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Abstract
Aims/hypothesis  The euglycaemic–hyperinsulinaemic clamp (EIC) is the reference standard for the measurement of whole-
body insulin sensitivity but is laborious and expensive to perform. We aimed to assess the incremental value of high-through-
put plasma proteomic profiling in developing signatures correlating with the M value derived from the EIC.
Methods  We measured 828 proteins in the fasting plasma of 966 participants from the Relationship between Insulin Sen-
sitivity and Cardiovascular disease (RISC) study and 745 participants from the Uppsala Longitudinal Study of Adult Men 
(ULSAM) using a high-throughput proximity extension assay. We used the least absolute shrinkage and selection operator 
(LASSO) approach using clinical variables and protein measures as features. Models were tested within and across cohorts. 
Our primary model performance metric was the proportion of the M value variance explained (R2).
Results  A standard LASSO model incorporating 53 proteins in addition to routinely available clinical variables increased the 
M value R2 from 0.237 (95% CI 0.178, 0.303) to 0.456 (0.372, 0.536) in RISC. A similar pattern was observed in ULSAM, 
in which the M value R2 increased from 0.443 (0.360, 0.530) to 0.632 (0.569, 0.698) with the addition of 61 proteins. Models 
trained in one cohort and tested in the other also demonstrated significant improvements in R2 despite differences in baseline 
cohort characteristics and clamp methodology (RISC to ULSAM: 0.491 [0.433, 0.539] for 51 proteins; ULSAM to RISC: 0.369 
[0.331, 0.416] for 67 proteins). A randomised LASSO and stability selection algorithm selected only two proteins per cohort 
(three unique proteins), which improved R2 but to a lesser degree than in standard LASSO models: 0.352 (0.266, 0.439) in RISC 
and 0.495 (0.404, 0.585) in ULSAM. Reductions in improvements of R2 with randomised LASSO and stability selection were 
less marked in cross-cohort analyses (RISC to ULSAM R2 0.444 [0.391, 0.497]; ULSAM to RISC R2 0.348 [0.300, 0.396]). 
Models of proteins alone were as effective as models that included both clinical variables and proteins using either standard or 
randomised LASSO. The single most consistently selected protein across all analyses and models was IGF-binding protein 2.
Conclusions/interpretation  A plasma proteomic signature identified using a standard LASSO approach improves the cross-sectional 
estimation of the M value over routine clinical variables. However, a small subset of these proteins identified using a stability selec-
tion algorithm affords much of this improvement, especially when considering cross-cohort analyses. Our approach provides oppor-
tunities to improve the identification of insulin-resistant individuals at risk of insulin resistance-related adverse health consequences.

Keywords  Euglycaemic–hyperinsulinaemic clamp · Insulin resistance · Insulin sensitivity · LASSO · Plasma proteomics · 
Population study · Stability selection
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LASSO	� Least absolute shrinkage and selection 
operator

LEP	� Leptin  
LOD	� Limit of detection
LPL	� Lipoprotein lipase
PEA	� Proximity extension assay
RISC	� Relationship between Insulin Sensitivity and 

Cardiovascular disease
RTN4R	� Reticulon-4 receptor
SBP	� Systolic blood pressure
SCGB3A2	� Secretoglobin family 3A member 2
ULSAM	� Uppsala Longitudinal Study of Adult Men

Introduction

Insulin action has been quantitatively defined as its ability 
to regulate glucose disposal [1]. Insulin resistance (IR) is a 
physiological state whereby glucose disposal is impaired and 
accompanied by a compensatory hyperinsulinaemia [1]. IR is 
a primary risk factor for the development of type 2 diabetes 
and non-alcoholic fatty liver disease [1]. Through the promo-
tion of atherogenic dyslipidaemia and hypertension, IR is 
a strong risk factor for atherosclerotic CVD (ASCVD) [1].

The euglycaemic–hyperinsulinaemic clamp (EIC) is widely 
accepted as the reference standard for directly assessing insu-
lin sensitivity [2, 3]. During an EIC, the plasma insulin con-
centration is acutely raised and maintained at a constant level 

by a primed continuous infusion of insulin [2, 3]. The plasma 
glucose concentration is held constant at basal levels by a vari-
able rate glucose infusion using the negative feedback princi-
ple [2, 3]. Under these steady-state conditions of euglycaemia, 
the glucose infusion rate (‘M value’) equals glucose uptake by 
all the tissues in the body and is therefore a measure of tissue 
sensitivity to exogenous insulin [2, 3]. Insulin sensitivity as esti-
mated by the EIC has been linked to incident type 2 diabetes 
[4], ASCVD [5, 6] and heart failure [7], but is invasive, labour-
intensive and expensive to perform [2, 3]. For this reason, the 
test is invariably substituted in epidemiological studies by sim-
pler surrogate indexes including fasting insulin, the HOMA-IR 
index, the QUICKI or OGTT-based measures [8].

The prevalence of IR worldwide is increasing at an alarm-
ing rate, secondary to the obesity pandemic and decreasing 
levels of physical activity [9]. Thus, a critical need exists for 
more accurate diagnostic tests of insulin sensitivity that are 
able to detect those at greatest risk of adverse metabolic con-
sequences of IR [10, 11]. Surrogate measures of IR possess 
suboptimal diagnostic sensitivity, especially among people 
without obesity, and are hampered by the lack of standardi-
sation of the insulin assay [11, 12]. Diagnostic approaches 
leveraging blood-based signatures derived from the meas-
urement of multiple biomarkers have shown promise and 
may allow for the more reliable identification of individuals 
at high cardiometabolic risk [13]. Here, we assess the utility 
of this approach in explaining the variability in insulin sen-
sitivity as estimated by the M value using high-throughput 
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plasma proteomics in two of the largest studies to date that 
have implemented the EIC: the Relationship between Insulin 
Sensitivity and Cardiovascular disease (RISC) [14] and the 
Uppsala Longitudinal Study of Adult Men (ULSAM) [15].

Methods

Study populations  The RISC and ULSAM studies are 
described extensively elsewhere [14, 15]. Briefly, RISC was 
a prospective observational cohort study of 1037 healthy 
people aged 30–60 years from 19 centres in 14 European 
countries whose main aim was to examine whether insu-
lin sensitivity independently predicts CVD risk over 3–10 
years’ follow-up [14].
The ULSAM study is an ongoing longitudinal epidemiologi-
cal study based on all available men born between 1920 and 
1924 and living in Uppsala County, Sweden [15]. The men 
were interviewed and examined at the ages of 50, 60, 70, 77, 
82, 88 and 93 years, but the EIC was performed once at the 
age 70 visit in the early 1990s [6, 7].

Measurement of protein biomarkers  We measured a total of 
828 proteins in the plasma of RISC and ULSAM participants 
using the proximity extension assay (PEA) developed by 
Olink [16]. A detailed description is available in the elec-
tronic supplementary material (ESM Methods).

We used plasma obtained at the baseline visits between 
2002 and 2004 for 1037 RISC participants and at the 
1991–1995 visits for 954 ULSAM participants. For RISC, 
blood used for protein analysis was drawn within 1 month 
of the day of the EIC while, for ULSAM, blood was drawn 
on the same day as the EIC.

Outcome measure and covariates  In each study, the M 
value, the rate of glucose disposal, was calculated as the 
amount of glucose taken up during the EIC study and was 
transformed to milligrams per kilogram body weight per 
minute. More details are provided in ESM Methods.

From the clinical databases of each study, we extracted 
covariates related to IR that were collected using standard-
ised study protocols at the same time that the EIC was per-
formed to include in our multivariable analyses, including 
age, sex (where applicable), BMI, systolic blood pressure 
(SBP) and standardised measures of cholesterol [4, 14].

Statistical analyses  Figure 1 summarises the different data 
sources used and our analytical approach. We applied the 
least absolute shrinkage and selection operator (LASSO) 
method to develop regression models incorporating multiple 
protein levels [17]. The M value was analysed as a continu-
ous variable, and we also analysed IR as a binary variable, 

comparing people below the first quartile of the M value to 
the 75% above it. This quartile threshold has been previ-
ously linked to a sharp increase in adverse health outcomes 
related to IR [18]. In the RISC and ULSAM cohorts sepa-
rately, models were trained on a randomly selected 70% of 
the cohort and tested on the remaining 30%. In addition, we 
assessed the portability of the RISC model to the ULSAM 
cohort and vice versa.

We applied LASSO regression in models that included 
three sets of clinical predictors: (1) recruitment centre, age, 
sex, BMI (basic clinical predictor model); (2) recruitment 
centre, age, sex, BMI, lipids, SBP (standard clinical predic-
tor model); and (3) BMI, lipids and SBP or the subset of 
covariates whose distribution overlapped substantially across 
both cohorts (shared clinical predictor model). The lipids 
covariate was in form of the triglyceride to HDL-cholesterol 
ratio, which is arguably the simplest and most closely linked 
measure to IR [19]. For each of these sets of covariates, we 
also trained a model that additionally included proteins. A 
fourth protein-only model aimed to assess the performance 
of plasma proteins in the absence of any clinical covariates. 
Finally, we combined the HOMA-IR index with the stand-
ard covariates, again with and without proteins. As plasma 
insulin assays are not standardised, this final model was not 
tested across cohorts.

The standard clinical predictor model without and then 
with proteins was our a priori primary model of interest, as it 
establishes the added incremental value of protein measure-
ments over and above all routinely available anthropomorphic 
and laboratory measurements for the assessment of IR in clini-
cal practice. The basic clinical predictor model was formed by 
restricting the standard clinical predictor model to covariates 
believed to be causally associated with IR. We performed sen-
sitivity analyses excluding proteins with a high proportion of 
measures flagged as being below the limit of detection (LOD). 
The standard clinical predictor model trained in ULSAM was 
also tested in the subset of men only in RISC. We generated 
predicted M values with our LASSO models and calculated 
standard diagnostic test statistics summarising the ability of 
the linear models to correctly classify whether an individual’s 
M value fell within the lowest quartile of measured M values.

In our final analysis we ran the randomised LASSO sta-
bility selection algorithm as presented by Meinshausen and 
Bühlmann [20] and implemented in R package stabs with the 
improved error bounds introduced by Shah and Samworth 
[21, 22]. We implemented this algorithm not only on the raw 
M values but also on residuals of the M values after progres-
sively regressing out clinical covariates of interest, includ-
ing centre (where applicable), age, sex (where applicable), 
BMI, lipids and blood pressure. We did not implement this 
algorithm on the binary M values. A detailed description is 
available in ESM Methods.
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Results

Cohort characteristics  The baseline characteristics of the 
RISC and ULSAM participants included in the analyses 
are shown in Table 1. The cohort characteristics are fully 
described in ESM Results. Protein levels and distributions in 
the RISC and ULSAM cohorts using the relative Normalised 
Protein eXpression (NPX ) scale are shown in ESM Table 1.

Standard linear regression analyses and replication of marginal 
effects of proteins  A total of 359 and 317 proteins for RISC 
and ULSAM, respectively, were significant at a false discovery 
rate of <0.05 in the single protein association tests including 
age, sex and centre covariates. When BMI was also included, 
these numbers decreased to 271 and 241, respectively. The 
number of overlapping proteins between the two cohorts 
was 168 and 72 for the two sets of covariates, respectively. 
Specifically, among the significant proteins in RISC, 46.8% 
(168/359) and 26.6% (72/271) were replicated in ULSAM and, 
among the significant proteins in ULSAM, 53.0% (168/317) 
and 29.9% (72/241) were replicated in RISC. Corresponding 
statistics using a more stringent Bonferroni correction are pro-
vided in ESM Results. Full results are shown in ESM Table 2.

LASSO regression models  Consistent with previous reports 
[23, 24], standard clinical variables alone (age, sex, cen-
tre, BMI, lipids and SBP) explained 0.237–0.258 of the M 

value R2 in RISC and 0.381–0.446 of the M value variance 
in ULSAM when validation was performed within the same 
cohort (Fig. 2a,b). LASSO regression models selected 39–53 
proteins in RISC and 34–67 proteins in ULSAM. Compared 
with covariate models alone, protein models resulted in abso-
lute increases of R2 ranging from 0.201 to 0.238 for RISC and 
from 0.123 to 0.217 for ULSAM. Importantly, the 95% CIs of 
R2 for a model including proteins did not overlap the 95% CIs 
for the corresponding model without proteins. Models with 
proteins alone explained a similar proportion of M value vari-
ance to models with proteins and clinical variables. Specifi-
cally for our primary model of interest, A standard LASSO 
model incorporating 53 proteins in addition to routinely avail-
able clinical variables increased the M value R2 from 0.237 
(95% CI 0.178, 0.303) to 0.456 (0.372, 0.536) in RISC and 
from 0.443 (0.360, 0.530) to 0.632 (0.569, 0.698) in ULSAM 
with the addition of 61 proteins. Findings for the binary IR 
variable generally mirrored those for the continuous M value. 
Adding proteins to a set of covariates increased the AUC by 
0.035–0.072 for RISC and by 0.036–0.051 for ULSAM, but 
the 95% CIs had a substantial amount of overlap.
We observed a similar but less marked degree of improve-
ment in the proportion of the M value variance explained 
by the addition of proteins when we trained models in one 
cohort and tested them in the other cohort (Fig. 2c,d). Stand-
ard clinical variables alone (BMI, lipids and SBP) explained 
0.357 of M value variance in ULSAM, and 0.251 of M value 

LASSO (training set)

Prediction (test set)

LASSO (training set)

Prediction (test set)

RISC
70% of the

data
N=678

RISC
30% of the
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100%
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Continuous
(R2)
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(R2)

Continuous
(R2)
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vs rest)
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N=222
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Fig. 1   Flow chart showing the different data sources and design used in this study
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variance in RISC. Proteins alone led to an increase of 0.160 
over the model of shared covariates alone and 0.134 when 
combined with shared covariates in ULSAM (Fig. 2c), while 
the respective increases in RISC were 0.118 and 0.094 
(Fig. 2d). As in the within-cohort analyses, the 95% CIs of 
R2 for a model including proteins did not overlap the 95% 
CIs for the corresponding model without proteins.

Findings for the within and cross-cohort analyses of the 
binary IR variable generally mirrored those for the continuous 
M value, with absolute improvements in the AUC observed in 
the models incorporating proteins of 0.028–0.041 over clini-
cal predictor models (Fig. 2a–c). The one exception was a 
0.018 reduction in the AUC when comparing the protein-only 
model with the shared covariate model ported from ULSAM 
to RISC (Fig. 2d). However, 95% CIs for absolute measures 
of AUC showed substantial overlap between corresponding 
models. Restricting the testing cohort to male participants in 
RISC did not improve performance of the model trained on 
the male-only ULSAM cohort (ESM Table 3).

The results of LASSO models that included HOMA-IR 
as an additional clinical variable increased R2 in RISC 
from 0.237 to 0.330 (ESM Table 4). However, no appreci-
able increase in R2 was observed in ULSAM. When tested 
within RISC, LASSO models selected HOMA-IR and 
BMI, which together explained 0.330 of M value variance, 
while BMI, lipids and HOMA-IR explained 0.430 of M 

value variance in ULSAM. Adding proteins as covariates 
nevertheless increased R2 by 0.139 in RISC and 0.136 in 
ULSAM, an increase comparable to that seen in models 
that did not include HOMA-IR.

Comparing predicted vs actual M value classifications using 
our linear predictor we observed an increase of ~10% to 25% 
for sensitivity and ~7% to 15% for balanced accuracy across 
the various models that included proteins compared with anal-
ogous models restricted to clinical predictors alone (Table 2). 
Full cross-tabulations of observed and predicted M values by 
class (lowest quartile = case, rest = non-case) as well as addi-
tional diagnostic test proportions are provided in ESM Table 5.

In sensitivity analyses, excluding proteins flagged as 
being below the LOD using three different LOD cut-offs 
(25%, 10% and 3%) gave similar R2 and AUC results to the 
main analyses (ESM Table 6).

The cross-validation mean squared error plots, includ-
ing upper and lower SE bars, along the λ sequence for the 
RISC and ULSAM cohorts are shown in ESM Figs 1–4. The 
root mean squared errors (RMSEs) corresponding to each 
LASSO regression model obtained are shown in ESM Fig. 5.

Proteins consistently selected by standard LASSO and ran-
domised LASSO stability selection analyses  ESM Tables 7–
9 list the proteins selected by standard LASSO analyses for 
each model run, the number of times a protein was selected 
among a set of models, and the correlation among proteins 
selected and not selected by LASSO. A total of 135 proteins 
were selected by LASSO in one or more models. Six proteins 
were selected in ten or more of the 16 main LASSO models 
run. These were insulin-like growth factor-binding protein 
2 (IGFBP2), leptin (LEP), reticulon-4 receptor (RTN4R), 
adhesion G protein-coupled receptor G1 (ADGRG1), inhibin 
beta C chain (INHBC) and lipoprotein lipase (LPL). While 
selected proteins were less correlated than non-selected pro-
teins, ~25% to 30% of pairwise correlations still had an r>0.2 
compared with 30–40% among non-selected proteins.

Our randomised LASSO stability selection analyses 
selected subgroups of ten proteins in RISC and seven 
proteins in ULSAM in up to six M value models tested 
per cohort (Table 3). Four proteins were selected in both 
cohorts: fatty acid-binding protein 4 (FABP4), IGFBP2, 
LEP and RTN4R. The number of proteins selected 
decreased progressively as more covariates were regressed 
out of the M value, with only two proteins selected for fully 
regressed models. IGFBP2 was the only protein selected in 
all models in both cohorts. Improvements in R2 for stability 
selection proteins were intermediate to those observed with 
standard LASSO regression models in both RISC (range 
0.352–0.366) and ULSAM (range 0.472–0.587) but still 
substantially higher than in models restricted to covariates 
alone. R2 for cross-cohort analyses remained largely similar 
in both directions (RISC to ULSAM range 0.444–0.524; 

Table 1   Characteristics of RISC and ULSAM participants at the time 
of EIC assessment

Data are n (%) or mean (SD)
a Threshold cut-off for IR is the lowest quartile
HDL-C, blood HDL-cholesterol concentration; LDL-C, blood LDL-
cholesterol concentration

Characteristic RISC (N=966) ULSAM (N=745)

No. recruitment centres 22 (100) 1 (100)
Male 434 (45) 745 (100)
Age (years) 44.5 (8.3) 71.0 (0.59)
BMI (kg/m2) 25.4 (4.0) 26.0 (3.18)
Blood pressure (mmHg)
  Systolic 118 (12.2) 146 (19.6)
  Diastolic 75 (7.8) 84 (11.3)
Blood cholesterol (mmol/l)
  Triglycerides 1.11 (0.75) 1.38 (0.66)
  HDL-C 1.43 (0.38) 1.30 (0.35)
  LDL-C 2.93 (0.79) 3.92 (0.90)
  Total cholesterol 4.86 (0.87) 5.84 (1.0)
  Triglyceride/HDL-C ratio 2.10 (2.51) 1.20 (0.83)
HOMA-IR 1.92 (0.57) 0.94 (0.57)
EIC
  M value, continuous 7.12 (2.95) 5.45 (1.97)
  M value, no. insulin resistanta 242 (25) 186 (25)
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ULSAM to RISC range 0.345–0.348) to R2 for standard 
LASSO models (RISC to ULSAM range 0.491–0.517; 
ULSAM to RISC range 0.345–0.369).

Discussion

We aimed to develop a novel blood-based proteomic signa-
ture to reliably estimate a direct measure of insulin sensitiv-
ity in men and women with normoglycaemia or impaired 
glucose tolerance using a high-throughput platform able 

to measure reliably hundreds of low-abundance proteins in 
plasma. Our principal findings are fourfold.

First, a large proportion of the 823 proteins measured 
with the PEA platform were statistically associated with IR 
in both the RISC and the ULSAM cohorts. Approximately 
half of the significant protein associations in one cohort 
were replicated in the other cohort and vice versa. While 
such observations may, in part, be driven by the correlation 
structure of the proteins measured in plasma, we noted sev-
eral well-established proteins among the significant associa-
tions, as well as several novel ones. These results serve as a 
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Fig. 2   Variance explained (R2) using M as a continuous variable, and 
the AUC statistic using M as a binary variable. (a, b) Models per-
formed using the training and the test datasets from the same cohort: 
(a) RISC and (b) ULSAM. (c, d) Models performed using the train-
ing dataset from one cohort and the testing dataset from the other 
cohort: (c) RISC vs ULSAM and (d) ULSAM vs RISC. In ULSAM, 

age is a limited covariate (69–73 years) and the variables centre and 
sex are invariant as there was only one centre and all participants 
were males. aA priori main model. bModels with common covariates 
in both cohorts. BMI was selected in all of the only-covariates models 
performed. Lipids were additionally selected in the only-covariates 
models in ULSAM only when M was used as a continuous variable
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compelling starting point for further inquiry into the role of 
these proteins in the pathophysiology of IR.

Second, protein models derived by standard LASSO 
regression of the M value explained a notably larger R2 than 
models restricted to commonly available clinical variables 
related to IR. This increase was most evident when apply-
ing the standard LASSO within each cohort but was also 
present when the model from one cohort was applied to the 
other cohort, despite dramatic differences between the two 
in the distribution of anthropometric characteristics and 
health status at the time of the clamp. The increased variance 
explained persisted even in the face of an increasing degree 
of stringency in the threshold for inclusion of proteins with 
values below the LOD, suggesting substantial redundancy in 
the information provided by measuring hundreds of proteins 
in the plasma. While patterns were consistent when the M 
value was transformed into a binary indicator of IR, 95% 

CIs for AUCs overlapped substantially, probably reflecting 
a loss of power from discretising the outcome, as well as 
suboptimal inference for testing the null hypothesis of a delta 
AUC not equal to zero [25].

Third, a substantially higher proportion of the R2 of the M 
value was explained by proteins alone than by clinical variables 
alone in each cohort, even after including HOMA-IR among 
the clinical variables. Furthermore, a protein-only model per-
formed as well as models that combined clinical variables and 
proteins together in most cases. These findings suggest that 
plasma protein signatures for IR derived from the proteins we 
measured not only provide incremental value to clinical vari-
ables but can also replace predictive clinical variables when 
they are not available. Consistent with this hypothesis is the 
observation that ~25% of proteins significantly associated with 
the M value when adjusting for age and sex alone lost their 
significance when BMI was added as a covariate.

Table 2   Selected diagnostic 
test characteristics for all linear 
models to detect an M value in 
the lowest quartile

Sensitivity = TP/(TP+FN); specificity = TN/(TN+FP); PPV = (sensitivity×prevalence)/
((sensitivity×prevalence)+((1–specificity)×(1–prevalence))); NPV = (specificity×(1–prevalence))/(((1–sen
sitivity)×prevalence)+((specificity)×(1–prevalence))); balanced accuracy = (sensitivity+specificity)/2
FN, false negative; FP, false positive; NPV, negative predictive value; PPV, positive predictive value; TN, 
true negative; TP, true positive
RISC → RISC, models trained in RISC and tested in RISC; ULSAM → ULSAM, models trained in 
ULSAM and tested in ULSAM; RISC → ULSAM, models trained in RISC and tested in ULSAM; 
ULSAM → RISC, models trained in ULSAM and tested in RISC

Model covariates Sensitivity Specificity PPV NPV Balanced 
accuracy

RISC → RISC
  Proteins 0.458 0.963 0.805 0.842 0.711
  Centre-Age-Sex-BMI 0.208 0.986 0.833 0.789 0.597
  Centre-Age-Sex-BMI-Proteins 0.542 0.912 0.672 0.857 0.727
  Centre-Age-Sex-BMI-Lipids-SBP 0.250 0.981 0.818 0.796 0.616
  Centre-Age-Sex-BMI-Lipids-SBP-Proteins 0.444 0.916 0.640 0.831 0.680
  BMI-Lipids-SBP 0.236 0.981 0.810 0.793 0.609
  BMI-Lipids-SBP-Proteins 0.486 0.930 0.700 0.844 0.708
ULSAM → ULSAM
  Proteins 0.250 0.964 0.700 0.792 0.607
  Centre-Age-Sex-BMI 0.107 1.000 1.000 0.769 0.554
  Centre-Age-Sex-BMI-Proteins 0.357 0.976 0.833 0.818 0.667
  Centre-Age-Sex-BMI-Lipids-SBP 0.145 0.994 0.889 0.778 0.570
  Centre-Age-Sex-BMI-Lipids-SBP-Proteins 0.455 0.988 0.926 0.845 0.721
  BMI-Lipids-SBP 0.164 0.994 0.900 0.782 0.579
  BMI-Lipids-SBP-Proteins 0.455 0.988 0.926 0.845 0.721
RISC → ULSAM
  Proteins 0.299 0.984 0.862 0.807 0.642
  BMI-Lipids-SBP 0.075 0.996 0.875 0.764 0.536
  BMI-Lipids-SBP-Proteins 0.226 0.986 0.840 0.793 0.606
ULSAM → RISC
  Proteins 0.310 0.942 0.641 0.803 0.626
  BMI-Lipids-SBP 0.213 0.969 0.699 0.787 0.591
  BMI-Lipids-SBP-Proteins 0.479 0.915 0.653 0.840 0.697
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Fourth, a stability selection algorithm including ran-
domised LASSO selected a substantially smaller number of 
proteins and reduced the proportion of R2 explained within 
a cohort to an intermediate degree between that observed 
with clinical variables alone and that observed with clinical 
variables combined with the proteins selected by a standard 
LASSO approach. Differences in R2 were less marked for 
cross-cohort analyses. In these randomised LASSO cross-
cohort analyses, models including only a small number of 

stable proteins achieved nearly the same performance as the 
standard LASSO cross-cohort analyses. For models trained 
in RISC and tested in ULSAM, the two ‘stable’ proteins 
in addition to clinical covariates achieved an R2 of 0.444, 
while the 51 standard LASSO proteins achieved an R2 of 
0.491. Similarly, for models trained in ULSAM and tested 
in RISC, two ‘stable’ proteins achieved an R2 of 0.345, while 
67 standard LASSO proteins achieved an R2 of 0.369. These 
findings suggest the presence of unstable features leading 

Table 3   Proteins selected by randomised LASSO stability selection analyses when regressed on raw M values or on the M value residuals after 
regressing out clinical predictors of insulin sensitivity

* Variable not applicable in ULSAM cohort.
Protein label includes name, UniProt ID, panel
R2 = variance explained of M value of selected proteins and covariates in the testing dataset. Numbers in parentheses provide 95% confidence 
intervals for given R2.
N/A, not applicable as ULSAM included only male participants.
RISC → RISC, models trained in RISC and tested in RISC; ULSAM → ULSAM, models trained in ULSAM and tested in ULSAM; RISC → 
ULSAM, models trained in RISC and tested in ULSAM; ULSAM → RISC, models trained in ULSAM and tested in RISC

Covariates regressed out of M value None Centre*-Age Centre*-Age-Sex* Centre*-Age-
Sex*-BMI

Centre*-Age-Sex*-
BMI-Lipids-SBP

BMI-Lipids-
SBP

Protein selected in RISC
  ADGRG2_Q8IZP9_metabo x x
  CD300LG_Q6UXG3_develo x
  FABP2_P12104_cardio_ii x
  FABP4_P15090_cardio_iii x x x
  IGFBP_1_P08833_cardio_iii x x x
  IGFBP_2_P18065_cardio_iii x x x x x x
  INHBC_P55103_develo x x x
  LEP_P41159_cardio_ii x x x
  RTN4R_Q9BZR6_metabo x x x
  SCGB3A2_Q96PL1_cardio_iii x x x x x x
Protein selected in ULSAM
  ADGRG1_Q9Y653_organ_dam-

age
x x N/A

  FABP4_P15090_cardio_iii x N/A
  IGFBP_2_P18065_cardio_iii x x N/A x x x
  ITGAV_P06756_oncolo_ii x x N/A x x x
  LEP_P41159_cardio_ii x x N/A
  LPL_P06858_cardio_ii x x N/A x
  RTN4R_Q9BZR6_metabo x N/A
Variance (R2) explained by proteins 

selected (95% CI)
  RISC → RISC 0.366 0.363 0.381 0.338 0.362 0.352

(0.281–0.452) (0.278–0.448) (0.297–0.465) (0.253–0.425) (0.277–0.448) (0.266–0.439)
  ULSAM → RISC 0.348 0.345

(0.300–0.396) (0.296–0.393)
  ULSAM → ULSAM 0.582 0.587 0.472 0.495 0.495

(0.502–0.663) (0.507–0.667) (0.380–0.565) (0.406–0.586) (0.404–0.585)
  RISC → ULSAM 0.524 0.444

(0.475–0.573) (0.391–0.497)
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to some degree of model overfitting within a cohort despite 
our use of testing and training sets and cross-validations. 
They also suggest that proteins selected by the randomised 
LASSO method are likely to be the most generalisable and 
robust if implemented clinically to help predict IR across 
multiple populations, even when the baseline characteristics 
of those populations are quite divergent.

Few studies have reported on the utility of high-through-
put proteomics of plasma to more reliably estimate IR [13]. 
Several studies have focused on the identification of preva-
lent type 2 diabetes or the prediction of incident type 2 dia-
betes while others have examined surrogate measures of IR 
[13]. To the best of our knowledge, this is the first study to 
combine high-throughput methodology with a direct meas-
ure of insulin sensitivity. Our findings highlight the potential 
of using a proteomic signature to estimate a direct meas-
ure of insulin sensitivity over and above the use of clinical 
variables and across a wide range of age and baseline health 
states. Such analyses may provide opportunities to markedly 
improve the identification of insulin-resistant individuals at 
risk of IR-related adverse health consequences [1, 10].

Several proteins selected repeatedly by LASSO for both 
continuous and binary outcomes in our primary analyses 
have long-standing and well-established connections to IR. 
The two most frequently selected included IGFBP2 and LEP, 
which also possessed the largest multivariate effect sizes per 
SD increase in measured protein. IGFBP2 is associated with 
multiple cardiovascular risk factors related to the metabolic 
syndrome and IR and is further regulated by LEP [26–29]. 
LEP regulates food intake, body weight and glucose metabo-
lism, is associated with IR independent of body fat mass, 
and lowers blood glucose and insulin even in the absence 
of weight loss in mice [30]. LPL, the third most frequently 
selected protein, is also associated with obesity and other 
metabolic disorders related to energy balance, insulin action 
and body weight regulation [31]. More specifically, LPL is 
an important enzyme in the metabolism of triacylglycerol-
rich lipoproteins associated with IR, including triglycer-
ides, chylomicrons and very low-density lipoproteins. By 
facilitating adhesion of these lipoproteins to the vascular 
endothelium of specific tissues, LPL plays an important role 
in their targeted delivery to and use by insulin-sensitive tis-
sues, such as muscle and liver, and their clearance from the 
blood [31]. Overexpression of LPL in target tissues such as 
muscle causes muscle-specific IR by promoting dysfunction 
in insulin signalling and action [32]. These three proteins 
were also selected by our stability selection algorithm.

Three proteins selected frequently by LASSO with less 
established roles in IR include RTN4R, ADGRG1 and 
INHBC. RTN4R has important roles in regulating axon 
regeneration and neuronal plasticity in the central nervous 
system, but the canonical ligand for RTN4R (reticulin 4) 
is also expressed in non-parenchymal cells within the liver 

where it blocks diet-induced hepatic lipid accumulation, 
steatosis and IR [33]. ADGRG1 is a receptor that facili-
tates adhesion of cells to collagen matrix, especially in the 
developing brain, but it is also the most highly expressed 
G protein-coupled receptor in human and mouse pancreatic 
islets, with a high correlation between expression and many 
genes essential for beta cell function [34]. Lastly, INHBC is 
a member of the TGF-β family involved in the regulation of 
the secretion of follicle-stimulating hormone by the pituitary 
gland along with other inhibins and activins, and thus regu-
lates hypothalamic and pituitary hormone secretion as well 
as the secretion of gonadal hormones and insulin [35, 36]. 
The INHBC gene is also highly expressed in the liver [37]. 
These three proteins were also selected by our stability selec-
tion algorithm. Two additional proteins with no obvious prior 
link to IR, secretoglobin family 3A member 2 (SCGB3A2) 
and integrin subunit alpha V (ITGAV), were selected by all 
stability selection algorithm models for RISC and ULSAM, 
respectively, and are worth highlighting. SCGB3A2 is a small 
secretory protein that is predominantly expressed in airway 
epithelial Club cells, It has anti-inflammatory, growth factor, 
anti-fibrotic and anti-cancer activities that influence various 
lung diseases including asthma [38]. ITGAV may regulate 
angiogenesis and cancer progression [39].

A key strength of our study is the profiling of many low-
abundance proteins in plasma from two of the largest studies 
conducted to date that have made direct measurements of 
insulin sensitivity using the reference standard, the EIC, as 
well as undertaking comprehensive and standardised docu-
mentation of clinical risk factors related to IR. Our study 
is therefore the most comprehensive plasma proteomics 
study to date on IR. We note that the absolute incremental 
improvement in variance explained by the proteomic signa-
ture was comparable in the two cohorts despite the vastly 
different cardiometabolic risk profiles at baseline. This large 
difference in baseline health state in the two cohorts is likely 
to be responsible for the substantial differences in the pro-
portion of variance explained by the clinical variables alone.

Our study also has weaknesses that are worth noting. 
First, the plasma used for the RISC study was not collected 
on the day of the EIC but rather within 1 month of the EIC. 
However, a recent study demonstrated remarkable stability 
and reproducibility of most protein measurements using the 
PEA over a period of 1 year [40]. Furthermore, any misclas-
sification related to biological variability is likely to be non-
differential and bias our results towards the null. Second, 
we did not assess the entire plasma proteome. Our limited 
assessment was also not completely unbiased as several of 
the panels we measured were designed specifically for the 
study of cardiometabolic disease. This semi-targeted plat-
form thus might limit the utility of additional proteins, but 
this assumes that knowledge of predictors is already satu-
rated, which is unlikely given that at least 5000 additional 
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canonical and non-redundant proteins have been catalogued 
in the Human Plasma PeptideAtlas build 2021-07 [41]. 
Third, we were limited in our ability to demonstrate port-
ability of the proteomic signature to people of non-European 
race and ethnicity with a differing prevalence of and predis-
position to IR. Thus, further study in these populations is 
necessary to ensure that implementation of this approach 
does not further promote health disparities. Fourth, the cost 
of complete proteomic profiling remains very high, but the 
availability of custom panels has the potential to cut costs 
and facilitate the clinical implementation of this technol-
ogy. Lastly, both the RISC and ULSAM studies are too 
restricted in their size and follow-up to have the power to 
clearly demonstrate a benefit of the M value in predicting 
adverse outcomes over modestly correlated proxy measures. 
By extension, this limitation also applies to the assessment 
of the incremental benefit of plasma proteomics. However, 
the relative utility of proteomic signatures for M values vs 
proxies of IR could soon be tested in large-scale population 
studies such as UK Biobank using the same technology [42].

In summary, our results suggest that plasma proteomic 
profiling has the potential to improve individual assessments 
of insulin sensitivity based on a reference measure. The 
measurement of additional proteins in combination with other 
-omics profiling should be explored to determine whether 
an even more accurate estimation of an individual’s insulin-
mediated glucose disposal/uptake and subsequent risk of 
health consequences can be made and whether this approach 
can be successfully implemented in clinical practice.
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