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The propagation speed of optical 
speckle
Zhenyu Wan 1, Murat Yessenov 2 & Miles J. Padgett 1*

That the speed of light in vacuum is constant is a cornerstone of modern physics. However, recent 
experiments have shown that when the light field is confined in the transverse plane, the observed 
propagation speed of the light is reduced. This effect is a consequence of the transverse structure 
which reduces the component of wavevector of the light in the direction of propagation, thereby 
modifying both the phase and group velocity. Here, we consider the case of optical speckle, which has 
a random transverse distribution and is ubiquitous with scales ranging from the microscopic to the 
astronomical. We numerically investigate the plane-to-plane propagation speed of the optical speckle 
by using the method of angular spectrum analysis. For a general diffuser with Gaussian scattering over 
an angular range of 5°, we calculate the slowing of the propagation speed of the optical speckle to be 
on the order of 1% of the free-space speed, resulting in a significantly higher temporal delay compared 
to the Bessel and Laguerre–Gaussian beams considered previously. Our results have implications for 
studying optical speckle in both laboratory and astronomical settings.

The speed of light is a fundamental property of light, both in terms of waves and photons. It is generally accepted 
that the velocity in vacuum is a constant c, which is one of the fundamental units of nature from which the unit 
of length is  defined1. The optical physics community, however, has been fascinated by controlling and observing 
deviations from this constant. One well-known example is the related phenomena of slow and fast  light2–4, where 
the group velocity of light pulses is modified through a material system, including atomic  vapors5, ultracold 
 atoms6, optical  fibers7–9, photonic  crystals10, and so  on11–14. The basis of these effects is generally associated with 
the chromatic dispersion of a light pulse, which tends to spread or distort temporally as it propagates through an 
optical medium. An alternative mechanism to control the group velocity of light is via propagation-invariant wave 
packets with underlying spatiotemporal  structure15, such as Bessel-X  pulses16, and space–time wave  packets17,18. 
Based on these phenomena, various strategies have been proposed to realize the superluminal  propagation19–22, 
and arbitrarily adjustable group  velocities23–26 in free space. Such implementations are facilitated by space–time 
coupling, where the light pulses undergo spatiotemporal sculpting via tight correlation between spatial and 
temporal degrees of  freedom15,18.

In addition to these various phenomena, it has more recently been recognized that the transverse confinement 
of a wave or the spatial structure of a single photon will modify its propagation speed, resulting in a sublumi-
nal group  velocity27. This modification derives from the divergence or convergence of the beam on account of 
the beam’s transverse structure. Such slowing of the propagation speed, induced by spatial structure, we term 
“structured slow light”, which can occur in the absence of any medium. For a simple example, within a hollow 
waveguide, the transverse modes travelling between two planes yield a group velocity less than c28. According to 
the theory of waveguides, the relationship between phase velocity vϕ and group velocity vg,z along the waveguide 
appears as vϕvg,z = c229. This means that, considering the reduction of the axial projected wavevector kz along the 
guide versus the fixed wavenumber k0, there is a phase velocity exceeding c, and it results in a reduced group 
velocity, where k0 = 2π

/

� and λ is the optical wavelength. It should be emphasised here that this slowing is 
not caused by the waveguide directly but rather by the boundary conditions that the waveguide imposes on the 
transverse spatial structure.

It is worth noting that the slowing effect of this structured light is distinct from the local group velocity chang-
ing near the focus caused by the Gouy phase  shift30,31, although they are both related to the transverse spatial 
restrictions of the beam. The slowing of structured light persists from the near field to the far field, so the total 
delay during propagation is much greater than the impact of Gouy phase effect which only occurs near the focus.

In cylindrical coordinates, the free space dispersion relation takes the form k2z + k2r = (ω/ c)2 , where 
kr = k sin θ and kz = k cos θ are the radial and axial components of the wavevector, ω is the temporal frequency 
and θ is the wavevector angle with respect to the beam axis. Taking the case of Bessel-type beams as an example, 
there are three alternative ways of generating polychromatic beams with transverse localization that lead to 
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distinct propagation properties. Firstly, Bessel-X waves with frequency-independent propagation angle θ that 
possess diffraction-free and dispersion-free propagation at superluminal group  velocities20, secondly, propaga-
tion-invariant 3D space–time wave packets with a parabolic space–time coupling kr ∝

√
|ω − ω0| that leads to 

arbitrary group velocities in free space (ω0 is the central frequency)32, and finally Bessel–Gauss pulsed beams with 
frequency-independent radial wavevector kr traveling at subluminal group velocities in free  space33,34. Bessel-X 
waves generated via axicon and 3D space–time wave packets retain an X-shaped spatio-temporal profile due to 
the space–time coupling along with the Bessel-type transverse profile.

To illustrate the differences, in the case of Bessel-X waves, the space–time coupling takes the form of 
kz
/

k = cosα , where α is axicon angle, leading to a superluminal value for both the phase velocity and group 
velocity, i.e., vφ = vg = c

/

cosα . On the contrary, Bessel–Gauss pulsed beams synthesized using an annular 
slit or an equivalent diffractive element are endowed with one spatial frequency kr for all temporal frequencies 
ω, leading to a dispersive propagation at subluminal group velocities in free  space34. Due to the fixed spatial 
spectrum kr over the whole spectral bandwidth in the latter case, at the quasi-monochromatic limit, one can 
consider these beams as spatially structured fields without regarding their spatio-temporal  correlation27. In the 
paraxial regime, unlike space–time wave packets whose group velocity is tunable over a broad range of  values32, 
the variation of the group velocities of Bessel-X waves and Bessel–Gauss pulsed beams from c is limited by the 
numerical aperture (NA) of the  system19,20.

Looking beyond Bessel beams, more generally, when considering the group velocity or similar metrics for 
propagation speed of a finite length pulse it is important to recognise that any finite length pulse has a spread of 
k0 values, albeit potentially very small. In this regard it is essential that the derivatives of the various component 
of k with respect to k0 are examined. When generating structured light beam there are two different approaches 
that should be considered. The first of these approaches is when using a refractive or reflective optic where, 
ignoring dispersion, the transverse components of k, i.e., kx and ky scale linearly with k0. The second of these 
approaches is when using a diffractive optic where the transverse component of k are independent of k0. In our 
case we are considering the second of these two approaches where the diffractive is implemented using a spatial 
light modulator (SLM), in its off-axis mode. Throughout the rest of this work we are assuming the case of where 
the transverse component of k are independent of k0.

In recent years, both theoretical analyses and experimental demonstrations have been carried out for reveal-
ing the effect of structured slow light as applied to Bessel beams, focused  beams27,35, Laguerre–Gaussian (LG) 
 beams36,37, and the intrinsic effect of orbital angular momentum (OAM)38. For example, the experimentally 
observed slowing, or corresponding group delay, in Giovannini’s  experiments27 is around one part in  105 com-
pared with the reference values. It is restricted by a small spatial divergence of the beams, which corresponds 
to the skew trajectories of optical rays in the geometrical  optics39. This slowing of a structured light beam was 
shown to scale with the square of its divergence, expressed quantitatively as θ = kr

/

k0 within the small-angle 
 approximation27. The maximum divergence of the light is limited by the numerical aperture of the supporting 
optical system which is defined as the ratio between the limiting aperture and the distance from that aperture. To 
calculate the time delay associated with this reduction in the propagation speed one needs also to account for the 
distance over which the propagation occurs. Hence for structured light beams to be produced and detected with 
a fixed aperture, the combination of the scaling of the slowing together with the propagation distance means that 
the maximum temporal delay scales inversely with the propagation distance, i.e., it is a short-range effect. Taking 
the Bessel beam as an example, for a finite radius, a longer diffraction-free propagation distance is maintained 
by a smaller cone  angle40, which reduces the slowing effect. In this present work we consider not a specifically 
structured beam but instead the general case of random optical speckle, which can be created over a very large 
field of view and with long propagation distances allowing the possibility of significant temporal delays.

Methods and results
Optical speckle arises from the interference between random distributions of plane wave components, such as 
generated by light scattering from rough surfaces or propagating through turbid  diffusers41. For example, when 
a laser is incident on an object such as ground glass or scattering screen, the transmitted or reflected light would 
be observed with fine-scale granular pattern. According to the Huygens-Fresnel principle, the optical speckle 
resulting from scattering coherent light can be considered as the interference caused by different scattering points 
that act as individual new nearly-spherical wave sources. Since the solid angle subtended by the detecting system 
is sufficiently small, each spherical wave in the volume of space around the viewing aperture is approximated by 
a plane wave. Hence the plane-wave approximation is widely used to simulate the optical speckle 
 mathematically42,43. In this work we model the optical speckle as a superposition of a large number of plane waves 
with random phases and directions, as shown in Fig. 1a. The intensity pattern of the speckle has a grainy appear-
ance, where the bright spots and dark specks arise from the constructive and destructive interference respectively. 
In particular, the centre of each dark speck is a phase singularity, and in 3 dimensions these dark filaments thread 
themselves through the speckle field creating highly complicated networks of vortex lines and  loops44–46. Intui-
tively, the angular spectrum of light field can be mapped to direction space of wave vectors (k-space), i.e., with 
amplitude correspondence to the k-spectrum, where each point represents a plane wave, to which is assigned 
random transverse projected components (kx and ky), as shown in Fig. 1b. The corresponding nonzero radial 
component kr =

√

k2x + k2y  produces a modification of average axial component �kz� =
√

k20 −
〈

k2r
〉

 , where 〈...〉 
denotes the statistic expectation over the k-spectrum.

To characterize the propagation speed of optical speckle, we introduce the phase and group velocities which 
are averaged across all the wave components velocity which we have previously shown corresponds to the 
time the light or photons take to travel from plane to plane. Different from the conventional definition of 
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group  velocity47, the spatially average group velocity refers to the traveling energy envelope of a group of plane 
waves with a small spread in directions (i.e., spatial components in k-spectrum) rather than in frequencies or 
wavenumbers (i.e., temporal components in frequency spectrum). The spatially averaged phase velocity is then 
given as vφ = c · k0

/

�kz� by the average value of kz. For a structured beam in free-space it seems sensible that 
the average group velocity and phase velocity have the same relation as in the theory of hollow waveguides, i.e., 
vφvg ,z = c2 . The condition is best satisfied when we assume that the radial projection of wave vector kr in optical 
speckle analyzed here is independent on its angular frequency ω. The resultant spatially average group velocity 
along z is thus given as

meaning that structured beams with a nonzero expectation value of k2r  , of which optical speckle is one example, 
will experience a reduced propagation speed, i.e., vg,z < c.

We emphasize that the optical field considered here is quasi-chromatic, i.e., the frequencies of the wave group 
are clustered in a very narrow region around the main frequency. The field endowed with fixed kr still experiences 
group velocity dispersion (GVD) when the input beam is pulsed. This is another distinction between the effect 
of structured slow light and the group velocity control with space–time wave packets, which results in dispersion-
free  propagation48,49. However, in the structured slow light the amount of GVD is insignificant compared with 
the differentiable group delay τDGD = L

∣

∣

∣

1
c −

1
vg

∣

∣

∣
 acquired by this pulse, where L is the axial propagation distance. 

It can be shown that for the pulse of spectral bandwidth of Δω and spatial wavevector kr the ratio of pulse broad-
ening Δτ to the differentiable group delay τDGD is proportional to �ω

ω0
 , which is at the quasi-monochromatic 

regime is negligible, i.e. �τ
τDGD

∼ �ω
ω0

≪ 149,50.
As introduced earlier, to experimentally generate an optical speckle with kr components that are independent 

of k0 requires diffractive elements, e.g., superposed grating patterns uploaded on SLM. For a single randomized 
plane wave produced by a hologram of grating pattern with fringe separation d, the resultant transverse compo-
nents kx (ky) is 2π/dx (2π/dy), and kr is independent of wavelength. Each plane-wave hologram is assigned with 
three individual variables: polar angle, azimuthal angle and phase offset, where the polar angles are distributed 
with a Gaussian profile, and both azimuthal angles and phase offsets are uniform noise. The resulting phase 
hologram uploaded on SLM comprises the wavevectors of optical speckle by combining the grating patterns.

To model such optical speckle numerically, we define a finite two-dimensional grid in transverse k-space, 
where each point describes a plane wave tilted by θx and θy with respect to the propagation axis. According to the 
central limit  theorem51, the superpositions of infinitely many waves tend to Gaussian random  functions52. The 

(1)vg ,z = c ·
√

1−
〈

k2r
〉/

k20,

Figure 1.  Optical speckle in free space and k-space. (a) Superposition between a sufficiently large set of 
randomly phased and directed plane waves is an approximation to the optical speckle created by scattering a 
laser beam from a diffuser. (b) k-spectrum of optical speckle and the projection of one of the points in direction 
space of wave vectors.
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ensembles of plane harmonics are asymptotically Gaussian, which means that the probability density distribution 
of each tilted direction (θx and θy) follows a 2D Gaussian distribution, as shown in Fig. 2a. Our simulation for 
optical speckle is based on a superposition of 2000 plane waves randomly distributed in direction and phase, and 
each of which has a Gaussian amplitude in profile. Their distribution in k-space is subject to a Gaussian density 
distribution, characterized by a divergence of sin σθ in free space, where σθ is the standard deviation of the tilted 
angles of the wave vectors. A typical example for σθ = 5° is calculated in Fig. 2b. The resultant intensity profile 
of the optical speckle in the far field is shown in Fig. 2c. By performing 2D Fourier transform for the complex 
amplitude of the speckle field, its k-spectrum is obtained as shown in Fig. 2d, where the coordinates are divided 
by the initial wavenumber k0. It can be seen that the k-spectrum of optical speckle has a 2D Gaussian density 
envelope, which depends on the distribution of tilted directions of wave vectors in Fig. 2b. More importantly, in 
the paraxial regime, the effect of light propagating over z in free space is simply a phase change in the compo-
nents of its angular spectrum, and then since the k-spectrum is equivalent to the modulus of angular spectrum 
mathematically, the k-spectrum of optical speckle is propagation-invariant, which means that its slowing persists 
over arbitrarily long ranges.

Optical speckle is usually characterized by its lateral size, which refers to the lowest length scale at which 
beam is  correlated53. Particularly, for a fully developed speckle field created by a scattering surface, the size of 
speckle increases with the distance from the surface to observation  plane54,55. From the perspective of plane wave 
interference, the larger the tilted angle, a greater the transverse phase varying gradient and then the denser the 
interference fringes. In a Fourier sense, statistical properties with high complexity in real space correspond to 
an expanded angular spectrum. This means that the k-spectrum range of speckles is negatively correlated with 
speckle size.

To evaluate the degree of slowing for this numerically creating optical speckle, we divide the k-spectrum in 
Fig. 2d radially according to the evenly equidistant 1000 scales on the established k2r

/

k20 axis. By summing and 
normalizing all the amplitudes with the individual ring regions divided from k-spectrum, each ring is calculated 
as a value point with global normalized probability along the k2r

/

k20 axis, as shown in Fig. 3. Physically, each 
discrete point represents the probability of a plane wave that appears within a �k2r

/

k20 ring region of k-space, 
where �k2r  is the division value on axis. In this case (σθ = 5°), the value 

〈

k2r
〉/

k20 is calculated as 0.022465, and 

Figure 2.  An example of numerically generating optical speckle. (a) Gaussian probability density distribution of 
tilted directions in k-space. (b) Direction points with Gaussian density of standard deviation of 5°. (c) Intensity 
profile of optical speckle created by the interference between Gaussian random waves with directions as (b). (d) 
Calculated k-spectrum of speckle field by 2D Fourier transform of its complex amplitude.
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then the spatially average group velocity of such optical speckle is calculated by Eq. (1) as vg ,z ≈ 0.9887c . This 
means that the propagation speed of an optical speckle with the Gaussian divergence with standard deviation of 
5° corresponds to a slowing of 1.13% in free space.

In addition to the discrete sampling of the k-spectrum of optical speckle as an example, a continuous prob-
ability density distribution of radial proportion square k2r

/

k20 can be deduced from the Gaussian angular spec-
trum mathematically as

where sin σθ again refers to the divergence of optical speckle. Figure 3 shows a good fit between the theoretical 
curve of Eq. (2) and the sampling points from a typical k-spectrum in Fig. 2d.

We perform a numerical analysis for the relation between slowing effect as a function of the divergence of 
the optical speckle. In particular, the divergence refers to the spreading angle, which describes the standard 

(2)p
(

k2r
/

k20
)

=
√

2π · k2r
/

k20

/

sin σθ · exp

(

−
k2r
/

k20
2 sin2 σθ

)

,

Figure 3.  Statistical distribution of tilted components in optical speckle. The discrete points represent the 
probability distribution of the k-spectrum components calculated along the scales of radial proportion square. 
The solid curve is the theoretical probability density distribution of radial proportion square from an ideal 
continuous Gaussian angular spectrum.

Figure 4.  Numerically quantifying slowing effect of optical speckle. (a) Expectation values of radial proportion 
square and (b) degree of slowing under different divergence of optical speckle. The inset is a schematic 
of divergence of optical speckle where σθ is the half spreading angle that describes the tilted plane-wave 
components.
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deviation of the tilted angles of the wave vectors, as shown in the inset of Fig. 4. By gradually adjusting σθ from 
0.5° to 5° at 0.5° intervals, we calculate the value 

〈

k2r
〉/

k20 and corresponding slowing, as plotted in Fig. 4. For 
each case, the differences in the generation of Gaussian distributed random numbers within a diverging range 
would result in variation of the slowing predicted, and hence the error bar is derived from performing the cal-
culation 8 times using the method of Fig. 3. As anticipated, the predicted slowing effect becomes greater as the 
divergence increases.

Beyond the numerical simulations described above, the theoretical expression of slowing effect also deduced. 
According to the probability density distribution of radial proportion square k2r

/

k20 in Eq. (2), its expected value 
is calculated as

where the infinite of upper limit in the integral is only mathematically meaningful for its normalization among 
the whole space, while more strictly in physics, the upper limit should be 1 since kr < k0. Clearly, 

〈

k2r
〉/

k20 is pro-
portional to square of the divergence of optical speckle, see the solid curve in Fig. 4a. Using Eq. (1), for small 
angles σθ, the degree of slowing of optical speckle is theoretically calculated as

Figure 4b indicates the agreement between the theoretical curve and the mean values of each result calcu-
lated by discrete statistical method. Note that Eq. (4) is only applicable for the low-NA case to ensure paraxial 
approximation. Significantly, the slowing of the optical speckle can reach of order 1% even with a small beam 
divergence. Over the range of several meters, the temporal delay of optical speckle is thus predicted to be 
enhanced by three orders of magnitude for the same traveling distance compared to the previously measured 
Bessel or focused  beams27.

To anticipate the observable slowing in a practical detecting system, we consider the role that the aperture 
of the detector plays. The NA is a restriction on k-space when the optical speckle is observed by a detector or 
our eyes, as shown in the inset of Fig. 5. When considering the restriction on complete spatial harmonics col-
lecting of optical speckle by the detecting system, the upper limit of the integral in Eq. (3) is replaced by  NA2 
from infinite. In the initialization settings of calculation here, the beam waist of Gaussian-distributed intensity 
profile of the optical speckle is set to 2 mm, and its half spreading angle is set to 5°. Figure 5 shows the calculated 
degree of slowing under different NA, where the dashed line predicted by Eq. (4) refers to the ideal case without 
restriction of NA, and the solid curve is predicted by modified Eq. (3), and the data points are obtained with 8 
calculations by filtering the complex amplitude of speckle field in k-spectrum. Since the NA is a restriction of 
maximum range of angular spectrum, the angular spectrum outside this range is filtered out, which is analogue to 
a low-pass filtering while the higher components in k-spectrum give a greater slowing. This means that reducing 
the NA of the detection system will obviously reduce the corresponding slowing effect, which is seen in Fig. 5. In 
contrast, a beam aperture, i.e., a transverse restriction to the propagation of light in real space, would not impact 
the slowing effect drastically since whole spatial harmonics can pass the aperture, but the restriction of beam 
aperture would reduce the resolution of the k-spectrum of field due to the correspondence of the maximum of 
beam size to the minimum of k-space. Note that the structured slowing effect analyzed in this work is a global 
property. However, when one observes the local grain of optical speckle, the structured slowing effect is preserved 
even within a small region of interest, as all transverse kr could contribute to the light behavior in this region.

(3)
〈

k2r
〉/

k20 =
∫∞
0 p

(

k2r
/

k20
)

· k2r
/

k20 · d
(

k2r
/

k20
)

∫∞
0 p

(

k2r
/

k20
)

· d
(

k2r
/

k20
) = 3 sin2 σθ ,

(4)vg ,z
/

c − 1 =
√

1− 3 sin2 σθ − 1.

Figure 5.  Restrictions of practical system on slowing effect of optical speckle where the itself speckle has a 
divergence of 5° and the detector has a limiting NA. The degree of slowing calculated under different numerical 
apertures (NA) of detecting system. The inset is a schematic of a detecting system for observing the plane-to-
plane propagation of optical speckle.
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Discussions and conclusions
In conclusion we have reasoned that the slowing of structured light beams in free  space27 extend beyond the 
focused-Gaussian and Bessel beams considered in that work to include random structuring such as optical 
speckle. In all cases, the slowing arises from a non-zero component of the transverse wavevector which reduces 
the axial component of the wavevector below the free-space, plane-wave value. As in the case of a hollow wave-
guide, this reduction increases the phase velocity along the optical axis above c, which in turn reduces the group 
velocity below c. Since the angular distribution of wavevectors describing a beam does not change upon propaga-
tion in free-space, this slowing is not restricted to the vicinity of the focus, rather it persists into the far-field. The 
scale of the slowing depends upon the limiting numerical aperture associated with the generation, transmission 
and detection, whichever is the lower.

In our analysis we have restricted ourselves to Cartesian or radial coordinates which are suited to optical 
configuration with modest numerical aperture. However, we note that the slowing predicted scales quadratically 
with the numerical aperture an although outside of the scope of this work, or indeed any experiments to date, it 
raises a question as to what the equivalent effect might be for scenarios where the speckle subtends over a large 
solid angle such as 4Pi-confocal  microscopy56.

Another intriguing example of high numerical aperture systems exhibiting speckle is the cosmic microwave 
background (CMB) anisotropies. This has many parallels with the formation of speckles, where the microwave 
photons stream freely from the surface of last scattering to the observer and the intrinsic anisotropy of which 
is recognized as the small temperature fluctuations imprinted on the surface of last  scattering57. According to 
the measured data of power  spectrum58, the temperature fluctuations of CMB show a function of angular scale. 
Could it be that the CMB patterns experience similar slowing effects as the high-NA speckle and more that the 
CMB patterns seen from different angular scales may have different arrival times?

Finally, for both low and high NA, it is interesting to reflect on the fact that the spatial encoding of data onto a 
light beam’s transverse structure necessitates a transverse component to the wavevector and hence an associated 
slowing. Such a slowing therefore seems to be an inescapable consequence of the spatial structure as expressed 
in terms of light’s spatial information content or entropy.

These considerations are a subject of our ongoing studies.

Data availability
The MATLAB codes for the full set of results are available online in University of Glasgow Library Data Reposi-
tory (http:// dx. doi. org/ 10. 5525/ gla. resea rchda ta. 1414).
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