239 5
A3 1609 1116 6397 31756 12134 6

2016–2017 B1 452 382 5851 115075 25839 11
B2 964 1017 7128 37524 17313 5
B3 0 0 31729 31729 31729 1

2017–2018 C1 443 358 5009 70960 21806 18
C2 1048 742 5806 39479 17866 9
C3 1341 774 5846 21871 12220 6
Fig. 9. The pictures of ground truth. (a) Jinganfu community, (b) Jinganying community, (c) Xingfukongjian office building, and (d) Sanlin park of Pudong software part are
taken in 2016, while (e)–(g) are the corresponding ground truths taken in 2017.
Source: All pictures are taken from Google Earth.
the mean patch area, shows the volume of positive changes with an
interval between 0.012 km2 and 0.026 km2.

4. Discussion

In this section, we discuss the results in comparison of LandScan and
SAR data, and the multi-perspective of the observed PUD parameters.

4.1. Results comparison between LandScan and SAR data

As the SAR-based city center detection method can provide the
changes in buildings as we showed in Section 3, but not changes in
the population, we can synergize both SAR and LandScan data towards
operational monitoring of polycentricity development.

Fig. 7 (a) shows that the city centers detected by LandScan data are
gathered in Shanghai’s main district as the main city center. Nine sub-
centers are separately located around it, including Baoshan, Jiading-
Anting, Qingpu, Songjiang, Minhang, Fengxian, Jinshan, Lingang, and
Chongming. The spatial morphology of the city center corresponds
with the master plan designed by Shanghai municipal government,
feathering one central city, nine satellite cities, 60 new towns, and 600
key settlements (Liu and Wang, 2016). Because of the 1 km spatial
resolution of LandScan data, only nine satellite cities could be observed.
Thanks to the higher resolution of SAR data, we can get more informa-
tion about the 60 new towns and 600 key settlements. For instance,
the Jinganfu community, located in Pinglu Road No. 999, was built in
2018. It was detected in the middle of Fig. 8(d), the biggest patch D1
10
in red. The corresponding high-resolution optical images (30 cm) are
shown in Figs. 9(a) and (e), acquired in different time slots showing
the variation from bare ground to built-up community. The nearest
patch D2 in the northeast is the Jinganying community (Figs. 9(b) and
(f)), which was under construction and detected between 2016 and
2017. Besides the newly built community, the Xingfukongjian office
building (Figs. 9(c) and (g)) was detected on the top of the Jinganying
community as D3. Until July 2021, the occupancy rate of this building
reached 90%. This occupancy rate can be used to reflect employment
rate, being an important PUD indicator (Chen et al., 2021). In addition,
the Sanlin park of the Pudong software park (Figs. 9(d) and (g)) was
detected as patch D4 at the bottom of Fig. 8(f). The office building
type and the software park were related to the employment trend or
employment center index of polycentricity, which could be analyzed
in the future, following Zhang (2019), and Sun and Lv (2020). With
the combined insight into the population and building changes, we
can better understand polycentricity in satellite city and local building
change scales.

There is a slight change of the LandScan results when comparing the
individual years, as shown in Fig. 7(a). City centers detected by Land-
Scan in 2015 coincide with the centers detected in 2016. Between 2016
and 2017, the centers in Pudong, Nanhui, and Jinshan disappeared
while three new centers were born. One of the new-born centers was
located in the eastern part of Baoshan. The other two were located in
the western part of Minhang. A single change appeared between 2017
and 2018, as a center disappeared in the western part of Fengxian.
Since LandScan data are annual data, we aggregated the SAR data to
have the same temporal resolution by calculating the mean value of
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image stacks in each year. They are shown in Fig. 4 in dotted lines.
For example, the detected red patch on the northwest corner in Fig. 8
(i) D5, named Yunbai center, was completed in 2018, but it was also
detected as ’under construction’ from 2015 to 2017. Because of the six
days revisit cycle of the SAR data, we detected more change details (can
be reflected by the fluctuated solid lines in Fig. 4) at higher temporal
resolution. Then the LandScan and SAR data can be complementary.

4.2. Multi-perspective of monitoring polycentric urban development

When monitoring polycentric urban development on the intra-city
scale, various kinds of geospatial data have been used in PUD, like
population censuses and economic data (McMillen, 2001), nighttime
light satellite images with social media data (Cai et al., 2017), pick-
up and drop-off points from taxi GPS data (Wei et al., 2020) land use
information (Wang and Debbage, 2021), and commuting flows (Wu
et al., 2021). As a result, the main city center and sub-centers were
identified. Unlike these traditional methods, our method provides a
detailed perspective of urban structure within the intra-city scale. The
results indicated that Pudong District had seen the highest number
of positive change patches and the highest degree of change areas.
On the contrary, Jinshan District has the lowest number of positive
change patches number and the lowest degree of change areas. This
is following development planning (Qiu and Xu, 2017). The year 2015
was the end of the ‘‘12 th Five-Year Plan’’, and 2016 was the beginning
f the ‘‘13 th Five-Year Plan’’. Pudong District aimed at coordination,
reen, openness, and sharing and was striving for steady economic
evelopment as it was the focus of Shanghai’s future development. A
articular advantage of our proposed method is that we can locate each
ositive change at the meter level. We can therefore identify land use
ype and specific changes from POI data such as Google street view.
his is a new joint perspective to understand PUD dynamics better.

From the local policy perspective, we can justify the motivation for
he detected positive changes. Traditionally, the producer services are
onsidered to be clustered and located in the city center to benefit
rom agglomeration effects (Wei et al., 2016). Because of the devel-
pment of information and communication technology, the location
f the software industry has changed to reflect a polycentric pattern.
orrespondingly, the detected Sanlin software park is located outside
he CBD or the sub-CBD area in Pudong District. The dynamic spatial
attern of the software industry is influenced mainly by government
ecisions, e.g., the location of CBDs, development zones, and new
owns (Wei et al., 2016), while the intra-urban level, agglomeration,
ccessibility, environment status, and accommodation-related factors
re critical in selecting the software industry location (Yi et al., 2011).
uch factors can be explored further to explain the detected changes
nd from different perspectives of PUD dynamics.

. Conclusions

This study, for the first time, demonstrated the potential of using
entinel-1 SAR imagery for polycentric urban development monitoring.
ur study consolidated the role of SAR imagery in embedding it into

he high spatio-temporal PUD framework. Using our proposed KI-MM
hange detection methods, we detected 2526, 2409, and 4232 newly
uilt-up positive-changed patches, with areas equal to 18, 20, 36 km2,
espectively. These changes are associated with the polycentricity de-
elopment in Shanghai between 2015 and 2018. Validated with the
ptical reference observations, Sentinel-1A/B offers reliable observa-
ions as the average matching rates for the positive changed areas
ere equal to 89.79%, 100%, and 88.64% between 2015 and 2018,
hile the F1-scores were 91.67%, 100%, and 94.06%, respectively.
e proposed two polycentricity indicators, i.e., the mean distance and

he patch area. These two indicators can help us recognize the spatial
elation between newly built-up patches and their spatial structure.
or instance, the observed 888 m mean distance of all validation sites
11
mplied a close distance of all newly built-up patches, while a potential
ew city center is rising in the vicinity. In addition, we tested 80 distri-
ution models and sought out the optimized one to derive objective and
teady threshold values. The convolution kernel filtering in space and
ariance-based temporal filtering reduced the noise while retaining the
riginal information of the signal. Compared with traditional PUD data
ources, e.g., LandScan data, we demonstrated that employing satellite
AR data can detect building changes at higher spatial and temporal
esolutions. We can detect the new-born city centers at the meter
esolution, and associate the centers with local policies. Furthermore,
mploying our method for any other designated sites is straightforward,
s our method is based on the statistical property of the images rather
han the location of the study area. In the future, we will further explore
he negative changed patches and their link with PUD.
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ppendix A. KI-MM equation derivation

We start from the conditional probability 𝑒(𝑋, 𝑇 ) of log-ratio map
alue 𝑋 falling into different categories 𝑐 ∈ {1, 2} with a certain
hreshold 𝑇 ,

(𝑋, 𝑇 ) = ℎ(𝑋|𝑐, 𝑇 )𝑃𝑐 (𝑇 )∕ℎ(𝑋), (A.1)

here ℎ(𝑋|𝑐, 𝑇 ) is the best fitted distribution model, 𝑃𝑐 (𝑇 ) =
∑

ℎ(𝑋) is
he a priori probability. In our test site, we found that Laplace is the best
itted model and the log-ratio map (N values in total and range between
𝑚, 𝑛]) should follow the distribution 𝑓 (𝑋|𝑢, 𝑏) = 1

2𝑏 exp(−
|𝑋−𝑢|

𝑏 ), where
𝑏 = 1

𝑁
∑𝑛

𝑚 |𝑋 − 𝑢|.
As ℎ(𝑋|𝑐, 𝑇 ) is independent of both 𝑐 and 𝑇 , ℎ(𝑋) can be ignored

in the following derivation. To simplify the calculation, we take the
logarithm of the numerator in Eq. (A.1) and multiply by −1, and we
get the

𝜖(𝑋, 𝑇 ) = −1 ln (ℎ(𝑋|𝑐, 𝑇 )𝑃𝑐 (𝑇 ))

= −1 ln (𝑓 (𝑋|𝑢𝑐 , 𝑏𝑐 )𝑃𝑐 (𝑇 ))

= −1 ln ( 1
2𝑏𝑐

exp(−
|𝑋 − 𝑢𝑐 (𝑇 )|

𝑏𝑐
)𝑃𝑐 (𝑇 ))

= −1(− ln 2𝑏𝑐 −
|𝑋 − 𝑢𝑐 (𝑇 )|

𝑏𝑐
+ ln𝑃𝑐 (𝑇 ))

= ln 2𝑏𝑐 +
|𝑋 − 𝑢𝑐 (𝑇 )| − ln𝑃𝑐 (𝑇 )

(A.2)
𝑏𝑐
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Table B.5
F1-score of nine validation sites.
Year Validation sites Positive

changes (%)
Negative
changes (%)

Stable (%) Average (%)

2015–2016 A1 100 100 96.10 98.70
A2 75 88.89 98.29 87.39
A3 100 100 99.12 99.71

2016–2017 B1 100 100 97.56 99.19
B2 100 92.31 97.15 96.49
B3 100 96.55 99.10 98.55

2017–2018 C1 97.15 100 98.96 98.70
C2 94.12 100 99.52 97.88
C3 90.91 100 98.72 96.54

Average (%) 95.24 97.53 98.28
Table C.6
Validation statistics of the nine validation sites using the Normal distribution. Here the columns for Positive changes, Negative
changes, Stable and average, and last row for Average show the matching rate between Sentinel-1 and Sentinel-2 results with
the units of %.
Year Validation

sites
Positive
changes (%)

Negative
changes (%)

Stable (%) Average (%)

2015–2016 A1 79.91 100 86.54 88.82
A2 37.31 71.72 96.75 68.59
A3 100 100 94.75 98.25

2016–2017 B1 95.24 62.24 93.81 83.76
B2 94.52 73.00 87.40 84.97
B3 50.67 98.04 92.26 80.32

2017–2018 C1 89.04 96.28 95.91 93.74
C2 100 100 92.54 97.51
C3 90.95 93.42 91.68 92.02

Average (%) 81.96 88.30 92.40
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The criterion function of threshold 𝑇 is defined as 𝐽 (𝑇 ) =
ℎ(𝑋)𝜖(𝑋, 𝑇 ), and when we integrate it with Eq. (A.2), we get

(𝑇 ) =
𝑇
∑

𝑚
ℎ(𝑋)(ln 2𝑏1 +

|𝑋 − 𝑢1(𝑇 )|
𝑏1

− ln𝑃1(𝑇 ))+

𝑛
∑

𝑇
ℎ(𝑋)(ln 2𝑏2 +

|𝑋 − 𝑢2(𝑇 )|
𝑏2

− ln𝑃2(𝑇 ))

= 𝑃1 ln 2𝑏1 + 𝑃1(𝑇 )
𝑇
∑

𝑚

|𝑋 − 𝑢1(𝑇 )|
𝑏1

− 𝑃1(𝑇 ) ln(𝑃1(𝑇 ))

+ 𝑃2 ln 2𝑏2 + 𝑃2(𝑇 )
𝑛
∑

𝑇

|𝑋 − 𝑢2(𝑇 )|
𝑏2

− 𝑃1(𝑇 ) ln(𝑃2(𝑇 ))

(A.3)

Appendix B. Accuracy metric: F1-score

F1-score is calculated using 𝐹1 = 2⋅𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 , with 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃
𝑇𝑃+𝐹𝑃 , and 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . 𝑇𝑃 denoting the true positive in predic-
ion, 𝐹𝑃 the false positive, 𝐹𝑁 the false negative, and 𝑇𝑁 the true
egative. The F1-score value in Table B.5 is similar to the accuracy
alue calculated in Section 3.6.

ppendix C. KI threshold with the Normal distribution

Here, we make a comparison with different distribution models
o show the efficiency of our method. Since some of the models,
.g., Generalized Gaussian, Nakagami ratio, and Weibull ratio, were not
uitable in our case, we selected the Normal distribution, which is at
he third place in our list of tested models in Figs. 5 (a)–(c).

Determining appropriate critical values for 𝐷𝐿𝑅 is important to
istinguish between changed and non-changed areas. Using Eq. (3), the
og-ratio map of SAR image stacks A and B, being a gray scale map, can
e yielded. The histogram of this log-ratio map, ℎ(𝑘), where 𝑘 is the
12

ixel’s gray value in [0 255], is then equal to the mixture of changed or
unchanged areas, and a threshold value 𝐾KI is chosen to separate these
two. For the Normal distribution, the quality of a potential threshold
value 𝑇 changes to

𝐽 (𝑇 ) = −2
∑

𝑘
ℎ(𝑘) ln[

ℎ(𝑘|𝑐, 𝑇 )𝑃𝑐 (𝑇 )
ℎ(𝑘)

], (C.1)

The conditional probability ℎ(𝑘|𝑐, 𝑇 ) is assumed to be Normally
distributed. A value of 𝑐 = 1 represents the class of unchanged pixels
(𝑘 < 𝐾KI), while 𝑐 = 2 represents the class of changed pixels (𝑘 > 𝐾KI).
Eq. (C.1) is reformulated by integrating the two classes,

𝐽 (𝑇 ) =1 + 2[𝑃1(𝑇 ) ln(𝜎1(𝑇 )) + 𝑃2(𝑇 ) ln(𝜎2(𝑇 ))]

− 2[𝑃1(𝑇 ) ln(𝑃1(𝑇 )) + 𝑃2(𝑇 ) ln(𝑃2(𝑇 ))],
(C.2)

here 𝜎1(𝑇 ) and 𝜎2(𝑇 ) are the standard deviations for the two classes.
Validation maps are shown in Fig. C.10 and the corresponding

alidation statistics in Table C.6. We saw that more pseudo changed
atches are detected, for example, the positive changes shown in
he top right of Fig. C.10(b). The incorrectly detected patches lead
o lower accuracy in the A2 row and positive changes column of
able C.6. This is similar to other test sites. Besides, employing the
I threshold with Normal distribution, the numbers of patches with
ositive and negative changes occupy 25.76%, 18.64%, and 20.33% of
otal detected patches, and their area makes up 29.22%, 19.94%, and
4.08%, respectively. When using the KI-MM threshold values, their
umbers of patches occupy 8.38%, 6.51%, and 5.74%, their areas make
p 13.74%, 10.22%, and 10.77%, respectively. The improper Normal
istribution model brings more falsely detected patches, extends the
atch boundary, and merges patches, leading to a higher proportion of
atch number and area. It shows as expected that the change detection
hresholds produced by the best-fitted model are more reliable. In
eneral, the performance of the Normal distribution is poor w.r.t the
aplace distribution.
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Fig. C.10. Validation maps of sites A1 (a), A2 (b), A3 (c), between 2015 and 2016, and B1 (d), B2 (e), B3 (f) between 2016 and 2017, and C1 (g), C2 (h), C3 (i) between 2017
and 2018 using the Normal distribution.
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